




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
第因數(shù)和倍數(shù)1的教學反思8篇
因數(shù)和倍數(shù)1的教學反思篇1
因數(shù)和倍數(shù)》是一節(jié)數(shù)學概念課,人教版新教材在引入因數(shù)和倍數(shù)的概念時與以往的教材有所不同。本節(jié)課又是這一單元的的教學重點。為讓學生很好的感受因數(shù)與倍數(shù)的意義,能夠熟練的找出一個數(shù)的因數(shù)與倍數(shù),靈活地處理了教材,分為兩課時進行。第一課時只讓學生認識了因數(shù)和倍數(shù)的意義及找一個數(shù)的因數(shù)的方法,效果不錯。
一、設計情境,引起思考。
改變教材的情境圖,用學生有興趣的情意引入課題:有12個小方塊,要求擺成一個長方體,你想怎么擺。引起學生思考,學生想到有3種擺法,每種擺法怎么列式求出一共有多少方塊?由于方法的多樣性,為不同思維的展現(xiàn)提供了空間。從而理解決因數(shù)與倍數(shù)的意義。
二、引導學生探求找因數(shù)的方法,使探索有方向。
如何找一個數(shù)的因數(shù)是這節(jié)課的重點,首先放手讓學生找出24的因數(shù),由于個人經驗和思維的差異,出現(xiàn)了不同的方法與答案,在探索這些方法和答案的過程中,學生明白了如何求出一個數(shù)的因數(shù)的方法,從而掌握了知識點。
根據(jù)學生的學習特點,靈活的應用教材,使之服務于教學,讓教學有效的進行,才能達到教學的目的。
因數(shù)和倍數(shù)1的教學反思篇2
本單元涉及到的因數(shù)、倍數(shù)、質數(shù)、合數(shù)以及第四單元中出現(xiàn)的最大公因數(shù)、最小公倍數(shù)都屬于初等數(shù)論的基本內容。是學生通過四年多數(shù)學學習,已經掌握了大量的整數(shù)知識,包括整數(shù)的認識、整數(shù)四則運算的基礎上進一步探索整數(shù)的性質。
在教學中,通過教授學生認識“因數(shù)和倍數(shù)”,并掌握他們的特征:因數(shù)和倍數(shù)不能單獨存在,并通過觀察比較幾個數(shù)的因數(shù)(或倍數(shù)),知道幾個數(shù)公有的因數(shù)(或倍數(shù))叫做他們的公因數(shù)(或公倍數(shù)),且能夠在幾個數(shù)的因數(shù)(或倍數(shù)還)中找出他們的公因數(shù)(或公倍數(shù))。
接下來學習“2、5、3的倍數(shù)的特征”。發(fā)現(xiàn)2、5、3倍數(shù)的規(guī)律和特點。在此之前還要向學生教學什么是“奇數(shù)”什么是“偶數(shù)”,只有掌握了奇數(shù)與偶數(shù),學習“2、5的倍數(shù)”的特征就會簡單容易得多。而“3的倍數(shù)”的特征就是引導學生把各個數(shù)位上的數(shù)相加,的到的數(shù)如果是3的倍數(shù)的話,說明這個數(shù)就是3的倍數(shù)。
為了讓學生鞏固質數(shù)與合數(shù),再讓學生找出1~100以內的所有質數(shù):先劃掉除了2以外所有2的倍數(shù),再劃掉3的倍數(shù)、劃掉5的倍數(shù)、最后劃掉7的倍數(shù),所剩下的數(shù)就是質數(shù),并且讓學生數(shù)出、記住100以內有25個質數(shù)。也可以用同樣的方法去判定100以外的數(shù)是質數(shù)還是合數(shù)。
最后,再學生講解介紹“分解質因數(shù)”,知道用短除法來分解質因數(shù)。然后對整個單元所學的知識進行梳理、歸類,讓學生熟記一些特殊的規(guī)律與數(shù)字,多做一些練習,加強的后進生的關注和輔導。
因數(shù)和倍數(shù)1的教學反思篇3
簡單的內容中蘊藏著復雜的關系,由于新教材把“整除”的概念去掉,再也不提誰被誰整除,而改成借助整除模式na=b,直接引出因數(shù)和倍數(shù)的概念,這部分內容顯得比較容易了,學生在學因數(shù)時,對于求一個數(shù)的因數(shù),及理解一個數(shù)的因數(shù)最小是1,最大因數(shù)是它本身,及一個數(shù)的因數(shù)的個數(shù)是有限的,感覺很清楚,明白。在學倍數(shù)時,對求一個數(shù)的倍數(shù)及理解一個數(shù)的倍數(shù)中最小的是它本身,沒有最大的倍數(shù)也認為容易簡單,但有關因數(shù)、倍數(shù)的綜合練習不少學生開始猶豫、混淆。如判斷一個數(shù)的因數(shù)的個數(shù)是無限的,不少學生判斷為對。練習中:18是的倍數(shù),個別學生選擇了18、36、54……。針對這種情況,我調整了練習,組織學生研究了以下幾個問題:
1、寫出12的因數(shù)和倍數(shù),寫出16的因數(shù)和倍數(shù)。
2、觀察比較,會打消列問題:一個數(shù)的因數(shù)和它本身的關系,
3、為什么一個數(shù)的因數(shù)的個數(shù)是有限的?最小是1,最大是它本身,也就是1和它本身之間的整數(shù)。為什么一個數(shù)的倍數(shù)的個數(shù)是無限的?最小是它本身,沒有最大的。
通過對這幾個問題的討論,多數(shù)學生較好的區(qū)分了一個數(shù)的因數(shù)和倍數(shù)
因數(shù)和倍數(shù)1的教學反思篇4
本節(jié)課的內容是在學生已經學習了一定的整數(shù)知識(包括整數(shù)的知識、整數(shù)的四則運算及其應用)的基礎上,進一步認識整數(shù)的性質。本單元所涉及的因數(shù)和倍數(shù)都是初等數(shù)論的基礎知識。
成功之處:
1.理解分類標準,明確因數(shù)和倍數(shù)的含義。在例1教學中,首先根據(jù)不同的除法算式讓學生進行分類,同時思考其標準依據(jù)是什么。通過學生的獨立思考和小組交流學生得出:第一種是分為兩類:一類是商是整數(shù),另一類是商是小數(shù);第二種是分為三類:一類商是整數(shù),一類是小數(shù),另一類是循環(huán)小數(shù)。究竟怎樣分類讓學生在爭論與交流中達成一致答案分為兩類。然后根據(jù)第一類情況得出倍數(shù)和因數(shù)的含義,特別強調的是對于因數(shù)和倍數(shù)的含義要符合兩個條件:一是必須在整數(shù)除法中,二是必須商是整數(shù)而沒有余數(shù)。具備了這兩個條件才能說被除數(shù)是除數(shù)的倍數(shù),除數(shù)是被除數(shù)的因數(shù)。
2.厘清概念倍數(shù)和幾倍,注重強調倍數(shù)和因數(shù)的相互依存性。在教學中可以直接告訴學生因數(shù)和倍數(shù)都不能單獨存在,不能說2是因數(shù),12是倍數(shù),而必須說誰是誰的因數(shù),誰是誰的倍數(shù)。對于倍數(shù)與幾倍的區(qū)別:倍數(shù)必須是在整數(shù)除法中進行研究,而幾倍既可以在整數(shù)范圍內,也可以在小數(shù)范圍內進行研究,它的研究范圍較之倍數(shù)范圍大一些。
不足之處:
1.練習設計容量少了一些,導致課堂有剩余時間。
2.對因數(shù)和倍數(shù)的含義還應該進行歸納總結上升到用字母來表示。
再教設計:
1.根據(jù)課本的練習相應的進行補充。
2.因數(shù)和倍數(shù)的含義用總結為a÷b=c(a、b、c均為非0自然數(shù)),a是b和c的倍數(shù),b和c是a的因數(shù)。
因數(shù)和倍數(shù)1的教學反思篇5
一.數(shù)形結合減緩難度
因數(shù)和倍數(shù)》這一內容,學生初次接觸。在導入中我創(chuàng)設有效的數(shù)學學習情境,數(shù)形結合,變抽象為直觀。讓學生把12個小正方形擺成不同的長方形,并用不同的乘法算式來表示自己腦中所想,借助乘法算式引出因數(shù)和倍數(shù)的意義。由于方法的多樣性,為不同思維的展現(xiàn)提供了空間,激活學生的形象思維,而透過數(shù)學潛在的“形”與“數(shù)”的關系,為下面研究“因數(shù)與倍數(shù)”概念,由形象思維轉入抽象思維打下了良好基礎,有效地實現(xiàn)了原有知識與新學知識之間的鏈接。在學生已有的知識基礎上,直觀感知,讓學生自主體驗數(shù)與形的結合,進而形成因數(shù)與倍數(shù)的意義.使學生初步建立了“因數(shù)與倍數(shù)”的概念。這樣,學生已有的數(shù)學知識引出了新知識,減緩難度,效果較好。
二.自主探究,合作學習
放手讓每個同學找出36的所有因數(shù),學生圍繞教師提出的“怎樣才能找全36的所有因數(shù)呢?”這個問題,去尋找36的所有因數(shù)。由于個人經驗和思維的差異性,出現(xiàn)了不同的答案,但這些不同的答案卻成為探索新知的資源,在比較不同的答案中歸納出求一個數(shù)的因數(shù)的思考方法。既留足了自主探究的空間,又在方法上有所引導,避免了學生的盲目猜測。通過展示、比較不同的答案,發(fā)現(xiàn)了按順序一對一對找的好方法,突出了有序思考的重要性,有效地突破了教學的
難點。通過觀察12,36,30,18的因數(shù)和2,4,5,7的倍數(shù),讓學生自己說一說發(fā)現(xiàn)了什么由于提供了豐富的觀察對象,保證了觀察的目的性。誘發(fā)學生探索與學習的欲望,從而激活學生的思維。讓學生在許多的不同中通過合作交流找到相同。
三.在游戲中體驗學習的快樂
在最后的環(huán)節(jié)中我設計了“找朋友”的游戲,層次是先找因數(shù)朋友,再找倍數(shù)朋友,最后為兩個數(shù)找到共同的朋友。這樣由淺入深的設計符合學生跳一跳就能摘到果子的心理,同時也讓學生在游戲中再次體驗因數(shù)與倍數(shù)的特點,如找完因數(shù)朋友時我以你是我的最大的因數(shù)朋友點出一個數(shù)的因數(shù)的個數(shù)是有限的,找倍數(shù)朋友時起來的學生非常多,讓學生再次體驗一個數(shù)的倍數(shù)的個數(shù)是無限的。找共同的朋友則是一個思維的升華過程,能有效地激活學生的思維,在求知欲的支配下去進行有效地思考。這一環(huán)節(jié)使課堂氣氛更加熱烈,也讓學生在輕松的氛圍中體驗到學習的快樂。
這堂課我還存在許多不足,我的教學理念很清楚,課堂上學生是主體教師只是合作者。但在教學過程中許多地方還是不由自主的說得過多,給學生的自主探索空間太少。如在教學找36的因數(shù)這一環(huán)節(jié)時,由于擔心孩子們是第一次接觸因數(shù),對于因數(shù)的概念不夠了解,而犯這樣或那樣的錯誤,所以引導的過多講解的過細,因此給他們自主探究的空間太小了,沒能很好的體現(xiàn)學生的主體性。雖然是新理念
但卻沿用了舊模式,在今后的教學中我還要不斷改進自己的教法,讓學生成為課堂的真正主人。
這堂課我的個人語言過于隨意,數(shù)學是嚴謹?shù)?,隨意性的語言會對學生的學習理解造成一定的影響。由于長期的教學習慣和自身的性格特點造成了我的語言在某些時候不夠嚴謹。這一點我心里非常清楚,在日常的教學中也在不斷地改正,但這節(jié)課有的地方還是沒有注意到。因此在今后的教學中我要積極向其他老師學習,多走進優(yōu)秀教師的課堂,多學多問。把握好各種學習機會,通過各種渠道不斷的學習,提高自己的素質。多反思認真分析教學中出現(xiàn)的問題,通過不斷地反思提高自己業(yè)務水平。
感謝各位老師給我這么一個寶貴的學習機會,并在這個過程中給予我的指導和幫助。今后,我一定以這一節(jié)課為契機,不斷完善教學,總結經驗教訓,在各個方面嚴格要求自己,爭取在今后的工作中做的更好!
因數(shù)和倍數(shù)1的教學反思篇6
倍數(shù)和因數(shù)》是我們工作室四月份研究的一個課例,我們是先抽簽上二十分鐘的課堂教學,再進行研討,我們研究了每一部分的處理方法,同時,為了讓我們的課堂更加連貫、自然,我們也研究了例題之間的過渡環(huán)節(jié),嘗試找到更加恰當?shù)奶幚矸椒?。那次研究之后我們工作室的每一位成員都根據(jù)自己的想法修改了教案。前幾天我們工作室又在活動中上了這節(jié)課,這次上課的是我,由于事先準備的不夠充分課堂中發(fā)現(xiàn)了很多的問題,有上次研討過還需要改進的問題,也有這次上課出現(xiàn)的新問題。課后工作室的成員給了我很多的很好的建議,我根據(jù)好的建議修改了我的教學設計,下面我來具體的說一說。
1、情境導入。本節(jié)課的內容是《倍數(shù)和因數(shù)》為了讓學生更清楚地感受倍數(shù)和因數(shù)的依存關系,我課上用了大頭兒子和小頭爸爸的例子,也用了我是老師,他們是學生的例子。但這兩個例子對于本課的教學或許沒有太多的意義,好像不能讓學生明確感受出倍數(shù)的因數(shù)的依存關系,所以我們可以把這一部分的內容去掉,直接進入課堂,讓學生進行操作活動。
2、倍數(shù)和因數(shù)的意義。本課是想通過用12個完全相同的正方形拼成長方形的活動來讓學生在活動中初步感知倍數(shù)和因數(shù)的關系,再用具體的例子向學生說明倍數(shù)和因數(shù)的含義。在課堂中我直接讓學生進行操作,兩人小組活動,試著擺一擺,看看有沒有不同的擺法,在交流的時候讓學生說說自己的擺法,每排擺了幾個,擺了幾排,怎樣用乘法算式表示,再讓學生有序地說一說,為后面找一個數(shù)的因數(shù)做好鋪墊。再有一道具體的算式舉例說明倍數(shù)和因數(shù)的含義,用我們過去學習的乘法算式中的乘數(shù)乘乘數(shù)等于積過渡到倍數(shù)和因數(shù),再讓學生說一說其他兩道乘法算式。說完后再給學生一個提醒,并讓學生再根據(jù)出示的算式說一說誰是誰的倍數(shù)和誰是誰的因數(shù),最后的時候讓學生自己寫一個算式,并說一說。
3、找一個數(shù)的倍數(shù)。這應該時本節(jié)課的重難點內容,在教學中一定要讓學生說一說找倍數(shù)的方法,而我在上課的時候把這一個重要的部分一帶而過,可以看出來很大一部分學生是沒有掌握找倍數(shù)的方法的。所以我在思考這一難點該如何突破?是不是應讓學生先獨立想一想辦法,多說一說,給學生足夠多的時間讓學生去說自己用來找倍數(shù)的方法,這樣多種方法出來以后,我們可以對方法進行優(yōu)化,選擇快速簡單的找法。在教學的時候,同時注培養(yǎng)學生有序寫出倍數(shù),注意倍數(shù)書寫的格式等意識,可以比較有序的找和無序的找,讓學生自己感受有序的好處,學生有了有序地找的基本方法后,在進行練習的時候也會選擇剛才優(yōu)化過的好的方法進行練習。
4、找倍數(shù)的特征。在完成找一個數(shù)的倍數(shù)之后,我們可以直接出示3,2,5的倍數(shù)是哪些,讓學生觀察三個倍數(shù),再說一說自己的發(fā)現(xiàn),放手讓學生去找或許學生能夠很快的找出來,但如果給好具體的問題,可能會限制一些學生的思考。如果學生在觀察時沒有發(fā)現(xiàn)我們所想要總結的特征,可以對學生進行適當?shù)奶崾?,讓學生觀察一個數(shù)最小的倍數(shù),最大的倍數(shù)和倍數(shù)的個數(shù)等。先給學生足夠的時間讓學生自己去找,我們要相信他們藕能力做到。
5、課堂常規(guī)的問題。在上課之前我應先確定好小組的具體分配,以免學生在小組活動中找不到合作的對象,如果上課之前具體的分好了,小組討論的效率會高很多。在上課時,我要少說,把更多說的機會留給學生,讓學生去表達自己的想法,同時還要相信學生,不要怕學生不會,而給出很多的條條框框,限制了學生的思維發(fā)展。
因數(shù)和倍數(shù)1的教學反思篇7
倍數(shù)和因數(shù)》這一節(jié)的主要內容是讓學生在已有知識和經驗的基礎上,自主探索和總結找一個數(shù)的倍數(shù)和因數(shù)的方法;用“列舉法”研究一個數(shù)的倍數(shù)的特點和一個數(shù)的因數(shù)的特點。這部分內容學生初次接觸,對于學生來說是比較難掌握的內容。首先是名稱比較抽象,在現(xiàn)實生活中又不經常接觸,對這樣的概念教學,要想讓學生真正理解、掌握、判斷,需要一個長期的消化理解的過程。這節(jié)課我在教學中充分體現(xiàn)以學生為主體,為學生的探究發(fā)現(xiàn)提供足夠的時空和適當?shù)闹笇В瑫r,也為提高課堂教學的有效性,我在本課的教學中體現(xiàn)了自主化、活動化、合作化和情意化,具體做到了以下幾點:
(一)操作實踐,舉例內化,認識倍數(shù)和因數(shù)
我創(chuàng)設有效的數(shù)學學習情境,數(shù)形結合,變抽象為直觀。首先讓學生動手操作把12個小正方形擺成不同的長方形,再讓學生寫出不同的乘法算式,借助乘法算式引出因數(shù)和倍數(shù)的意義。這樣在學生已有的知識基礎上,從動手操作,直觀感知,使概念的揭示突破了從抽象到抽象,從數(shù)學到數(shù)學,讓學生自主體驗數(shù)與形的結合,進而形成因數(shù)與倍數(shù)的意義.使學生初步建立了“因數(shù)與倍數(shù)”的概念,使數(shù)與形做到了有機的結合。這樣,充分學習、利用、挖掘教材,用學生已有的數(shù)學知識引出了新知識,降低了難度,效果較好。
(二)自主探究,意義建構,找倍數(shù)和因數(shù)
一個數(shù)的倍數(shù)與因數(shù)的特征,單憑記憶也不難接受,為防止學生進行“機械學習”,我提出“任何一個不是0的自然數(shù)的因數(shù)有什么特點,”讓學生觀察12,20,16,36的因數(shù),思考:一個數(shù)的因數(shù)的個數(shù)是有限的還是無限的?其中最大的因數(shù)是幾?最小的呢?讓學生的思維有了明確的指向。整個教學過程中力求體現(xiàn)學生是學習的主體,教師只是教學活動的組織者、指導者、參與者。整節(jié)課中,教師始終為學生創(chuàng)造寬松的學習氛圍,讓學生自主探索,學習理解倍數(shù)和因數(shù)的意義,探索并掌握找一個數(shù)的倍數(shù)和因數(shù)的方法,引導學生在充分的動口、動手、動腦中自主獲取知識。
(三)抓住學生思維的“最近發(fā)展區(qū)”,讓學生在“獨立思考——集體交流——互相討論”的過程中,促使學生學會有序思考,從而形成基本的技能與方法,既關注了過程,又關注了結果。
找一個數(shù)的因數(shù)的方法是本節(jié)課的難點,在教學過程中讓學生自主探索,在隨后的巡視中發(fā)現(xiàn)有很多的學生完成的不是很好,我就決定先交流再讓學生尋找,這樣就用了很多時間,最后就沒有很多的時間去練習,我認為雖然時間用的過多,但我認為學生探索的比較充分,學生也有收獲。如何做到既不重復又不遺漏地找36的因數(shù),對于剛剛對倍數(shù)因數(shù)有個感性認識的學生來說有一定困難,這里可以充分發(fā)揮小組學習的優(yōu)勢。先讓學生自己獨立找36的因數(shù),我巡視了一下三分之一的學生能有序的思考,多數(shù)學生寫的算式不按一定的次序進行。接著讓學生在小組里討論兩個問題:用什么方法找36的因數(shù),如何找不重復也不遺漏。在小組交流的過程中,學生對自己剛才的方法進行反思,吸收同伴中好的方法,這時老師再給予有效的指導和總結。
(四)變式拓展,實踐應用---—促進智能內化
練習的設計不僅緊緊圍繞教學重點,而且注意到了練習的層次性,趣味性。在游戲中,師生互動,激活了學生的情感,學生的思維不斷活躍起來,學生不僅參與率高,而且還較好地鞏固了新知。課上,我能注重自始至終關注學生學習興趣、學習熱情、學習自信等情感因素的培養(yǎng),并及時讓學生感受到學習成功的喜悅,享受數(shù)學,感悟文化魅力。
(五)重視數(shù)學意義的滲透與拓展,力求用數(shù)學的本質吸引學生,樹立為學生的繼續(xù)學習和終身發(fā)展服務的意識。本節(jié)課的設計,我就關注了學生的學習后勁。如列舉法的介紹,有序思考的解決問題的策略等。
由于這節(jié)是概念課,因此有不少東西是由老師告知的,但并不意味著學生完全被動地接受。教學之前我知道這節(jié)課時間會很緊,所以在備課的時候,我認真鉆研了教材,仔細分析了教案,看哪些地方時間安排的可以少一些,所以我讓學生先進性了預習,做好了一定的準備工作。在第一部分認識因數(shù)和倍數(shù)這一環(huán)節(jié)里縮短出示時間,直接出示,,實際效果我認為是比較理想的。課上還應該及時運用多媒體將學生找的因數(shù)呈現(xiàn)出來,引導學生歸納總結自己的發(fā)現(xiàn):最小的因數(shù)是1,最大的因數(shù)是它本身。教師應該及時跟上個性化的語言評價,激活學生的情感,將學生的思維不斷活躍起來。
因數(shù)和倍數(shù)1的教學反思篇8
我發(fā)現(xiàn)"倍數(shù)和因數(shù)"這一單元大部分學生基礎知識及基本概念掌握較好,倍數(shù)與因數(shù)的應用相當部分學生應用也比較靈活。從學生的答卷情況來看存存在問題也不少,縱觀本單元的教學,從中得到的反思:
1、創(chuàng)設了學生熟悉的生活情境
不論是
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《UG NX 數(shù)字化建模與工程圖繪制》課件 項目4 裝配設計-任務4.2 傘齒輪軸組件子裝配
- 2024聚合物質量平衡方法評估研討會報告
- 專項訓練:不規(guī)則圖形的體積算法(含解析)-小升初數(shù)學專項復習(人教版)
- 重慶潼南區(qū)2024-2025學年八年級上學期期末考試物理試題
- 小學二年級數(shù)學下冊應用題專項練習100道
- 2025年光伏屋頂施工合同
- 2025年北京市社區(qū)《網(wǎng)格員》模擬卷(含答案)
- 2025年安全生產知識競賽試題庫及答案
- 2025年《大學生心理健康教育》考核題庫(附答案)
- 小升初英語專項復習:補全對話
- 2024-2030年中國全氟聚醚行業(yè)應用狀況及產銷需求預測報告
- 公共浴池水質標準
- GA/T 2133.1-2024便攜式微型計算機移動警務終端第1部分:技術要求
- 農藥使用管理制度
- 視覺傳達設計保研面試問題
- 中醫(yī)培訓課件:《放血療法》
- 電力系統(tǒng)經濟學原理(第2版) 課件 第6-8章 電力系統(tǒng)運行、發(fā)電投資、輸電投資
- 慰問品采購項目供貨方案
- 醫(yī)院護理培訓課件:《注射安全》
- 2024年南寧鐵路局招聘筆試參考題庫附帶答案詳解
- 視頻會議系統(tǒng)投標方案(技術標)
評論
0/150
提交評論