




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
專題12空間向量與立體幾何20類解答題專練
知識(shí)點(diǎn)梳理
模塊一平行證明(拆分練習(xí))
【題型1]由中位線得出平行關(guān)系
【題型2】構(gòu)造平行四邊形得到平行關(guān)系
【題型3】由面面平行得出線面平行
【題型4】構(gòu)造2個(gè)平面的交線
模塊二垂直證明(拆分練習(xí))
【題型5】證明線面垂直
【題型6】證明異面直線垂直
【題型7】證明面面垂直
【題型8]平行垂直的向量證明方法
模塊三點(diǎn)與面
【題型9]證明四點(diǎn)共面
【題型10]求點(diǎn)到平面的距離
模塊四空間中的角
【題型II】異面直線夾角
【題型12]線面角
【題型13]求二面角(重點(diǎn))
【題型14]求面面角(重要)
【題型15]已知線面角或二面角,求其它量(重要)
【題型16]與角有關(guān)的最值與范圍問題(難點(diǎn))
模塊五探究類問題
【題型17]驗(yàn)證滿足平行條件的點(diǎn)是否存在
【題型18】驗(yàn)證滿足垂直條件的點(diǎn)是否存在
【題型19】臉證滿足角度條件的點(diǎn)是否存在
【題型20]已知點(diǎn)到平而距離,求參數(shù)
知識(shí)點(diǎn)梳理
一、平行證明:
中位線法,平行四邊形法,構(gòu)造平行平面法
證明四點(diǎn)共面一般轉(zhuǎn)化為證明平行
二、垂直證明
證明直線與直線垂直:
1、如果一條直線垂直于一個(gè)平面,那么這條直線垂直于這個(gè)平面內(nèi)的任意一條直線。這是證明直線
與直線垂直最常用的方法。
2、如果兩條平行線中的一條垂直于一條直線,那么另一條也垂直于這條直線。
3.三叁線定理及及逆定理。
4、勾股定理逆定理:如果三角形的三邊長(zhǎng)是一組勾股數(shù),則這個(gè)三角形是一個(gè)直角三角形。
5、等腰三前形三線合一:等腰三角形底邊上的中線、頂角角平分線和底邊上的高是同一條線段。
6、菱形對(duì)角線互相垂直。
7、矩形的相鄰兩邊垂直。
8、全等或相似三角形中的垂直
證明直線與平面垂直:
1、如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直于這個(gè)平面。
2、如果兩個(gè)平面垂直,那么其中一個(gè)平面內(nèi)垂直于它們交線的直線垂直于另一個(gè)平面。
3、如果兩條平行線中的一條垂直于一個(gè)平面,那么另一條也垂直于這個(gè)平面。
4、如果一條直線垂直于兩個(gè)平行平面中的一個(gè),那么這條直線也垂直于另一個(gè)平面。
證明平面與平面垂直:
I、如果一個(gè)平面經(jīng)過另一個(gè)平面的一條垂線,那么這兩個(gè)平面垂直。
2、如果二面角的平面角是直角,那么二面角的兩個(gè)面所在的平面互相垂直。
3、式棱柱的底面垂直千側(cè)面.
三、點(diǎn)到平面的距離
(1)法一:等體積法
四、異面直線所成角
已知。,〃為兩異面直線,A,C與B,。分別是〃,/?上的任意兩點(diǎn),4,〃所成的角為氏則
五、線面角
設(shè)直線/的方向向量為〃,平面。的法向量為〃,立線與平面所成的南為。.〃與〃的用為9,則有
六、面面角
【題型2】構(gòu)造平行四邊形得到平行關(guān)系
(2)解:以。為原點(diǎn),CD,CB,CG所在直線分別為x軸、y軸、Z軸
建立如圖所示的空間直角坐標(biāo)系.
【題型3】由面面平行得出線面平行
1.如圖,四邊形A5CO為矩形,尸是四棱錐產(chǎn)一A68的頂點(diǎn),E為8c的中點(diǎn),請(qǐng)問
在附上是否存在點(diǎn)G,使得EG〃平面PCQ,并說明理出
【答案】在以上存在中點(diǎn)G,使得EG〃平面PC。,理由如下:
取以、夕。的中點(diǎn)G、H,連接£G、GH、CH
,:G、〃是以,PO的中點(diǎn),,△外。中,可得G”〃人。且G〃=5人。
又「七是8C的中點(diǎn),且四邊形八8C。為矩形,
???比〃八。且七?!?。,
2
:?EC、GH平行且相等,可得四邊形EC〃G是平行四邊形
:.EG//CH,
乂???C”u邛:面PC。,EGQ平面PCD,
???EG〃平面PCD.
【答案】證明:設(shè)H是。G的中點(diǎn),連接NH,MH,
由于加是。尸的中點(diǎn),所以M〃〃C。,
由于平面CDE,CDc平面CDE,
所以MH〃平面CDE.
由于N是EG的中點(diǎn),所以NH//DE,
由于由于N〃Q平面CDE,DEC平面CDE,
所以N”〃平面CDE.
由于N“nM”=",
所以平面MM7〃平面CDE,
由于MNu平面MNH,所以A1N〃平面CDE.
【題型4]構(gòu)造2個(gè)平面的交線
因?yàn)镋,P分別為BICI,CC1的中點(diǎn),故EP〃2cBi且EP=2CB1,
所以FD〃AIP,又FDu平面EFC,A1PQ平面EFC,
故A1P〃平面EFC;
2.如圖,四棱錐尸一ABCD的底面為正方形,且2。_1面488.設(shè)平面附。與平面
P8C的交線為/.證明:1//CB
【證明】證明:因?yàn)锳BCD為正方形,:.BC//AD,
又丁3(工平面PAD,4。一平面PAD.
BC〃平面布。
又?.?8C<-平面PCB,平面附DPI平面PCB=l,
???/〃CD.
模塊二垂直證明(拆分練習(xí))
【題型5】證明線面垂直
【解答】解:證明:取尸。的中點(diǎn)尸,連接4尸,EF,
【題型6】證明異面魚發(fā)垂直
【解答】證明:連接A尸,
取BC中點(diǎn)G,因?yàn)镋G〃AB,所以BF_LEG,
又???△BFCg^BlGB,故B1GJ_BF
???BFJ-平面EGB1D
???D&z平面EGBID
...BFJLDE
3
【答案】(1)證明見解析;(2)
【題型7]證明面面垂直
Q
BC
D__________
,G
FGBC
圖1圖2
則AT>,CG確定一個(gè)平面,從而A,C,G,。四點(diǎn)共而;
【題型8】平行垂直的向量證明方法
二
【答案】證明見解析
【分析】由題意可得AB,AD,AP兩兩互相垂直,所以以力為原點(diǎn),以AB,AD,AP分別為x軸,
y軸,z軸,建立空間直角坐標(biāo)系,然后利用空間向量證明即可.
所以A8,ADtAP兩兩互相垂直,
模塊三點(diǎn)與面
【題型9】證明四點(diǎn)共面
fl
5A\
【解答】證明:在A4上取點(diǎn)使得4M=2AM,連接EM8MEG,FG,
在長(zhǎng)方體ABC。一A86Q1中,有。/)i〃A4〃8Bi,且。。i=AAi=BBi.
又2OE=£7)i/iM=2AM,BF=2FBi,:.DE=AM=FB、.
,四邊形場(chǎng)四例和四邊形£D4M都是平行四邊形.
???A/〃MB,且八尸="814?!ā啊昵褹D=ME.
又在長(zhǎng)方體/e(7。一4由1?。1中,有AZ)〃BiG,且人。=BCi,
???8iG〃MK且當(dāng)G=ME,則四邊形修GEM為平行四邊形,
???£Ci〃M8iR£Ci=M8i,
又A/〃MBi,且AF=M8i,???AF〃EG,且AF=ECi,
則四邊形AFGE為平行四邊形,
???點(diǎn)G在平面4E廠內(nèi)
【詳解】取DG中點(diǎn)P,連接PA,PF,如圖示:
在梯形EFGD中,F(xiàn)P〃DE月.FP=DE.
又AB〃DE且AB=DE,AB〃PF且AB=PF
???四邊形ABFP為平行四邊形,
???AP〃BF
在梯形ACGD中,AP〃CG,?,.BF〃CG,
.'.B,C,F,G四點(diǎn)共面.
【題型101求點(diǎn)到平面的距離
【答案】O
【分析】(1)由線面垂直的判定定理證明即可;
【分析】(1)以A為坐標(biāo)原點(diǎn),AD為x軸,48為),軸,4A為z軸建立如圖所示的坐標(biāo)系,求得兩
直線的方向向量坐標(biāo),通過計(jì)算數(shù)量積為0,從而可證:
【詳解】(1)證明:以A為坐標(biāo)原點(diǎn),4。為x軸,A8為),軸,A%為z軸建立如圖所示的坐標(biāo)系.
【答案】(1)證明見解析
【分析】(1)建系,再由向量垂直的充分必要條件直接得出空間異面直線垂直.
(2)由向量法求空間距離公式直接得出點(diǎn)到直線的距離.
【詳解】(1)建立直角坐標(biāo)系,其中C為坐標(biāo)原點(diǎn),以C4邊所在直線為x軸,以CB邊所在直線為
y軸,以eq所在直線為z軸,建立空間直角坐標(biāo)系,如圖什示
模塊四空間中的角
【題型11】異面直線夾角
【分析】根據(jù)題意建立空間直角坐標(biāo)系,利用空間向量夾角的余弦值即可求出異面直線。。與43所
成角的余弦值.
【詳解】
D.
【分析】(1)建立空間直角坐標(biāo)系,然后求出利用直線心與C。所成角的大小為[■求出8c的
長(zhǎng)即可;
(2)先求出平面的法向量,再根據(jù)點(diǎn)到面的距離公式求出距離即可.
所以8c的長(zhǎng)為2;
【題型12]線面角
【答案】⑴證明見解析;(2)苴.
(2)以點(diǎn)。為原點(diǎn)建立空間面角坐標(biāo)系,利用向量法即可得出答案.
【詳解】(1)如圖1,連接BD,
(2)如圖2,設(shè)平而PAB和平而PCD的交線為直線1,
因?yàn)镻B,PDU平面PBD,所以NBPD是平面PAB與平面PCD的二面角,
記直線AC與平面PBC所成角為仇
設(shè)點(diǎn)A到平面PBC的距離為d,
設(shè)點(diǎn)A到平面PBC的距離為d,由(I)知CDJ■平而PBD,
【題型13]求二面角(重點(diǎn))
【詳解】(1)[方法一]:空間坐標(biāo)系+空間向量法
[方法二]【最優(yōu)解】:幾何法+相似三角形法
[方法三]:幾何法+三角形面積法
如圖,聯(lián)結(jié)8。交4M于點(diǎn)M
(2)[方法一]【最優(yōu)解】:空間坐標(biāo)系+空間向量法
[方法二]:構(gòu)造長(zhǎng)方體法+等體積法
【答案】(1)證明見解析;(2)立.
3
4
【答案】⑴證明見解析;(2)y.
【題型14]求面面角(重要)
【詳解】(1)連接AC,E為PB中點(diǎn)、,廣為A8中點(diǎn),
【題型15]已知線面角或二面角,求其它量(重要)
(2)若與平面AC。所成角為g,求平面與平面ACO所成銳二面角的余弦值.
13
【答案】(I)證明見解析,(2)—
19
【小問1詳解】
【小問2詳解】
【答案】(1)證明見解析:(2)1
【分析】(1)建立空間直角坐標(biāo)系,利用向量坐標(biāo)相等證明;
【答案】(1)證明見解析,(2)存在,點(diǎn)M為線段P/)上靠近點(diǎn)。的三等分點(diǎn),理由見解析
(2)解?:連接尸石、CE、AC,
以點(diǎn)E為坐標(biāo)原點(diǎn),EB、EC、E尸所在直線分別為王、y、z軸建立如下圖所示的空間直角坐標(biāo)系,
【詳解】(1)證明:取EC的中點(diǎn)G,連接4。交AC于N,連接GN,GF,
所以以A為原點(diǎn),AH,AB,AE為坐標(biāo)軸建立空間直角坐標(biāo)系,
【分析】(1)根據(jù)等腰三角形性質(zhì)得P。垂直AC,再通過計(jì)算,根據(jù)勾股定理得P。垂直。8,最后
根據(jù)線面垂直判定定理得結(jié)論;
(2)方法一:根據(jù)條件建立空間直角坐標(biāo)系,設(shè)各點(diǎn)坐標(biāo),艱據(jù)方程組解出平面一個(gè)法向量,
利用向量數(shù)量積求出兩個(gè)法向量夾角,根據(jù)二面角與法向量夾角相等或互補(bǔ)關(guān)系列方程,解得M坐
標(biāo),再利用向量數(shù)量積求得向量尸C與平面辦M法向量夾角,最后根據(jù)線面角與向量夾角互余得結(jié)
果.
連結(jié)0B.
(2)[方法一]:【通性通法】向量法
[方法二]:三垂線+等積法
圖7
(2)求平面以。與平面P8C所成銳二面角的余弦值;
(3)點(diǎn)b是線段P。上異于兩端點(diǎn)的任意一點(diǎn),若滿足異面直線E尸與AC所成角為45。,求”的長(zhǎng).
設(shè)平而玄。與平面尸8c所成說二面角為e.
【題型16]與角有關(guān)的最值與范圍問題(難點(diǎn))
3.如圖4B是圓。的直徑,用垂直于圓。所在的平面,。為圓周上不同于A,8的任意一點(diǎn).
⑴求證:平面%C_L平面PBC;
⑵設(shè)%=A3=2AC=4,。為期的中點(diǎn),M為4尸上的動(dòng)點(diǎn)(不與A重合)求二面角A—BM—C的正
切值的最小值.
【答案】(1)證明見解析:(2)四.
3
【分析】(1)推導(dǎo)出AC_LBC,PA_LBC,從而BCJ?平面PAC,由面面垂直的判定定理即可得證.
.\PA±BC,
???BCJ■平面PAC,
???平面PAC_L平面PBC;
(2)過A作Ax_LAB,以A為坐標(biāo)原點(diǎn),建立如圖所示空間坐標(biāo)系,
如圖二面角A—BM—C的平面角為銳角,設(shè)二面角A—BM—C為0,
Q
(I)證明:平面平面ABC。;
4
⑵若點(diǎn)。為四棱錐Q-4BC。的側(cè)面QCD內(nèi)(包含邊界)的一點(diǎn),且四棱錐尸一4BC。的體積為工,
求8P與平面A3C。所成角的正弦值的最小值.
【詳解】(I)取AO
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025北京順義區(qū)北務(wù)鎮(zhèn)衛(wèi)生院招聘編外人員3人考前自測(cè)高頻考點(diǎn)模擬試題及答案詳解(各地真題)
- 山西省部分學(xué)校2024-2025學(xué)年高三上學(xué)期期末質(zhì)量檢測(cè)地理試題(解析版)
- 2025貴州貴陽市某國(guó)有銀行花溪支行派遣制員工模擬試卷有答案詳解
- 遼寧省點(diǎn)石聯(lián)考2024-2025學(xué)年高二下學(xué)期6月份聯(lián)合考試地理試題(解析版)
- 2025廣西農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與環(huán)境研究所土壤生態(tài)與高值農(nóng)業(yè)研究室公開招聘1人考前自測(cè)高頻考點(diǎn)模擬試題及完整答案詳解
- 2025江蘇南京白下人力資源開發(fā)服務(wù)有限公司招聘勞務(wù)派遣人員1人(二十六)模擬試卷及答案詳解(歷年真題)
- 醫(yī)療器械使用安全保證承諾書8篇范文
- 2025江蘇蘇州工業(yè)園區(qū)青劍湖小學(xué)后勤輔助人員招聘1人考前自測(cè)高頻考點(diǎn)模擬試題附答案詳解(模擬題)
- 2025年《中國(guó)煙草》雜志社有限公司(中國(guó)煙草總公司傳媒中心)招聘模擬試卷及答案詳解(有一套)
- 客戶服務(wù)電話咨詢記錄模板化
- 2025年止血技術(shù)理論知識(shí)考試試題及答案
- 密煉機(jī)煉膠作業(yè)安全操作指導(dǎo)書
- 胰腺假性囊腫治療指南
- 2025年(完整版)(高級(jí))政工師理論考試題庫與答案
- 江西三校單招試題及答案
- 首鋼職務(wù)職級(jí)管理辦法
- 2025國(guó)家保安員資格考試題庫及答案
- 2025年黑龍江省齊齊哈爾市中考英語試卷
- 醫(yī)藥代表商務(wù)禮儀培訓(xùn)課程
- 小班科學(xué)《叭叭叭車來了》課件
- 2025至2030招投標(biāo)行業(yè)產(chǎn)業(yè)運(yùn)行態(tài)勢(shì)及投資規(guī)劃深度研究報(bào)告
評(píng)論
0/150
提交評(píng)論