




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
蘇教七年級下冊期末解答題壓軸數學模擬真題試卷經典套題答案一、解答題1.如圖,直線,、是、上的兩點,直線與、分別交于點、,點是直線上的一個動點(不與點、重合),連接、.(1)當點與點、在一直線上時,,,則_____.(2)若點與點、不在一直線上,試探索、、之間的關系,并證明你的結論.2.小明在學習過程中,對教材中的一個有趣問題做如下探究:(習題回顧)已知:如圖1,在中,,是角平分線,是高,、相交于點.求證:;(變式思考)如圖2,在中,,是邊上的高,若的外角的平分線交的延長線于點,其反向延長線與邊的延長線交于點,則與還相等嗎?說明理由;(探究延伸)如圖3,在中,上存在一點,使得,的平分線交于點.的外角的平分線所在直線與的延長線交于點.直接寫出與的數量關系.3.解讀基礎:(1)圖1形似燕尾,我們稱之為“燕尾形”,請寫出、、、之間的關系,并說明理由;(2)圖2形似8字,我們稱之為“八字形”,請寫出、、、之間的關系,并說明理由:應用樂園:直接運用上述兩個結論解答下列各題(3)①如圖3,在中,、分別平分和,請直接寫出和的關系;②如圖4,.(4)如圖5,與的角平分線相交于點,與的角平分線相交于點,已知,,求和的度數.4.如果三角形的兩個內角與滿足,那么我們稱這樣的三角形是“準互余三角形”.(1)如圖1,在中,,是的角平分線,求證:是“準互余三角形”;(2)關于“準互余三角形”,有下列說法:①在中,若,,,則是“準互余三角形”;②若是“準互余三角形”,,,則;③“準互余三角形”一定是鈍角三角形.其中正確的結論是___________(填寫所有正確說法的序號);(3)如圖2,,為直線上兩點,點在直線外,且.若是直線上一點,且是“準互余三角形”,請直接寫出的度數.5.如圖①所示,在三角形紙片中,,,將紙片的一角折疊,使點落在內的點處.(1)若,________.(2)如圖①,若各個角度不確定,試猜想,,之間的數量關系,直接寫出結論.②當點落在四邊形外部時(如圖②),(1)中的猜想是否仍然成立?若成立,請說明理由,若不成立,,,之間又存在什么關系?請說明.(3)應用:如圖③:把一個三角形的三個角向內折疊之后,且三個頂點不重合,那么圖中的和是________.6.已知,如圖1,射線PE分別與直線AB、CD相交于E、F兩點,∠PFD的平分線與直線AB相交于點M,射線PM交CD于點N,設∠PFM=,∠EMF=,且.(1)=____°,=______°;直線AB與CD的位置關系是_______;(2)如圖2,若點G是射線MA上任意一點,且∠MGH=∠PNF,試找出∠FMN與∠GHF之間存在的數量關系,并證明你的結論:(3)若將圖中的射線PM繞著端點P逆時針方向旋轉(如圖3),分別與AB、CD相交于點M和點N,時,作∠PMB的角平分線MQ與射線FM相交于點Q,問在旋轉的過程中的值變不變?若不變,請求出其值;若變化,請說明理由.7.已知,如圖:射線分別與直線、相交于、兩點,的角平分線與直線相交于點,射線交于點,設,且.(1)________,________;直線與的位置關系是______;(2)如圖,若點是射線上任意一點,且,試找出與之間存在一個什么確定的數量關系?并證明你的結論.(3)若將圖中的射線繞著端點逆時針方向旋轉(如圖)分別與、相交于點和點時,作的角平分線與射線相交于點,問在旋轉的過程中的值變不變?若不變,請求出其值;若變化,請說明理由.8.如圖1,將一副三角板與三角板擺放在一起;如圖2,固定三角板,將三角板繞點A按順時針方向旋轉,記旋轉角().(1)當________度時,;當________度時;(2)當的一邊與的某一邊平行(不共線)時,直接寫出旋轉角的所有可能的度數;(3)當,連接,利用圖4探究的度數是否發(fā)生變化,并給出你的證明.9.問題1:現(xiàn)有一張△ABC紙片,點D、E分別是△ABC邊上兩點,若沿直線DE折疊.(1)探究1:如果折成圖①的形狀,使A點落在CE上,則∠1與∠A的數量關系是;(2)探究2:如果折成圖②的形狀,猜想∠1+∠2和∠A的數量關系是;(3)探究3:如果折成圖③的形狀,猜想∠1、∠2和∠A的數量關系,并說明理由.(4)問題2:將問題1推廣,如圖④,將四邊形ABCD紙片沿EF折疊,使點A、B落在四邊形EFCD的內部時,∠1+∠2與∠A、∠B之間的數量關系是.10.(1)思考探究:如圖,△ABC的內角∠ABC的平分線與外角∠ACD的平分線相交于P點,已知∠ABC=70°,∠ACD=100°.求∠A和∠P的度數.(2)類比探究:如圖,△ABC的內角∠ABC的平分線與外角∠ACD的平分線相交于P點,已知∠P=n°.求∠A的度數(用含n的式子表示).(3)拓展遷移:已知,在四邊形ABCD中,四邊形ABCD的內角∠ABC與外角∠DCE的平分線所在直線相交于點P,∠P=n°,請畫出圖形;并探究出∠A+∠D的度數(用含n的式子表示).【參考答案】一、解答題1.(1)120°;(2)∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,證明見詳解.【分析】(1)根據題意,當點與點、在一直線上時,作出圖形,由AB∥CD,∠FHP=60°,可以推出解析:(1)120°;(2)∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,證明見詳解.【分析】(1)根據題意,當點與點、在一直線上時,作出圖形,由AB∥CD,∠FHP=60°,可以推出=60°,計算∠PFD即可;(2)根據點P是動點,分三種情況討論:①當點P在AB與CD之間時;②當點P在AB上方時;③當點P在CD下方時,分別求出∠AEP、∠EPF、∠CFP之間的關系即可.【詳解】(1)當點與點、在一直線上時,作圖如下,∵AB∥CD,∠FHP=60°,,∴=∠FHP=60°,∴∠EFD=180°-∠GEP=180°-60°=120°,∴∠PFD=120°,故答案為:120°;(2)滿足關系式為∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP.證明:根據點P是動點,分三種情況討論:①當點P在AB與CD之間時,過點P作PQ∥AB,如下圖,∵AB∥CD,∴PQ∥AB∥CD,∴∠AEP=∠EPQ,∠CFP=∠FPQ,∴∠EPF=∠EPQ+∠FPQ=∠AEP+∠CFP,即∠EPF=∠AEP+∠CFP;②當點P在AB上方時,如下圖所示,∵∠AEP=∠EPF+∠EQP,∵AB∥CD,∴∠CFP=∠EQP,∴∠AEP=∠EPF+∠CFP;③當點P在CD下方時,∵AB∥CD,∴∠AEP=∠EQF,∴∠EQF=∠EPF+∠CFP,∴∠AEP=∠EPF+∠CFP,綜上所述,∠AEP、∠EPF、∠CFP之間滿足的關系式為:∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,故答案為:∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP.【點睛】本題考查了平行線的性質,外角的性質,掌握平行線的性質是解題的關鍵,注意分情況討論問題.2.[習題回顧]證明見解析;[變式思考]相等,證明見解析;[探究延伸]∠M+∠CFE=90°,證明見解析.【分析】[習題回顧]根據同角的余角相等可證明∠B=∠ACD,再根據三角形的外角的性質即可解析:[習題回顧]證明見解析;[變式思考]相等,證明見解析;[探究延伸]∠M+∠CFE=90°,證明見解析.【分析】[習題回顧]根據同角的余角相等可證明∠B=∠ACD,再根據三角形的外角的性質即可證明;[變式思考]根據角平分線的定義和對頂角相等可得∠CAE=∠DAF、再根據直角三角形的性質和等角的余角相等即可得出=;[探究延伸]根據角平分線的定義可得∠EAN=90°,根據直角三角形兩銳角互余可得∠M+∠CEF=90°,再根據三角形外角的性質可得∠CEF=∠CFE,由此可證∠M+∠CFE=90°.【詳解】[習題回顧]證明:∵∠ACB=90°,CD是高,∴∠B+∠CAB=90°,∠ACD+∠CAB=90°,∴∠B=∠ACD,∵AE是角平分線,∴∠CAF=∠DAF,∵∠CFE=∠CAF+∠ACD,∠CEF=∠DAF+∠B,∴∠CEF=∠CFE;[變式思考]相等,理由如下:證明:∵AF為∠BAG的角平分線,∴∠GAF=∠DAF,∵∠CAE=∠GAF,∴∠CAE=∠DAF,∵CD為AB邊上的高,∠ACB=90°,∴∠ADC=90°,∴∠ADF=∠ACE=90°,∴∠DAF+∠F=90°,∠E+∠CAE=90°,∴∠CEF=∠CFE;[探究延伸]∠M+∠CFE=90°,證明:∵C、A、G三點共線
AE、AN為角平分線,∴∠EAN=90°,又∵∠GAN=∠CAM,∴∠M+∠CEF=90°,∵∠CEF=∠EAB+∠B,∠CFE=∠EAC+∠ACD,∠ACD=∠B,∴∠CEF=∠CFE,∴∠M+∠CFE=90°.【點睛】本題考查三角形的外角的性質,直角三角形兩銳角互余,角平分線的有關證明,等角或同角的余角相等.在本題中用的比較多的是利用等角或同角的余角相等證明角相等和三角形一個外角等于與它不相鄰的兩個內角之和,理解并掌握是解決此題的關鍵.3.(1),理由詳見解析;(2),理由詳見解析:(3)①;②360°;(4);.【分析】(1)根據三角形外角等于不相鄰的兩個內角之和即可得出結論;(2)根據三角形內角和定理及對頂角相等即可得出結解析:(1),理由詳見解析;(2),理由詳見解析:(3)①;②360°;(4);.【分析】(1)根據三角形外角等于不相鄰的兩個內角之和即可得出結論;(2)根據三角形內角和定理及對頂角相等即可得出結論;(3)①根據角平分線的定義及三角形內角和定理即可得出結論;②連結BE,由(2)的結論及四邊形內角和為360°即可得出結論;(4)根據(1)的結論、角平分線的性質以及三角形內角和定理即可得出結論.【詳解】(1).理由如下:如圖1,,,,;(2).理由如下:在中,,在中,,,;(3)①,,、分別平分和,,.故答案為:.②連結.∵,.故答案為:;(4)由(1)知,,,,,,,,,,,;.【點睛】本題考查了角平分線的性質,三角形內角和;熟練掌握角平分線的性質,進行合理的等量代換是解題的關鍵.4.(1)見解析;(2)①③;(3)∠APB的度數是10°或20°或40°或110°【分析】(1)由和是的角平分線,證明即可;(2)根據“準互余三角形”的定義逐個判斷即可;(3)根據“準互余三角解析:(1)見解析;(2)①③;(3)∠APB的度數是10°或20°或40°或110°【分析】(1)由和是的角平分線,證明即可;(2)根據“準互余三角形”的定義逐個判斷即可;(3)根據“準互余三角形”的定義,分類討論:①2∠A+∠ABC=90°;②∠A+2∠APB=90°;③2∠APB+∠ABC=90°;④2∠A+∠APB=90°,由三角形內角和定理和外角的性質結合“準互余三角形”的定義,即可求出答案.【詳解】(1)證明:∵在中,,∴,∵BD是的角平分線,∴,∴,∴是“準互余三角形”;(2)①∵,∴,∴是“準互余三角形”,故①正確;②∵,,∴,∴不是“準互余三角形”,故②錯誤;③設三角形的三個內角分別為,且,∵三角形是“準互余三角形”,∴或,∴,∴,∴“準互余三角形”一定是鈍角三角形,故③正確;綜上所述,①③正確,故答案為:①③;(3)∠APB的度數是10°或20°或40°或110°;如圖①,當2∠A+∠ABC=90°時,△ABP是“準直角三角形”,∵∠ABC=50°,∴∠A=20°,∴∠APB=110°;如圖②,當∠A+2∠APB=90°時,△ABP是“準直角三角形”,∵∠ABC=50°,∴∠A+∠APB=50°,∴∠APB=40°;如圖③,當2∠APB+∠ABC=90°時,△ABP是“準直角三角形”,∵∠ABC=50°,∴∠APB=20°;如圖④,當2∠A+∠APB=90°時,△ABP是“準直角三角形”,∵∠ABC=50°,∴∠A+∠APB=50°,所以∠A=40°,所以∠APB=10°;綜上,∠APB的度數是10°或20°或40°或110°時,是“準互余三角形”.【點睛】本題是三角形綜合題,考查了三角形內角和定理,三角形的外角的性質,解題關鍵是理解題意,根據三角形內角和定理和三角形的外角的性質,結合新定義進行求解.5.(1)50°;(2)①見解析;②見解析;(3)360°.【分析】(1)根據題意,已知,,可結合三角形內角和定理和折疊變換的性質求解;(2)①先根據折疊得:∠ADE=∠A′DE,∠AED=∠A′解析:(1)50°;(2)①見解析;②見解析;(3)360°.【分析】(1)根據題意,已知,,可結合三角形內角和定理和折疊變換的性質求解;(2)①先根據折疊得:∠ADE=∠A′DE,∠AED=∠A′ED,由兩個平角∠AEB和∠ADC得:∠1+∠2等于360°與四個折疊角的差,化簡得結果;②利用兩次外角定理得出結論;(3)由折疊可知∠1+∠2+∠3+∠4+∠5+∠6等于六邊形的內角和減去(∠B'GF+∠B'FG)以及(∠C'DE+∠C'ED)和(∠A'HL+∠A'LH),再利用三角形的內角和定理即可求解.【詳解】解:(1)∵,,∴∠A′=∠A=180°-(65°+70°)=45°,∴∠A′ED+∠A′DE=180°-∠A′=135°,∴∠2=360°-(∠C+∠B+∠1+∠A′ED+∠A′DE)=360°-310°=50°;(2)①,理由如下由折疊得:∠ADE=∠A′DE,∠AED=∠A′ED,∵∠AEB+∠ADC=360°,∴∠1+∠2=360°-∠ADE-∠A′DE-∠AED-∠A′ED=360°-2∠ADE-2∠AED,∴∠1+∠2=2(180°-∠ADE-∠AED)=2∠A;②,理由如下:∵是的一個外角∴.∵是的一個外角∴又∵∴(3)如圖由題意知,∠1+∠2+∠3+∠4+∠5+∠6=720°-(∠B'GF+∠B'FG)-(∠C'DE+∠C'ED)-(∠A'HL+∠A'LH)=720°-(180°-∠B')-(180°-C')-(180°-A')=180°+(∠B'+∠C'+∠A')又∵∠B=∠B',∠C=∠C',∠A=∠A',∠A+∠B+∠C=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=360°.【點睛】題主要考查了折疊變換、三角形、四邊形內角和定理.注意折疊前后圖形全等;三角形內角和為180°;四邊形內角和等于360度.6.(1)35;35;AB∥CD;(2)∠FMN+∠GHF=180°.證明見解析;(3)的值不變,=2.【分析】(1)利用非負數的性質可知:==35,推出即可解決問題;(2)結論,只要證明即可解決解析:(1)35;35;AB∥CD;(2)∠FMN+∠GHF=180°.證明見解析;(3)的值不變,=2.【分析】(1)利用非負數的性質可知:==35,推出即可解決問題;(2)結論,只要證明即可解決問題;(3)結論:的值不變,=2.如圖3中,作∠PEM1的平分線交M1Q的延長線于R,只要證明∠R=∠,∠=2∠R即可;【詳解】(1)證明:∵,∴==35,∴∠PFM=∠MFN=35°,∠EMF=35°,∴∠EMF=∠MFN,∴AB∥CD;故答案為:35;35;AB∥CD;(2)解:∠FMN+∠GHF=180°.理由:∵AB∥CD,∴∠MNF=∠PME,∵∠MGH=∠MNF,∴∠PME=∠MGH,∴GH∥PN,∴∠GHM=∠FMN,∵∠GHF+∠GHM=180°,∴∠FMN+∠GHF=180°.(3)解:的值不變,=2.理由:如圖3中,作∠PEM1的平分線交M1Q的延長線于R.∵AB∥CD,∴∠PEM1=∠PFN,∵∠PER=∠PEM1,∠PFQ=∠PFN,∴∠PER=∠PFQ,∴ER∥FQ,∴∠=∠R,設∠PER=∠REB=,,則有:,可得∠=2∠R,∴∠=2∠∴=2.【點睛】本題考查幾何變換綜合題、平行線的判定和性質、角平分線的定義、非負數的性質等知識,解題的關鍵是靈活運用所學知識解決問題,學會添加常用輔助線,構造平行線解決問題,屬于中考壓軸題.7.(1)35,35,平行;(2)∠FMN+∠GHF=180°,證明見解析;(3)不變,2【分析】(1)根據(α-35)2+|β-α|=0,即可計算α和β的值,再根據內錯角相等可證AB∥CD;(2解析:(1)35,35,平行;(2)∠FMN+∠GHF=180°,證明見解析;(3)不變,2【分析】(1)根據(α-35)2+|β-α|=0,即可計算α和β的值,再根據內錯角相等可證AB∥CD;(2)先根據內錯角相等證GH∥PN,再根據同旁內角互補和等量代換得出∠FMN+∠GHF=180°;(3)作∠PEM1的平分線交M1Q的延長線于R,先根據同位角相等證ER∥FQ,得∠FQM1=∠R,設∠PER=∠REB=x,∠PM1R=∠RM1B=y,得出∠EPM1=2∠R,即可得=2.【詳解】解:(1)∵(α-35)2+|β-α|=0,∴α=β=35,∴∠PFM=∠MFN=35°,∠EMF=35°,∴∠EMF=∠MFN,∴AB∥CD;(2)∠FMN+∠GHF=180°;理由:由(1)得AB∥CD,∴∠MNF=∠PME,∵∠MGH=∠MNF,∴∠PME=∠MGH,∴GH∥PN,∴∠GHM=∠FMN,∵∠GHF+∠GHM=180°,∴∠FMN+∠GHF=180°;(3)的值不變,為2,理由:如圖3中,作∠PEM1的平分線交M1Q的延長線于R,∵AB∥CD,∴∠PEM1=∠PFN,∵∠PER=∠PEM1,∠PFQ=∠PFN,∴∠PER=∠PFQ,∴ER∥FQ,∴∠FQM1=∠R,設∠PER=∠REB=x,∠PM1R=∠RM1B=y,則有:,可得∠EPM1=2∠R,∴∠EPM1=2∠FQM1,∴==2.【點睛】本題主要考查平行線的判定與性質,熟練掌握內錯角相等證平行,平行線同旁內角互補等知識是解題的關鍵.8.(1)105,15;(2)旋轉角的所有可能的度數是:15°,45°,105°,135°,150°;(3),保持不變;見解析【分析】(1)三角板ADE順時針旋轉后的三角板為,當時,,則可求得旋轉角解析:(1)105,15;(2)旋轉角的所有可能的度數是:15°,45°,105°,135°,150°;(3),保持不變;見解析【分析】(1)三角板ADE順時針旋轉后的三角板為,當時,,則可求得旋轉角度;當∥BC時,,則可求得旋轉角度;(2)分五種情況考慮:AD∥BC,DE∥AB,DE∥BC,DE∥AC,AE∥BC,即可分別求出旋轉角;(3)設BD分別交、于點M、N,利用三角形的內外角的相等關系分別得出:及,由的內角和為180°,即可得出結論.【詳解】(1)三角板ADE順時針旋轉后的三角板為,當時,如圖,∵,∠EAD=45°∴即旋轉角當時,如圖,則∴=45°-30°=15°即旋轉角°故答案為:105,15(2)當的一邊與的某一邊平行(不共線)時,有五種情況當AD∥BC時,由(1)知旋轉角為15°;如圖(1),當DE∥AB時,旋轉角為45°;當DE∥BC時,由AD⊥DE,則有AD⊥BC,此時由(1)知,旋轉角為105°;如圖(2),當DE∥AC時,則旋轉角為135°;如圖(3),當AE∥BC時,則旋轉角為150°;所以旋轉角的所有可能的度數是:15°,45°,105°,135°,150°(3)當,,保持不變;理由如下:設BD分別交、于點M、N,如圖在中,,,【點睛】本題考查了圖形旋轉的性質,三角形內角和定理,三角形的外角與不相鄰的兩個內角的相等關系等知識,注意旋轉的三要素:旋轉中心,旋轉方向和旋轉角度.9.(1);(2);(3)見解析;(4)【分析】(1)根據三角形外角性質可得;(2)在四邊形中,內角和為360°,∠BDA=∠CEA=180°,利用這兩個條件,進行角度轉化可得關系式;(3)如下解析:(1);(2);(3)見解析;(4)【分析】(1)根據三角形外角性質可得;(2)在四邊形中,內角和為360°,∠BDA=∠CEA=180°,利用這兩個條件,進行角度轉化可得關系式;(3)如下圖,根據(1)可得∠1=2∠,∠2=2∠,從而推導出關系式;(4)根據平角的定義以及四邊形的內角和定理,與(2)類似思路探討,可得關系式.【詳解】(1)∵△是△EDA折疊得到∴∠A=∠∵∠1是△的外角∴∠1=∠A+∠∴;(2)∵在四邊形中,內角和為360°∴∠A++∠∠=360°同理,∠A=∠∴2∠A+∠∠=360°∵∠BDA=∠CEA=180∴∠1+∠∠+∠2=360°∴;(3)數量關系:理由:如下圖,連接由(1)可知:∠1=2∠,∠2=2∠∴;(4)由折疊性質知:∠2=180°-2∠AEF,∠1=180°-2∠BFE相加得:.【點睛】本題考查角度之間的關系,(4)問的解題思路是相同的,主要運用三角形的內角和定理和四邊形的內角和定理進行角度轉換.10.(1)∠A=30°,∠P=15°;(2)∠A=2n°;(3)畫圖見解析;∠A+∠D=180°+2n°或180°﹣2n°.【分析】(1)根據三角形內角和定理可以算出∠A的大小,再根據角平分線的性解析:(1)∠A=30°,∠P=15°;(2)∠A=2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 鎢酸銨溶液制備工工藝技術規(guī)程
- 2025年隆德縣公開招聘城市社區(qū)工作者考前自測高頻考點模擬試題及答案詳解1套
- 正規(guī)借款合同樣式8篇
- 靜電記錄頭制作工崗位輪適應力考核試卷及答案
- 復合超硬材料制造工工作差錯率考核試卷及答案
- 2025廣東惠州市博羅縣工交實業(yè)投資有限公司管理崗位遴選2人考前自測高頻考點模擬試題及答案詳解(易錯題)
- 2025湖南張家界市醫(yī)療保障局聘用公益性崗位人員考前自測高頻考點模擬試題及答案詳解(名師系列)
- 2025年教育貸款擔保合同范本下載
- OXPHOS-IN-2-生命科學試劑-MCE
- 品質人員考試試題及答案
- T/CCIAS 009-2023減鹽醬油
- 光伏建筑一體化系統(tǒng) (BIPV) 測試與認證
- 醫(yī)療衛(wèi)生領域國際合作中的跨境醫(yī)療服務管理研究
- 進展期胃癌外科規(guī)范化治療
- 藝術教育自考題庫及答案
- 預防醫(yī)學專業(yè)簡介
- 下肢深靜脈血栓形成介入治療護理實踐指南(2025版)解讀課件
- 《系統(tǒng)柜介紹與使用》課件
- 2023《廣東省建設工程消防設計審查疑難問題解析》
- 無人機理論知識培訓課件
- 新聞記者職業(yè)資格《新聞基礎知識》考試題庫(含答案)
評論
0/150
提交評論