2026屆江西省永修縣軍山中學(xué)數(shù)學(xué)九年級第一學(xué)期期末檢測模擬試題含解析_第1頁
2026屆江西省永修縣軍山中學(xué)數(shù)學(xué)九年級第一學(xué)期期末檢測模擬試題含解析_第2頁
2026屆江西省永修縣軍山中學(xué)數(shù)學(xué)九年級第一學(xué)期期末檢測模擬試題含解析_第3頁
2026屆江西省永修縣軍山中學(xué)數(shù)學(xué)九年級第一學(xué)期期末檢測模擬試題含解析_第4頁
2026屆江西省永修縣軍山中學(xué)數(shù)學(xué)九年級第一學(xué)期期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2026屆江西省永修縣軍山中學(xué)數(shù)學(xué)九年級第一學(xué)期期末檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題3分,共30分)1.如圖,,則下列比例式錯誤的是()A. B. C. D.2.如圖,點A,B,C在⊙O上,∠A=36°,∠C=28°,則∠B=()A.100° B.72° C.64° D.36°3.如圖,矩形ABCD的對角線AC,BD相交于點O,CE∥BD,DE∥AC,若OA=2,則四邊形CODE的周長為()A.4 B.6 C.8 D.104.在△ABC中,若|cosA.45° B.60° C.75° D.105°5.如圖,AB為⊙O的直徑,PD切⊙O于點C,交AB的延長線于D,且CO=CD,則∠PCA=()A.30° B.45° C.60° D.67.5°6.某商場降價銷售一批名牌襯衫,已知所獲利潤y(元)與降價x(元)之間的關(guān)系是y=-2x2+60x+800,則利潤獲得最多為()A.15元 B.400元 C.800元 D.1250元7.一元二次方程的根是()A. B. C. D.8.在三角形紙片ABC中,AB=8,BC=4,AC=6,按下列方法沿虛線剪下,能使陰影部分的三角形與△ABC相似的是()A. B. C. D.9.如圖,在菱形ABCD中,對角線AC、BD相交于點O,BD=8,tan∠ABD=,則線段AB的長為()A. B.2 C.5 D.1010.如圖,等邊三角形ABC的邊長為5,D、E分別是邊AB、AC上的點,將△ADE沿DE折疊,點A恰好落在BC邊上的點F處,若BF=2,則BD的長是()A.2 B.3 C. D.二、填空題(每小題3分,共24分)11.半徑為10cm的半圓圍成一個圓錐,則這個圓錐的高是__cm.12.若點A(m,n)是雙曲線與直線的交點,則_________.13.如圖,∠AOB=90°,且OA、OB分別與反比例函數(shù)、的圖象交于A、B兩點,則tan∠OAB的值是______.14.若一元二次方程ax2﹣bx﹣2020=0有一根為x=﹣1,則a+b=_____.15.一個不透明的袋中裝有除顏色外其余均相同的5個紅球和3個黃球,從中隨機(jī)摸出一個,則摸到黃球的概率是________.16.在-1、0、、1、、中任取一個數(shù),取到無理數(shù)的概率是____________17.如圖,等腰直角△ABC中,AC=BC,∠ACB=90°,點O分斜邊AB為BO:OA=1:,將△BOC繞C點順時針方向旋轉(zhuǎn)到△AQC的位置,則∠AQC=.18.如圖,的直徑AB與弦CD相交于點,則______.三、解答題(共66分)19.(10分)已知二次函數(shù)y=x2+4x+k-1.(1)若拋物線與x軸有兩個不同的交點,求k的取值范圍;(2)若拋物線的頂點在x軸上,求k的值.20.(6分)如圖,已知直線y=kx+6與拋物線y=ax2+bx+c相交于A,B兩點,且點A(1,4)為拋物線的頂點,點B在x軸上.(1)求拋物線的解析式;(2)在(1)中拋物線的第三象限圖象上是否存在一點P,使△POB與△POC全等?若存在,求出點P的坐標(biāo);若不存在,請說明理由;(3)若點Q是y軸上一點,且△ABQ為直角三角形,求點Q的坐標(biāo).21.(6分)如圖,已知雙曲線與直線交于點和點(1)求雙曲線的解析式;(2)直接寫出不等式的解集22.(8分)空間任意選定一點,以點為端點,作三條互相垂直的射線,,.這三條互相垂直的射線分別稱作軸、軸、軸,統(tǒng)稱為坐標(biāo)軸,它們的方向分別為(水平向前),(水平向右),(豎直向上)方向,這樣的坐標(biāo)系稱為空間直角坐標(biāo)系.將相鄰三個面的面積記為,,,且的小長方體稱為單位長方體,現(xiàn)將若干個單位長方體在空間直角坐標(biāo)系內(nèi)進(jìn)行碼放,要求碼放時將單位長方體所在的面與軸垂直,所在的面與軸垂直,所在的面與軸垂直,如圖1所示.若將軸方向表示的量稱為幾何體碼放的排數(shù),軸方向表示的量稱為幾何體碼放的列數(shù),二軸方向表示的量稱為幾何體碼放的層數(shù);如圖2是由若干個單位長方體在空間直角坐標(biāo)內(nèi)碼放的一個幾何體,其中這個幾何體共碼放了排列層,用有序數(shù)組記作,如圖3的幾何體碼放了排列層,用有序數(shù)組記作.這樣我們就可用每一個有序數(shù)組表示一種幾何體的碼放方式.(1)有序數(shù)組所對應(yīng)的碼放的幾何體是______________;A.B.C.D.(2)圖4是由若干個單位長方體碼放的一個幾何體的三視圖,則這種碼放方式的有序數(shù)組為(______,_______,_______),組成這個幾何體的單位長方體的個數(shù)為____________個.(3)為了進(jìn)一步探究有序數(shù)組的幾何體的表面積公式,某同學(xué)針對若干個單位長方體進(jìn)行碼放,制作了下列表格:幾何體有序數(shù)組單位長方體的個數(shù)表面上面積為S1的個數(shù)表面上面積為S2的個數(shù)表面上面積為S3的個數(shù)表面積根據(jù)以上規(guī)律,請直接寫出有序數(shù)組的幾何體表面積的計算公式;(用,,,,,表示)(4)當(dāng),,時,對由個單位長方體碼放的幾何體進(jìn)行打包,為了節(jié)約外包裝材料,我們可以對個單位長方體碼放的幾何體表面積最小的規(guī)律進(jìn)行探究,請你根據(jù)自己探究的結(jié)果直接寫出使幾何體表面積最小的有序數(shù)組,這個有序數(shù)組為(______,_______,______),此時求出的這個幾何體表面積的大小為____________(縫隙不計)23.(8分)如圖,在的正方形網(wǎng)格中,每個小正方形的邊長為1,建立如圖所示的坐標(biāo)系.(1)若將沿軸對折得到,則的坐標(biāo)為.(2)以點為位似中心,將各邊放大為原來的2倍,得到,請在這個網(wǎng)格中畫出.(3)若小明蒙上眼睛在一定距離外,向的正方形網(wǎng)格內(nèi)擲小石子,則剛好擲入的概率是多少?(未擲入圖形內(nèi)則不計次數(shù),重擲一次)24.(8分)某商場“六一”期間進(jìn)行一個有獎銷售的活動,設(shè)立了一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤(如圖),并規(guī)定:顧客購物100元以上就能獲得一次轉(zhuǎn)動轉(zhuǎn)盤的機(jī)會,當(dāng)轉(zhuǎn)盤停止時,指針落在哪一區(qū)域就可以獲得相應(yīng)的獎品(若指針落在兩個區(qū)域的交界處,則重新轉(zhuǎn)動轉(zhuǎn)盤).下表是此次促銷活動中的一組統(tǒng)計數(shù)據(jù):轉(zhuǎn)動轉(zhuǎn)盤的次數(shù)n1002004005008001000落在“可樂”區(qū)域的次數(shù)m60122240298604落在“可樂”區(qū)域的頻率0.60.610.60.590.604(1)計算并完成上述表格;(2)請估計當(dāng)n很大時,頻率將會接近__________;假如你去轉(zhuǎn)動該轉(zhuǎn)盤一次,你獲得“可樂”的概率約是__________;(結(jié)果精確到0.1)(3)在該轉(zhuǎn)盤中,表示“車?!眳^(qū)域的扇形的圓心角約是多少度?25.(10分)如圖,是的直徑,為上一點,于點,交于點,與交于點為延長線上一點,且.(1)求證:是的切線;(2)求證:;(3)若,求的長.26.(10分)(特例感知)(1)如圖①,∠ABC是⊙O的圓周角,BC為直徑,BD平分∠ABC交⊙O于點D,CD=3,BD=4,則點D到直線AB的距離為.(類比遷移)(2)如圖②,∠ABC是⊙O的圓周角,BC為⊙O的弦,BD平分∠ABC交⊙O于點D,過點D作DE⊥BC,垂足為E,探索線段AB、BE、BC之間的數(shù)量關(guān)系,并說明理由.(問題解決)(3)如圖③,四邊形ABCD為⊙O的內(nèi)接四邊形,∠ABC=90°,BD平分∠ABC,BD=7,AB=6,則△ABC的內(nèi)心與外心之間的距離為.

參考答案一、選擇題(每小題3分,共30分)1、A【分析】由題意根據(jù)平行線分線段成比例定理寫出相應(yīng)的比例式,即可得出答案.【詳解】解:∵DE∥BC,∴,,,∴A錯誤;故選:A.本題考查平行線分線段成比例定理,熟練平行線分線段成比例定理,關(guān)鍵是找準(zhǔn)對應(yīng)關(guān)系,避免錯選其他答案.2、C【詳解】試題分析:設(shè)AC和OB交于點D,根據(jù)同弧所對的圓心角的度數(shù)等于圓周角度數(shù)2倍可得:∠O=2∠A=72°,根據(jù)∠C=28°可得:∠ODC=80°,則∠ADB=80°,則∠B=180°-∠A-∠ADB=180°-36°-80°=64°,故本題選C.3、C【分析】首先由CE∥BD,DE∥AC,可證得四邊形CODE是平行四邊形,又由四邊形ABCD是矩形,根據(jù)矩形的性質(zhì),易得OC=OD=2,即可判定四邊形CODE是菱形,繼而求得答案.【詳解】解:∵CE∥BD,DE∥AC,

∴四邊形CODE是平行四邊形,

∵四邊形ABCD是矩形,

∴AC=BD,OA=OC=2,OB=OD,

∴OD=OC=2,

∴四邊形CODE是菱形,

∴四邊形CODE的周長為:4OC=4×2=1.

故選:C.此題考查了菱形的判定與性質(zhì)以及矩形的性質(zhì).此題難度不大,注意證得四邊形CODE是菱形是解此題的關(guān)鍵.4、C【分析】根據(jù)非負(fù)數(shù)的性質(zhì)可得出cosA及tanB的值,繼而可得出A和B的度數(shù),根據(jù)三角形的內(nèi)角和定理可得出∠C的度數(shù).【詳解】由題意,得

cosA=12,tanB=1,

∴∠A=60°,∠B=45°,

∴∠C=180°-∠A-∠B=180°-60°-45°=75°.

故選C5、D【分析】利用圓的切線的性質(zhì)定理、等腰三角形的性質(zhì)即可得出.【詳解】解:∵PD切⊙O于點C,∴OC⊥CD,在Rt△OCD中,又CD=OC,∴∠COD=45°.∵OC=OA,∴∠OCA=×45°=22.5°.∴∠PCA=90°-22.5°=67.5°.故選:D.本題考查切線的性質(zhì)定理,熟練掌握圓的切線的性質(zhì)定理、等腰三角形的性質(zhì)是解題的關(guān)鍵.6、D【分析】將函數(shù)關(guān)系式轉(zhuǎn)化為頂點式,然后利用開口方向和頂點坐標(biāo)即可求出最多的利潤.【詳解】解:y=-2x2+60x+800=-2(x-15)2+1250∵-2<0故當(dāng)x=15時,y有最大值,最大值為1250即利潤獲得最多為1250元故選:D.此題考查的是利用二次函數(shù)求最值,掌握將二次函數(shù)的一般式轉(zhuǎn)化為頂點式求最值是解決此題的關(guān)鍵.7、D【解析】x2?3x=0,x(x?3)=0,∴x1=0,x2=3.故選:D.8、D【解析】解:三角形紙片ABC中,AB=8,BC=4,AC=1.A.,對應(yīng)邊,則沿虛線剪下的涂色部分的三角形與△ABC不相似,故此選項錯誤;B.,對應(yīng)邊,則沿虛線剪下的涂色部分的三角形與△ABC不相似,故此選項錯誤;C.,對應(yīng)邊,則沿虛線剪下的涂色部分的三角形與△ABC不相似,故此選項錯誤;D.,對應(yīng)邊,則沿虛線剪下的涂色部分的三角形與△ABC相似,故此選項正確;故選D.點睛:此題主要考查了相似三角形的判定,正確利用相似三角形兩邊比值相等且夾角相等的兩三角形相似是解題關(guān)鍵.9、C【解析】分析:根據(jù)菱形的性質(zhì)得出AC⊥BD,AO=CO,OB=OD,求出OB,解直角三角形求出AO,根據(jù)勾股定理求出AB即可.詳解:∵四邊形ABCD是菱形,∴AC⊥BD,AO=CO,OB=OD,∴∠AOB=90°,∵BD=8,∴OB=4,∵tan∠ABD=,∴AO=3,在Rt△AOB中,由勾股定理得:AB==5,故選C.點睛:本題考查了菱形的性質(zhì)、勾股定理和解直角三角形,能熟記菱形的性質(zhì)是解此題的關(guān)鍵.10、C【分析】根據(jù)折疊得出∠DFE=∠A=60°,AD=DF,AE=EF,設(shè)BD=x,AD=DF=5﹣x,求出∠DFB=∠FEC,證△DBF∽△FCE,進(jìn)而利用相似三角形的性質(zhì)解答即可.【詳解】解:∵△ABC是等邊三角形,∴∠A=∠B=∠C=60°,AB=BC=AC=5,∵沿DE折疊A落在BC邊上的點F上,∴△ADE≌△FDE,∴∠DFE=∠A=60°,AD=DF,AE=EF,設(shè)BD=x,AD=DF=5﹣x,CE=y(tǒng),AE=5﹣y,∵BF=2,BC=5,∴CF=3,∵∠C=60°,∠DFE=60°,∴∠EFC+∠FEC=120°,∠DFB+∠EFC=120°,∴∠DFB=∠FEC,∵∠C=∠B,∴△DBF∽△FCE,∴,即,解得:x=,即BD=,故選:C.此題主要考查相似三角形的判定與性質(zhì),解題的關(guān)鍵是熟知折疊的性質(zhì)、相似三角形的判定定理.二、填空題(每小題3分,共24分)11、【分析】由半圓的半徑可得出圓錐的母線及底面半徑的長度,利用勾股定理即可求出圓錐的高.【詳解】設(shè)底面圓的半徑為r.∵半徑為10cm的半圓圍成一個圓錐,∴圓錐的母線l=10cm,∴,解得:r=5(cm),∴圓錐的高h(yuǎn)(cm).故答案為5.本題考查了圓錐的計算,利用勾股定理求出圓錐的高是解題的關(guān)鍵.12、5【分析】聯(lián)立兩函數(shù)解析式求出交點坐標(biāo),得出m,n的值,即可解決本題.【詳解】解:聯(lián)立兩函數(shù)解析式:,解得:或,當(dāng)時,,當(dāng)時,,綜上,5,故答案為5.本題是對反比例函數(shù)和一次函數(shù)的綜合考查,熟練掌握反比例函數(shù)及解一元二次方程知識是解決本題的關(guān)鍵.13、【分析】首先過點A作AC⊥x軸于C,過點B作BD⊥x軸于D,易得△OBD∽△AOC,又由點A在反比例函數(shù)的圖象上,點B在反比例函數(shù)的圖象上,即可得S△AOC=2,S△OBD=,然后根據(jù)相似三角形面積的比等于相似比的平方,即可得,然后由正切函數(shù)的定義求得答案.【詳解】解:過點A作AC⊥x軸于C,過點B作BD⊥x軸于D,

∴∠ACO=∠ODB=90°,

∴∠OBD+∠BOD=90°,

∵∠AOB=90°,

∴∠BOD+∠AOC=90°,

∴∠OBD=∠AOC,

∴△OBD∽△AOC,∴,∵點A在反比例函數(shù)的圖象上,點B在反比例函數(shù)的圖象上,∴S△OBD=,S△AOC=2,∴,∴tan∠OAB=.故答案為:.本題考查了相似三角形的判定與性質(zhì)、反比例函數(shù)的性質(zhì)以及直角三角形的性質(zhì).注意掌握數(shù)形結(jié)合思想的應(yīng)用,注意掌握輔助線的作法.14、1【分析】由方程有一根為﹣1,將x=﹣1代入方程,整理后即可得到a+b的值.【詳解】解:把x=﹣1代入一元二次方程ax2﹣bx﹣1=0得:a+b﹣1=0,即a+b=1.故答案為:1.此題考查了一元二次方程的解的意義:能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解,關(guān)鍵是把方程的解代入方程.15、【分析】由題意根據(jù)概率的概念以及求概念公式進(jìn)行分析即可求解.【詳解】解:由題意可得:一個不透明的袋中裝有除顏色外其余均相同的5個紅球和3個黃球,共8個,從中隨機(jī)摸出一個,則摸到黃球的概率是.故答案為:.本題考查概率的求法,即如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.16、【詳解】解:根據(jù)無理數(shù)的意義可知無理數(shù)有:,,因此取到無理數(shù)的概率為.故答案為:.考點:概率17、105°.【分析】連接OQ,由旋轉(zhuǎn)的性質(zhì)可知:△AQC≌△BOC,從而推出∠OAQ=90°,∠OCQ=90°,再根據(jù)特殊直角三角形邊的關(guān)系,分別求出∠AQO與∠OQC的值,可求出結(jié)果.【詳解】連接OQ,∵AC=BC,∠ACB=90°,∴∠BAC=∠B=45°,由旋轉(zhuǎn)的性質(zhì)可知:△AQC≌△BOC,∴AQ=BO,CQ=CO,∠QAC=∠B=45°,∠ACQ=∠BCO,∴∠OAQ=∠BAC+∠CAQ=90°,∠OCQ=∠OCA+∠ACQ=∠OCA+∠BCO=90°,∴∠OQC=45°,∵BO:OA=1:,設(shè)BO=1,OA=,∴AQ=1,則tan∠AQO==,∴∠AQO=60°,∴∠AQC=105°.故答案為105°.18、【解析】分析:由已知條件易得△ACB中,∠ACB=90°,AC=3,AB=5,由此可得BC=4,結(jié)合∠ADC=∠ABC,即可由tan∠ADC=tan∠ABC=求得所求的值了.詳解:∵AB是的直徑,∴∠ACB=90°,又∵AC=3,AB=5,∴BC=,∴tan∠ABC=,又∵∠ADC=∠ABC,∴tan∠ADC=.故答案為:.點睛:熟記“圓的相關(guān)性質(zhì)和正切函數(shù)的定義”解得本題的關(guān)鍵.三、解答題(共66分)19、k<1;k=1.【解析】試題分析:(1)、當(dāng)拋物線與x軸有兩個不同的交點,則△>0,從而求出k的取值范圍;(2)、頂點在x軸上則說明頂點的縱坐標(biāo)為0.試題解析:(1)、∵拋物線與x軸有兩個不同的交點,∴b2-4ac>0,即16-4k+4>0.解得k<1.(2)、∵拋物線的頂點在x軸上,∴頂點縱坐標(biāo)為0,即=0.解得k=1.考點:二次函數(shù)的頂點20、(1)y=﹣x2+2x+3;(2)存在,;(3)①;②Q點坐標(biāo)為(0,)或(0,)或(0,1)或(0,3).【分析】(1)用待定系數(shù)法求解析式;(2)作PM⊥x軸于M,作PN⊥y軸于N,當(dāng)∠POB=∠POC時,△POB≌△POC,設(shè)P(m,m),則m=﹣m2+2m+3,可求m;(3)分類討論:①如圖,當(dāng)∠Q1AB=90°時,作AE⊥y軸于E,證△DAQ1∽△DOB,得,即;②當(dāng)∠Q2BA=90°時,∠DBO+∠OBQ2=∠OBQ2+∠OQ2B=90°,證△BOQ2∽△DOB,得,;③當(dāng)∠AQ3B=90°時,∠AEQ3=∠BOQ3=90°,證△BOQ3∽△Q3EA,,即;【詳解】解:(1)把A(1,4)代入y=kx+6,∴k=﹣2,∴y=﹣2x+6,由y=﹣2x+6=0,得x=3∴B(3,0).∵A為頂點∴設(shè)拋物線的解析為y=a(x﹣1)2+4,∴a=﹣1,∴y=﹣(x﹣1)2+4=﹣x2+2x+3(2)存在.當(dāng)x=0時y=﹣x2+2x+3=3,∴C(0,3)∵OB=OC=3,OP=OP,∴當(dāng)∠POB=∠POC時,△POB≌△POC,作PM⊥x軸于M,作PN⊥y軸于N,∴∠POM=∠PON=45°.∴PM=PN∴設(shè)P(m,m),則m=﹣m2+2m+3,∴m=,∵點P在第三象限,∴P(,).(3)①如圖,當(dāng)∠Q1AB=90°時,作AE⊥y軸于E,∴E(0,4)∵∠DAQ1=∠DOB=90°,∠ADQ1=∠BDO∴△DAQ1∽△DOB,∴,即,∴DQ1=,∴OQ1=,∴Q1(0,);②如圖,當(dāng)∠Q2BA=90°時,∠DBO+∠OBQ2=∠OBQ2+∠OQ2B=90°∴∠DBO=∠OQ2B∵∠DOB=∠BOQ2=90°∴△BOQ2∽△DOB,∴,∴,∴OQ2=,∴Q2(0,);③如圖,當(dāng)∠AQ3B=90°時,∠AEQ3=∠BOQ3=90°,∴∠AQ3E+∠EAQ3=∠AQ3E+∠BQ3O=90°∴∠EAQ3=∠BQ3O∴△BOQ3∽△Q3EA,∴,即,∴OQ32﹣4OQ3+3=0,∴OQ3=1或3,∴Q3(0,1)或(0,3).綜上,Q點坐標(biāo)為(0,)或(0,)或(0,1)或(0,3).考核知識點:二次函數(shù),相似三角形.構(gòu)造相似三角形,數(shù)形結(jié)合分類討論是關(guān)鍵.21、(1);(2)或【分析】(1)將點A坐標(biāo)代入雙曲線解析式即可得出k的值,從而求出雙曲線的解析式;(2)求出B點坐標(biāo),利用圖象即可得解.【詳解】解:(1)∵雙曲線經(jīng)過點,.∴雙曲線的解析式為(2)由雙曲線解析式可得出B(-4,-1),結(jié)合圖象可得出,不等式的解集是:或.本題考查的知識點是反比例函數(shù)與一次函數(shù)的交點問題,解題的關(guān)鍵是從圖象中得出相關(guān)信息.22、(1)B;(2)2,3,2,1;(3)S(x,y,z)=2(yzS1+xzS2+xyS3);(4)2,2,3,2【分析】(1)根據(jù)幾何體碼放的情況,即可得到答案;(2)根據(jù)幾何體的三視圖,可知:幾何體有2排,3列,2層,進(jìn)而即可得到答案;(3)根據(jù)有序數(shù)組的幾何體,表面上面積為S1的個數(shù)為2yz個,表面上面積為S2的個數(shù)為2xz個,表面上面積為S3的個數(shù)為2xy個,即可得到答案;(4)由題意得:xyz=1,=4yz+6xz+8xy,要使的值最小,x,y,z應(yīng)滿足x≤y≤z(x,y,z為正整數(shù)),進(jìn)而進(jìn)行分類討論,即可求解.【詳解】(1)∵有序數(shù)組所對應(yīng)的碼放的幾何體是:3排列4層,∴B選項符合題意,故選B.(2)根據(jù)幾何體的三視圖,可知:幾何體有2排,3列,2層,∴這種碼放方式的有序數(shù)組為(2,3,2),∵幾何體有2層,每層有6個單位長方體,∴組成這個幾何體的單位長方體的個數(shù)為1個.故答案是:2,3,2;1.(3)∵有序數(shù)組的幾何體,表面上面積為S1的個數(shù)為2yz個,表面上面積為S2的個數(shù)為2xz個,表面上面積為S3的個數(shù)為2xy個,∴=2(yzS1+xzS2+xyS3).(4)由題意得:xyz=1,=4yz+6xz+8xy,∴要使的值最小,x,y,z應(yīng)滿足x≤y≤z(x,y,z為正整數(shù)).∴在由1個單位長方體碼放的幾何體中,滿足條件的有序數(shù)組為(1,1,1),(1,2,6),(1,3,4),(2,2,3),∵,,,,∴由1個單位長方體碼放的幾何體中,表面積最小的有序數(shù)組為:(2,2,3),最小表面積為:2.故答案是:2,2,3;2.本題主要考查幾何體的三視圖與表面積的綜合,掌握幾何體的三視圖的定義和表面積公式,是解題的關(guān)鍵.23、(1)(4,-1);(2)見解析;(3).【分析】(1)根據(jù)對稱的特點即可得出答案;(2)根據(jù)位似的定義即可得出答案;(3)分別求出三角形和正方形的面積,再用三角形的面積除以正方形的面積即可得出答案.【詳解】解:(1)(2)(3)∵,∴本題考查的是對稱和位似,比較簡單,需要掌握相關(guān)的基礎(chǔ)知識.24、(1)472,0.596;(2)0.6,0.6;(3)144°.【解析】試題分析:在同樣條件下,做大量的重復(fù)試驗,利用一個隨機(jī)事件發(fā)生的頻率逐漸穩(wěn)定到某個常數(shù),可以估計這個事件發(fā)生的概率,(1)當(dāng)試驗的可能結(jié)果不是有限個,或各種結(jié)果發(fā)生的可能性不相等時,一般用統(tǒng)計頻率的方法來估計概率,(2)利用頻率估計概率的數(shù)學(xué)依據(jù)是大數(shù)定律:當(dāng)試驗次數(shù)很大時,隨機(jī)事件A出現(xiàn)的頻率,穩(wěn)定地在某個數(shù)值P附近擺動.這個穩(wěn)定值P,叫做隨機(jī)事件A的概率,并記為P(A)=P,(3)利用頻率估計出的概率是近似值.試題解析:(1)如下表:轉(zhuǎn)動轉(zhuǎn)盤的次數(shù)n1002004005008001000落在“可樂”區(qū)域的次數(shù)m60122240298472604落在“可樂”區(qū)域的頻率0.60.610.60.5960.590.604(2)0.6;0.6(3)由(2)可知落在“車模”區(qū)域的概率約是0.4,從而得到圓心角的度數(shù)約是360°×0.4=144°.25、(1)證明見解析;(2)證明見解析;(3)【分析】(1)欲證明BD是⊙O的切線,只要證明BD⊥AB;

(2)連接AC,證明△FCM∽△FAC即可解決問題;

(3)連接BF,想辦法求出BF,F(xiàn)M即可解決問題.【詳解】(1)∵,

∴∠AFC=∠ABC

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論