




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025年中考數(shù)學(xué)復(fù)習(xí)難題速遞之代數(shù)式(2025年4月)
選擇題(共10小題)
1.(2025春?迎澤區(qū)校級(jí)月考)如圖,圖1的瓶子中盛滿了水,如果將這個(gè)瓶子中的水全部倒入圖2這樣
的杯子中,那么一共需要()個(gè)這樣的杯子.
2.(2025春?北倍區(qū)校級(jí)月考)已知多項(xiàng)式尤1-X2-X3-切,滿足尤1>X2>X3>3>尤n>0,"22且"
為正整數(shù),將其中的根(0〈根W/1-1)個(gè)“-"改為“+”后得到一個(gè)新多項(xiàng)式.下列說法中正確的個(gè)
數(shù)是()
①當(dāng)爪=今5為偶數(shù))時(shí),新多項(xiàng)式的值可能為0;
②當(dāng)機(jī)=1時(shí),若XI,…,X”均為正整數(shù)且X1=〃,得到的新多項(xiàng)式的值恒為非負(fù)數(shù),則2WwW4;
③當(dāng)w=6,m=2時(shí),對(duì)新多項(xiàng)式取絕對(duì)值后化簡(jiǎn)的結(jié)果共有15種.
A.0B.1C.2D.3
3.(2025春?大足區(qū)月考)如圖,是一組有規(guī)律的圖案,第1個(gè)圖案中有5個(gè)四邊形,第2個(gè)圖案中有9
個(gè)四邊形,第3個(gè)圖案中有13個(gè)四邊形,…,按此規(guī)律,第7個(gè)圖案中四邊形的個(gè)數(shù)為()
4.(2025?阿城區(qū)一模)烷垃是一類由碳、氫元素組成的有機(jī)化合物質(zhì),如圖是這類物質(zhì)前四種化合物的
分子結(jié)構(gòu)模型圖,其中黑球代表碳原子,藍(lán)球代表氫原子.第1種如圖①有4個(gè)氫原子,第2種如圖②
有6個(gè)氫原子,第3種如圖③有8個(gè)氫原子,…按照這一規(guī)律,第9種化合物的分子結(jié)構(gòu)模型中氫原子
的個(gè)數(shù)是()
內(nèi)容
①②③④
A.16B.18C.20D.22
5.(2024秋?長(zhǎng)安區(qū)校級(jí)期末)用木棒按如圖所示的規(guī)律擺放圖形,第1個(gè)圖形需要6根木棒,第2個(gè)圖
形需要11根木棒,第3個(gè)圖形需要16根木棒,…,按這種方式擺放下去,用含〃的代數(shù)式表示第〃個(gè)
圖形需要木棒的根數(shù)為()
III
第1個(gè)圖形第2個(gè)圖形第3個(gè)圖形
A.6nB.5〃+1C.5n-1D.4n+2
6.(2025春?重慶月考)2021年是農(nóng)歷我國(guó)“?!蹦?,為祝福我們偉大祖國(guó)更加繁榮昌盛,同時(shí)勉勵(lì)新一
屆初三人在2021年更加“牛氣沖天”,某同學(xué)制作了如圖“牛氣圖”,請(qǐng)根據(jù)如圖規(guī)律,計(jì)算第15個(gè)圖
案中一共有多少個(gè)“牛”字?()
牛牛牛牛牛
①牛②牛牛③牛牛牛④牛牛牛牛
A.119B.120C.121D.5050
7.(2025春?東西湖區(qū)月考)“楊輝三角”是中國(guó)古代數(shù)學(xué)重要的成就之一,最早出現(xiàn)在南宋數(shù)學(xué)家楊輝所
著的《詳解九章算法》中.如圖,在“楊輝三角”中,除每行兩邊的數(shù)都是1外,其余每個(gè)數(shù)都是其“肩
上”的兩個(gè)數(shù)字之和,例如第4行的6為第3行中兩個(gè)3的和.若在“楊輝三角”中從第2行左邊的1
開始按“鋸齒形”排列的箭頭所指的數(shù)依次構(gòu)成一個(gè)數(shù)列:41=1,01=2,43=3,44=3,4/5=6,〃6=
4,47=10,48=5…,則〃99-4100的值是()
1
11
1—?21
13f31
146^41
151010f51
A.1222B.1223C.1224D.1225
8.(2025春?淹橋區(qū)校級(jí)月考)楊輝三角是數(shù)字呈三角形形狀的排列,在中國(guó)南宋數(shù)學(xué)家楊輝1261年所著
的《詳解九章算法》指出這個(gè)三角形排列出自于北宋時(shí)期賈憲(11世紀(jì))的《釋鎖》.在歐洲I,帕斯卡
于1654年發(fā)現(xiàn)這一規(guī)律,比賈憲的發(fā)現(xiàn)要遲約500年.如圖所示,在“楊輝三角”中,從1開始箭頭
2,3,3,6,4,10,5,則在該數(shù)列中,第37項(xiàng)是()
A.153B.171C.190D.210
9.(2025春?江津區(qū)校級(jí)月考)用正方形按如圖所示的規(guī)律拼圖案,其中第①個(gè)圖案中有5個(gè)正方形,第
②個(gè)圖案中有9個(gè)正方形,第③個(gè)圖案中有13個(gè)正方形,第④個(gè)圖案中有17個(gè)正方形,此規(guī)律排列下
去,則第⑩個(gè)圖案中正方形的個(gè)數(shù)為()
??????????
??????????????????????
???????
???
①②③④
A.37B.41C.45D.49
10.(2025?祥云縣模擬)有一組單項(xiàng)式依次為a,-42a2,V3a3,-2a4,V5a5,…,根據(jù)它們的規(guī)律,
第100個(gè)單項(xiàng)式為()
A.-lOOfl100B.lOOa100C.-10a100D.lOa100
二.填空題(共5小題)
11.(2025?洛南縣一模)如圖是由大小相同的正六邊形組成的“蜂窩圖”,按此規(guī)律排列下去,則第9個(gè)
第3個(gè)
12.(2025春?鄭州月考)“楊輝三角”,又稱“賈憲三角”,是二項(xiàng)式系數(shù)在三角形中的一種幾何排列,在
我國(guó)南宋數(shù)學(xué)家楊輝所著的《詳解九章算法》一書中用如圖所示的三角形解釋二項(xiàng)和的乘方規(guī)律,觀察
下列各式及其展開式:
1
11(a+b)'=a+b
121(a+b)2=a2+2ab+b2
1331(a+b)3=a3+3a2b+3ab2+b3
1464(a+b)4=a4+4a3b+6a2b2+4afa3+b4
請(qǐng)你猜想(a+b)9展開式的第三項(xiàng)的系數(shù)是.
13.(2025?潼南區(qū)模擬)一個(gè)四位正整數(shù)其各個(gè)數(shù)位上的數(shù)字均不為零,如果個(gè)位數(shù)字等于十位數(shù)字
與千位數(shù)字之和,則稱這個(gè)四位數(shù)M為“壓軸數(shù)”.將“壓軸數(shù)”〃的千位數(shù)字去掉得到一個(gè)三位數(shù),
再將這個(gè)三位數(shù)與原“壓軸數(shù)”M的千位數(shù)字的3倍求和,記作F(M).則最大的壓軸數(shù)與最小的壓
軸數(shù)之差為.有兩個(gè)四位正整數(shù)尸=1000a+200b+10c+d,K=1010a+200+x(iWa、c、d、
xW9,1W6W4)均為“壓軸數(shù)”,若F(P)+F(K)能被7整除且F(K)能被13整除,則滿足條件
的P值的和為.
14.(2025?市中區(qū)一模)如圖,春節(jié)期間,廣場(chǎng)上空用紅色無人機(jī)(O)和黃色無人機(jī)(A)組成如下圖
案:
OAO
△△
OAO
△△
△O△
△△△△
△△
△△△△
第1個(gè)圖案第3個(gè)圖案
結(jié)合上面圖案中“O”和“△”的排列方式及規(guī)律,當(dāng)正整數(shù)〃=時(shí),使得紅色無人機(jī)(O)
比黃色無人機(jī)(△)的個(gè)數(shù)多28臺(tái).
15.(2025?海淀區(qū)校級(jí)模擬)某快遞員負(fù)責(zé)為A,B,C,D,E五個(gè)小區(qū)取送快遞,每送一個(gè)快遞收益1
元,每取一個(gè)快遞收益2元,某天5個(gè)小區(qū)需要取送快遞數(shù)量如表
小區(qū)需送快遞數(shù)量需取快遞數(shù)量
A156
B105
C85
D47
E134
(1)如果快遞員一個(gè)上午最多前往3個(gè)小區(qū),且要求他最少送快遞30件,最少取快遞15件,寫出一
種滿足條件的方案(寫出小區(qū)編號(hào));
(2)在(1)的條件下,如果快遞員想要在上午達(dá)到最大收益,寫出他的最優(yōu)方案(寫出
小區(qū)編號(hào)).
三.解答題(共5小題)
16.(2025?廬江縣模擬)綜合與實(shí)踐:
【發(fā)現(xiàn)】數(shù)學(xué)興趣小組在討論對(duì)于一個(gè)個(gè)位數(shù)和9相乘的問題時(shí),發(fā)現(xiàn)可以用10個(gè)手指直觀地展示出
來,如計(jì)算3X9,將兩手平伸,手心向上,從左邊開始數(shù)至第3個(gè)手指,將它彎起,此時(shí)它的左邊有2
個(gè)手指,右邊有7個(gè)手指,27正是3X9的結(jié)果.
【應(yīng)用】
(1)填空:若計(jì)算5X9,從左邊開始數(shù)至第個(gè)手指,將它彎起,此時(shí)它的左邊手指?jìng)€(gè)數(shù)
為,右邊手指?jìng)€(gè)數(shù)為,結(jié)果為;
【探究】
(2)從左邊開始數(shù)至第n個(gè)手指,將它彎起,此時(shí)它的左邊手指?jìng)€(gè)數(shù)為,右邊手指?jìng)€(gè)數(shù)
為,用所學(xué)的數(shù)學(xué)知識(shí)證明上面的發(fā)現(xiàn).
3X9=27
17.(2025春?合肥月考)觀察以下等式:
第1個(gè)等式:l=l2-02=2X0+l;
第2個(gè)等式:3=22-12=2X1+1;
第3個(gè)等式:5=32-22=2X2+1;
第4個(gè)等式:7=42-32=2X3+l;
(1)請(qǐng)寫出第6個(gè)等式:.
(2)通過上面等式發(fā)現(xiàn),任意一個(gè)正奇數(shù),都可以寫成相鄰兩個(gè)非負(fù)整數(shù)的平方差.如果仿與VF是兩
個(gè)相鄰的整數(shù),其中a>6,設(shè)V^=m+1,yj~b=m,試說明:a-b=2y/b+1.
(3)如果V?與VT口是兩個(gè)相鄰的整數(shù),求f的值.
18.(2025春?迎澤區(qū)校級(jí)月考)如圖,一幅長(zhǎng)為由九,寬為勿《的長(zhǎng)方形風(fēng)景畫,畫面的四周留有空白區(qū)
域作裝飾,其中四角均是邊長(zhǎng)為X7”的正方形,正中間畫面的面積是多少平方米?
19.(2025春?高新區(qū)校級(jí)月考)觀察下列各式:
(1)(尤-1)(尤+1)=;
(x-1)(f+x+l)=;
(X-1)(x3+x2+x+l)=;
(2)猜想:(X-1)(/7+/-2+d-3一/3+/+彳+1)=(〃為正整數(shù));
(3)應(yīng)用:-5n+510-59+--53+52-5.
20.(2025?晉州市模擬)有一個(gè)邊長(zhǎng)為b的小正方形和一個(gè)邊長(zhǎng)為a(a>b)的大正方形.將小正方形按
圖1的方式放入大正方形中,設(shè)圖中陰影部分的面積為Si;再將小正方形按圖2的方式放入大正方形
中,取A8的中點(diǎn)設(shè)圖中三角形(陰影部分)的面積為S2.
(1)Si=(用含a,b的式子表示);
(2)求S2的大小(結(jié)果用含a,b的式子表示);
(3)若SI=HS2,請(qǐng)你直接寫出左的值,不用說明理由.
圖1圖2
2025年中考數(shù)學(xué)復(fù)習(xí)難題速遞之代數(shù)式(2025年4月)
參考答案與試題解析
一.選擇題(共10小題)
題號(hào)12345678910
答案ADCCBBCCBC
一.選擇題(共10小題)
1.(2025春?迎澤區(qū)校級(jí)月考)如圖,圖1的瓶子中盛滿了水,如果將這個(gè)瓶子中的水全部倒入圖2這樣
的杯子中,那么一共需要()個(gè)這樣的杯子.
2
圖2
11
A.-h+2HB.-h+HC.h+2HD.h+H
22
【考點(diǎn)】列代數(shù)式;整式的除法.
【專題】整式;運(yùn)算能力.
【答案】A
【分析】圓柱的體積公式=n/?爪首先算出圖(1)中瓶子的體積,然后再算出圖(2)中杯子的體積,
即可得出結(jié)論.
3
【解答】解:圖(1)圖(1)瓶子的體積為:兀(獷/1+兀小”=,7m2%+7m2“=@八+”)7m2(cm).
3
圖(2)杯子的體積為兀@。)2X8=(cm).
111
???一共需要杯子為Qh+H)7ia24-Tia2=(2H+個(gè).
故選:A.
【點(diǎn)評(píng)】本題考查了整式除法的應(yīng)用,列代數(shù)式,解本題的關(guān)鍵在熟練掌握?qǐng)A柱的體積公式.
2.(2025春?北培區(qū)校級(jí)月考)已知多項(xiàng)式-X2-X3-…-%九,滿足%1>X2>X3>—>初>0,且〃
為正整數(shù),將其中的根(0<m^n-1)個(gè)“-"改為“+”后得到一個(gè)新多項(xiàng)式.下列說法中正確的個(gè)
數(shù)是()
①當(dāng)山=今("為偶數(shù))時(shí),新多項(xiàng)式的值可能為0;
②當(dāng)機(jī)=1時(shí),若XI,…,物均為正整數(shù)且XI=加得到的新多項(xiàng)式的值恒為非負(fù)數(shù),則2W/W4;
③當(dāng)”=6,機(jī)=2時(shí),對(duì)新多項(xiàng)式取絕對(duì)值后化簡(jiǎn)的結(jié)果共有15種.
A.0B.1C.2D.3
【考點(diǎn)】規(guī)律型:數(shù)字的變化類;不等式的性質(zhì).
【專題】運(yùn)算能力.
【答案】D
【分析】①中,正確舉例即可得;
②中,卞艮據(jù)XI,…,物均為正整數(shù)且Xl=n,Xl>X2>X3>">Xn>0,得出XI-X2-X3--Xn=n--1)
-(n-2)-----2-1,設(shè)-%2-工3-…-初=〃-(〃-1)-(〃-2)------2-1,先判斷
Mn-X,再得出當(dāng)根=1時(shí),跖:的新多項(xiàng)式的最小值為改變項(xiàng)物=1前的“-”,設(shè)最小值為降/,得出
Mn'=Mn+2,得出n=2時(shí),Mi'=3;n=3時(shí),M3,=2;〃=4時(shí),M4=-2,M4'=0;又由Mn
<Mn-i<M4,得MzV-2,則可得W=Mt+2V0,即可判斷;
③中,逐一枚舉,并利用不等式的性質(zhì)進(jìn)行化簡(jiǎn)即可得.
【解答】解:①例如,多項(xiàng)式XI-12-%3-%4-%5-X6,n=6,
則m=2=3,
新多項(xiàng)式可以為XI-X2-X3+X4+X5+X6,
舉例:9-8-7+3+2+1=0(9>8>7>3>2>1),
則①正確;
②若%1,…,X"均為正整數(shù)且Xl=〃,X1>X2>X3>->XH>0,
??Xn=1,Xn-1=2,Xn-2~3,Xn-3~4,…,=〃-2,Xl~ri1,Xl=〃,
/.XI-X2-X3----Xn=n-(n-1)--2)---2-1,
Mn—X\-X2-X3---Xn—n-(〃-1)-(〃-2)-…-2-1,
Mn-1=Xl-X2-X?>---Xn-l=-1)-(〃-2)-…-2-1,
Mn-Mn-\—n-(n-1)-(n-2)---2-1-[(n-1)-(九-2)-…-2-1]=2-m
?.,介2,
其中,當(dāng)〃>2時(shí),Mn-Mn-\=2-n<Q,
??MnVMn-1,
當(dāng)"7=1時(shí),M"的新多項(xiàng)式的最小值為改變項(xiàng)物=1前的“-
設(shè)最小值為跖」,
gpMn'=n-(w-1)-(?-2)——2+l=Mi+2,
:“=2時(shí),M2=2-1=1,M2'=2-1+2=3;
〃=3時(shí),〃3=3-2-1=0,M3,=3-2-1+2=2;
”=4時(shí),M4=4-3-2-1=-2,MS=4-3-2-1+2=0;
又:跖1c跖
:.Mn<-2,
:.Mn'=跖計(jì)2<0,
...只有當(dāng)2WwW4時(shí),得到的新多項(xiàng)式的值恒為非負(fù)數(shù),
故②正確;
③當(dāng)W=6,機(jī)=2時(shí),Mn—xi-X2-X3-X4-X5-X6,
情況1:|X1+X2+X3-X4-X5-X6\>
VXl>X2>X3>">Xn>0,
.*.X1-X4>0,X2-X5>0,X3-X6>0,
.'.X1+X2+X3-X4-X5-X6>0,
|X1+X2+X3-X4-X5_X6|=X1+X2+X3-X4_X5-X6,
情況2:|xi+%2-X3+X4-X5-X6|,
*.*%1>x2>%3>“>切>0,
.*.X1-X3>0,X2-X5>0,X4-X6>0,
.*.X1+X2-X3+X4-X5-X6>0,
\X1+X2-X3+X4-X5-X6|=X1+X2-%3+%4~X5-%6,
情況3:|X1+X2-X3-X4+X5-X6|,
VXl>X2>X3>'>Xn>0^
/.XI-X3>0,X2-X4>0,X5~X6>0,
.*.X1+X2-X3-X4+X5-X6>0,
\xi+X2_X3-X4+X5-X6|—|X1+X2-X3-X4+%5-X6,
情況4:\X1+X2-X3-X4-X5+X6|,
由X1>X2>X3>">XH>0無法為J斷入1+X2一%3一X4-X5+X6的正負(fù),
|X1+X2-%3-X4-X5+X6|=X1+X2-X3-X4~X5+%6或|%l+12-X3~X4-X5+%6|=~XI-X2+%3+%4+X5X6;
情況5:\X1-X2+X3+X4-X5~%6|,
*.*Xl>X2>%3>“>X〃>0,
.*.X1-X2>0,X3-X5>0,X4-X6>0,
.".XI-X2+X3+X4-X5-%6>0,
,新多項(xiàng)式取絕對(duì)值化簡(jiǎn)結(jié)果為XI-X2+X3+X4-X5-X6;
情況6:\X1-X2+X3-X4+X5~X6|,
*/XI>X2>X3>…>0,
/.XI-X2>0,X3-X4>0,X5-X6>0,
.'?XI-X2+X3-X4+X5-X6>0,
???新多項(xiàng)式取絕對(duì)值化簡(jiǎn)結(jié)果為XI-X2+X3-X4+X5-X6;
情況7:|X1-X2+X3-X4-X5+X6|,
由X1>X2>X3>->XH>0無法判斷XI-X2+X3-X4-X5+X6的正負(fù)性,
???新多項(xiàng)式取絕對(duì)值化簡(jiǎn)結(jié)果為XI-X2+X3-X4-X5+X6或-X1+X2-X3+X4+X5-X6;
情況8:|X1-Xl-X3+X4+X5-%6|,
由Xl>X2>X3>->Xn>0無法判斷XI-I2-X3+X4+X5-16的正負(fù)性,
新多項(xiàng)式取絕對(duì)值化簡(jiǎn)結(jié)果為XI-12-X3+X4+X5-X6或-X1+X2+X3-X4~X5+X6;
情況9:|X1-XI-尤3+尤4-X5+X6I,
由Xl>X2>X3>->X?>0無法判斷XI-X2-X3+X4-X5+X6的正負(fù)性,
新多項(xiàng)式取絕對(duì)值化簡(jiǎn)結(jié)果為XI-尤2-尤3+X4-X5+X6或-X1+X2+X3-X4+X5-X6;
'情況10:|%1-X2~X3-X4+X5+X6I,
由Xl>X2>X3>->Xn>0無法判斷XI-X2-尤3-X4+X5+X6的正負(fù),
新多項(xiàng)式取絕對(duì)值化簡(jiǎn)結(jié)果為XI-X2-X3-X4+X5+尤6或-無1+X2+X3+X4-X5-X6;
綜上,新多項(xiàng)式取絕對(duì)值后化簡(jiǎn)的結(jié)果共有15種,
故③正確.
故選:D.
【點(diǎn)評(píng)】本題考查絕對(duì)值的化簡(jiǎn),不等式的性質(zhì),整式的規(guī)律探索,熟練根據(jù)題意正確列出多項(xiàng)式是解
題的關(guān)鍵.
3.(2025春?大足區(qū)月考)如圖,是一組有規(guī)律的圖案,第1個(gè)圖案中有5個(gè)四邊形,第2個(gè)圖案中有9
個(gè)四邊形,第3個(gè)圖案中有13個(gè)四邊形,…,按此規(guī)律,第7個(gè)圖案中四邊形的個(gè)數(shù)為()
【考點(diǎn)】規(guī)律型:圖形的變化類.
【專題】猜想歸納;推理能力.
【答案】c
【分析】根據(jù)所給圖形,依次求出圖形中四邊形的個(gè)數(shù),發(fā)現(xiàn)規(guī)律即可解決問題.
【解答】解:由所給圖形可知,
第1個(gè)圖案中四邊形的個(gè)數(shù)為:5=1X4+1;
第2個(gè)圖案中四邊形的個(gè)數(shù)為:9=2X4+1;
第3個(gè)圖案中四邊形的個(gè)數(shù)為:13=3X4+1;
所以第幾個(gè)圖案中四邊形的個(gè)數(shù)為(4n+l)個(gè).
當(dāng)n=l時(shí),
4n+l=4X7+l=29(個(gè)),
即第7個(gè)圖案中四邊形的個(gè)數(shù)為29個(gè).
故選:C.
【點(diǎn)評(píng)】本題主要考查了圖形變化的規(guī)律,能根據(jù)所給圖形發(fā)現(xiàn)四邊形的個(gè)數(shù)依次增加4是解題的關(guān)鍵.
4.(2025?阿城區(qū)一模)烷妙是一類由碳、氫元素組成的有機(jī)化合物質(zhì),如圖是這類物質(zhì)前四種化合物的
分子結(jié)構(gòu)模型圖,其中黑球代表碳原子,藍(lán)球代表氫原子.第1種如圖①有4個(gè)氫原子,第2種如圖②
有6個(gè)氫原子,第3種如圖③有8個(gè)氫原子,…按照這一規(guī)律,第9種化合物的分子結(jié)構(gòu)模型中氫原子
的個(gè)數(shù)是()
①②③④
A.16B.18C.20D.22
【考點(diǎn)】規(guī)律型:數(shù)字的變化類.
【專題】規(guī)律型;推理能力.
【答案】c
【分析】先根據(jù)圖形計(jì)算前4個(gè)圖形中的氫原子的個(gè)數(shù),找到規(guī)律,再計(jì)算求解.
【解答】解:第1種如圖①有4個(gè)氫原子,
第2種如圖②有3X2=6個(gè)氫原子,
第3種如圖③有3X2+2=8個(gè)氫原子,
第4種有3X2+2X2=8=10個(gè)氫原子,
第"種有3X2+2(n-2)=(2〃+2)個(gè)氫原子,
按照這一規(guī)律,
第9種化合物的分子結(jié)構(gòu)模型中氫原子的個(gè)數(shù)是:2X9+2=20,
故選:C.
【點(diǎn)評(píng)】本題考查了數(shù)字的變化類,找到變化規(guī)律是解題的關(guān)鍵.
5.(2024秋?長(zhǎng)安區(qū)校級(jí)期末)用木棒按如圖所示的規(guī)律擺放圖形,第1個(gè)圖形需要6根木棒,第2個(gè)圖
形需要11根木棒,第3個(gè)圖形需要16根木棒,…,按這種方式擺放下去,用含〃的代數(shù)式表示第〃個(gè)
圖形需要木棒的根數(shù)為()
III
第1個(gè)圖形第2個(gè)圖形第3個(gè)圖形
A.6nB.5n+lC.5?-1D.4n+2
【考點(diǎn)】規(guī)律型:圖形的變化類;列代數(shù)式.
【專題】規(guī)律型;幾何直觀;推理能力.
【答案】B
【分析】根據(jù)后一個(gè)圖形的木棒比前一個(gè)圖形的木棒多5根,即可得到答案.
【解答】解:第個(gè)圖形需要6根木棒,第2個(gè)圖形需要11根木棒,第3個(gè)圖形需要16根木棒,
:搭第1個(gè)圖形需要:6=5X1+1,
搭第2個(gè)圖形需要:11=5X2+1,
搭第3個(gè)圖形需要:16=5X3+1,
搭第"個(gè)圖形需要的木棒的根數(shù)是:5/7+1.
故選:B.
【點(diǎn)評(píng)】本題主要考查規(guī)律型:圖形的變化類,列代數(shù)式,找到“后一個(gè)圖形的木棒比前一個(gè)圖形的木
棒多5根”這個(gè)規(guī)律,是解題的關(guān)鍵.
6.(2025春?重慶月考)2021年是農(nóng)歷我國(guó)“?!蹦?,為祝福我們偉大祖國(guó)更加繁榮昌盛,同時(shí)勉勵(lì)新一
屆初三人在2021年更加“牛氣沖天”,某同學(xué)制作了如圖“牛氣圖”,請(qǐng)根據(jù)如圖規(guī)律,計(jì)算第15個(gè)圖
案中一共有多少個(gè)“?!弊??()
牛牛牛牛牛
①牛②牛牛③牛牛牛④牛牛牛牛
A.119B.120C.121D.5050
【考點(diǎn)】規(guī)律型:圖形的變化類.
【專題】規(guī)律型;運(yùn)算能力.
【答案】B
lx(l+l)2X(2+1)3X(3+1)4X(4+1)
【分析】第①?④個(gè)圖案中“牛”字的個(gè)數(shù)依次為,歸納類
2222
推出一般規(guī)律,由此即可得.
【解答】解:由圖可知:
第①個(gè)圖案中“?!弊值膫€(gè)數(shù)為1(個(gè)),
第②個(gè)圖案中“牛”字的個(gè)數(shù)為3(個(gè)),
第③個(gè)圖案中“?!弊值膫€(gè)數(shù)為6(個(gè)),
第④個(gè)圖案中“?!弊值膫€(gè)數(shù)為10(個(gè)),
n(n+l)
發(fā)現(xiàn)規(guī)律:第"個(gè)圖案中“牛”字的個(gè)數(shù)為?個(gè),其中〃為正整數(shù),
2
15x(15+1)
則第15個(gè)圖案中“牛”字的個(gè)數(shù)為=120,
2
故選:B.
【點(diǎn)評(píng)】本題考查了圖形類規(guī)律探索,正確歸納類推出一般規(guī)律是解題關(guān)鍵.
7.(2025春?東西湖區(qū)月考)“楊輝三角”是中國(guó)古代數(shù)學(xué)重要的成就之一,最早出現(xiàn)在南宋數(shù)學(xué)家楊輝所
著的《詳解九章算法》中.如圖,在“楊輝三角”中,除每行兩邊的數(shù)都是1外,其余每個(gè)數(shù)都是其“肩
上”的兩個(gè)數(shù)字之和,例如第4行的6為第3行中兩個(gè)3的和.若在“楊輝三角”中從第2行左邊的1
開始按"鋸齒形"排列的箭頭所指的數(shù)依次構(gòu)成一個(gè)數(shù)列:。1=1,02=2,43=3,04=3,(15=6,。6=
4,47=10,48=5…,則499-4100的值是()
1
11
1—?21
七
13—?31
146^*41
151010-?51
A.1222B.1223C.1224D.1225
【考點(diǎn)】規(guī)律型:圖形的變化類;數(shù)學(xué)常識(shí).
【專題】規(guī)律型;推理能力.
【答案】C
【分析】根據(jù)圖中的數(shù)據(jù),可以發(fā)現(xiàn)數(shù)字的變化特點(diǎn),從而可以計(jì)算出。99-moo的值.
【解答】解:由圖可得,第偶數(shù)項(xiàng)對(duì)應(yīng)的數(shù)是一些連續(xù)的自然數(shù),
從2開始,第奇數(shù)項(xiàng)對(duì)應(yīng)的數(shù)是一些連續(xù)的整數(shù)相加,從1開始,
.?.(199-aioo=(1+2+3+-+50)-I(1004-2)+1]
=50x^0+1)_[(1004-2)+1]
=1275-51
=1224,
故選:C.
【點(diǎn)評(píng)】本題考查數(shù)字的變化類,解答本題的關(guān)鍵是明確題意,發(fā)現(xiàn)數(shù)字的變化特點(diǎn),求出所求式子的
值.
8.(2025春?浦橋區(qū)校級(jí)月考)楊輝三角是數(shù)字呈三角形形狀的排列,在中國(guó)南宋數(shù)學(xué)家楊輝1261年所著
的《詳解九章算法》指出這個(gè)三角形排列出自于北宋時(shí)期賈憲(11世紀(jì))的《釋鎖》.在歐洲,帕斯卡
于1654年發(fā)現(xiàn)這一規(guī)律,比賈憲的發(fā)現(xiàn)要遲約500年.如圖所示,在“楊輝三角”中,從1開始箭頭
所指的數(shù)組成一個(gè)鋸齒形數(shù)列:1,2,3,3,6,4,10,5,則在該數(shù)列中,第37項(xiàng)是()
1
1010
A.153B.171C.190D.210
【考點(diǎn)】規(guī)律型:數(shù)字的變化類.
【專題】規(guī)律型;運(yùn)算能力.
【答案】C
【分析】根據(jù)圖形找出數(shù)據(jù)之間的關(guān)系,再計(jì)算求解.
【解答】解:由題意可知,從第4行起的每行第三個(gè)數(shù)依次為3=1+2,6=1+2+3,10=1+2+3+4,…,
所以第左(左24)行的第三個(gè)數(shù)為1+2+3+-+(%-2),
在該數(shù)列中,第37項(xiàng)為第21行的第三個(gè)數(shù),
所以該數(shù)列的第37項(xiàng)為1+2+…+19=19*(;+19)=190,
故選:C.
【點(diǎn)評(píng)】本題考查了數(shù)字的變換類,找到變換規(guī)律是解題的關(guān)鍵.
9.(2025春?江津區(qū)校級(jí)月考)用正方形按如圖所示的規(guī)律拼圖案,其中第①個(gè)圖案中有5個(gè)正方形,第
②個(gè)圖案中有9個(gè)正方形,第③個(gè)圖案中有13個(gè)正方形,第④個(gè)圖案中有17個(gè)正方形,此規(guī)律排列下
去,則第⑩個(gè)圖案中正方形的個(gè)數(shù)為()
??????????
?????????????????????
??????????
①②③④
A.37B.41C.45D.49
【考點(diǎn)】規(guī)律型:圖形的變化類.
【專題】規(guī)律型;運(yùn)算能力.
【答案】B
【分析】第1個(gè)圖中有5個(gè)正方形,第2個(gè)圖中有9個(gè)正方形,第3個(gè)圖中有13個(gè)正方形,……,由
此可得:每增加1個(gè)圖形,就會(huì)增加4個(gè)正方形,由此找到規(guī)律,列出第"個(gè)圖形的算式,然后再解答
即可.
【解答】解:第1個(gè)圖中有5個(gè)正方形;
第2個(gè)圖中有9個(gè)正方形,可以寫成:5+4X1;
第3個(gè)圖中有13個(gè)正方形,可以寫成:5+4X2;
第4個(gè)圖中有17個(gè)正方形,可以寫成:5+4X3;
第八個(gè)圖中有正方形,可以寫成:5+4(?-1)=4〃+1;
當(dāng)”=10時(shí),代入4〃+1得:4X10+1=41.
故選:B.
【點(diǎn)評(píng)】本題主要考查了圖形的變化規(guī)律以及數(shù)字規(guī)律,發(fā)現(xiàn)規(guī)律是關(guān)鍵.
10.(2025?祥云縣模擬)有一組單項(xiàng)式依次為a,-V2a2,V3a3,-2a4,V5a5,…,根據(jù)它們的規(guī)律,
第100個(gè)單項(xiàng)式為()
A.-lOOfl100B.lOOfl100C.-lOfl100D.10a100
【考點(diǎn)】規(guī)律型:數(shù)字的變化類;單項(xiàng)式.
【專題】規(guī)律型;運(yùn)算能力.
【答案】C
【分析】根據(jù)題意,可以發(fā)現(xiàn)第w個(gè)單項(xiàng)式的規(guī)律為(-1尸+1傷心,據(jù)此即可求解.
【解答】解:第1個(gè)單項(xiàng)式為(-1)1+%1,
第2個(gè)單項(xiàng)式為一迎a?=(-l)2+1V2a2,
第3個(gè)單項(xiàng)式為=(-l)3+1V3a3,
第4個(gè)單項(xiàng)式為—2a4=(-l)4+1V4a4,
.?.第n個(gè)單項(xiàng)式為(-1尸+1傷心,
.,.第100個(gè)單項(xiàng)式是(-=-10a100.
故選:C.
【點(diǎn)評(píng)】本題考查了單項(xiàng)式規(guī)律題,算術(shù)平方根,理解題意找到式子的規(guī)律是解題的關(guān)鍵.
二.填空題(共5小題)
11.(2025?洛南縣一模)如圖是由大小相同的正六邊形組成的“蜂窩圖”,按此規(guī)律排列下去,則第9個(gè)
圖案中有29個(gè)正六邊形.
第1個(gè)第2個(gè)第3個(gè)
【考點(diǎn)】規(guī)律型:圖形的變化類.
【專題】猜想歸納;推理能力.
【答案】29.
【分析】根據(jù)所給圖形,依次求出圖形中正六邊形的個(gè)數(shù),發(fā)現(xiàn)規(guī)律即可解決問題.
【解答】解:由所給圖形可知,
第1個(gè)圖案中正六邊形的個(gè)數(shù)為:5=IX3+2;
第2個(gè)圖案中正六邊形的個(gè)數(shù)為:8=2X3+2;
第3個(gè)圖案中正六邊形的個(gè)數(shù)為:11=3X3+2;
所以第w個(gè)圖案中正六邊形的個(gè)數(shù)為(3〃+2)個(gè).
當(dāng)n=9時(shí),
3”+2=3X9+2=29(個(gè)),
即第9個(gè)圖案中正六邊形的個(gè)數(shù)為29個(gè).
故答案為:29.
【點(diǎn)評(píng)】本題主要考查了圖形變化的規(guī)律,能根據(jù)所給圖形發(fā)現(xiàn)正六邊形的個(gè)數(shù)依次增加3是解題的關(guān)
鍵.
12.(2025春?鄭州月考)“楊輝三角”,又稱“賈憲三角”,是二項(xiàng)式系數(shù)在三角形中的一種幾何排列,在
我國(guó)南宋數(shù)學(xué)家楊輝所著的《詳解九章算法》一書中用如圖所示的三角形解釋二項(xiàng)和的乘方規(guī)律,觀察
下列各式及其展開式:
1
(a+b)'=a+b
11
121(a+bV=a2+2ab+b2
1331(a+b)3=a3+3a2b+3ab2+b3
14641(a+b)4=a4+4a3b+6a2b2+4ab3+b4
請(qǐng)你猜想(a+b)9展開式的第三項(xiàng)的系數(shù)是36
【考點(diǎn)】規(guī)律型:數(shù)字的變化類;數(shù)學(xué)常識(shí).
【專題】猜想歸納;推理能力.
【答案】36.
【分析】根據(jù)題意,得出Q+b)”展開式中的第三項(xiàng)系數(shù)的變化規(guī)律即可解決問題.
【解答】解:由題知,
從Q+6)2開始,展開式的第三項(xiàng)的系數(shù)依次為1,3,6,10,15,…,
所以C〃展開式中的第三項(xiàng)系數(shù)為:1+2+3+…1=攻尹;
當(dāng)〃=9時(shí),
n(n-l)9x8
==36,
2------2
即(a+b)9展開式的第三項(xiàng)的系數(shù)是36.
故答案為:36.
【點(diǎn)評(píng)】本題主要考查了數(shù)字變化的規(guī)律及數(shù)學(xué)常識(shí),能根據(jù)題意發(fā)現(xiàn)(。+6)〃展開式中的第三項(xiàng)系
數(shù)的變化規(guī)律是解題的關(guān)鍵.
13.(2025?潼南區(qū)模擬)一個(gè)四位正整數(shù)M,其各個(gè)數(shù)位上的數(shù)字均不為零,如果個(gè)位數(shù)字等于十位數(shù)字
與千位數(shù)字之和,則稱這個(gè)四位數(shù)M為“壓軸數(shù)”.將“壓軸數(shù)”〃的千位數(shù)字去掉得到一個(gè)三位數(shù),
再將這個(gè)三位數(shù)與原“壓軸數(shù)”M的千位數(shù)字的3倍求和,記作F(M).則最大的壓軸數(shù)與最小的壓
軸數(shù)之差為7807.有兩個(gè)四位正整數(shù)尸=1000a+200b+10c+d,K=1010a+200+x(IWa、c、d、x
W9,1W6W4)均為“壓軸數(shù)”,若尸(P)+F(K)能被7整除且E(K)能被13整除,則滿足條件的
P值的和為9507.
【考點(diǎn)】列代數(shù)式;整式的加減.
【專題】整式;運(yùn)算能力.
【答案】7807;9507.
【分析】根據(jù)定義得出最大的“壓軸數(shù)”與最小的“壓軸數(shù)”,計(jì)算即可;根據(jù)定義計(jì)算出F(P)+F
(K)和尸(K),然后根據(jù)E(P)+F(K)能被7整除且尸(K)能被13整除,即可求解.
【解答】解:要想使“壓軸數(shù)”最大,則千位是最大的一位數(shù),
又:各個(gè)數(shù)位上的數(shù)字均不為零,個(gè)位數(shù)字等于十位數(shù)字與千位數(shù)字之和,
...千位不能為9,即千位最大是8,最小是1,
...最大的“壓軸數(shù)”是8919,最小的“壓軸數(shù)”是1112,
最大的“壓軸數(shù)”與最小的“壓軸數(shù)”之差為8919-1112=7807,
??P=1000a+2006+10c+d,K=1010a+200+x,
:.F(P)=2006+10c+d+3a,F(K)=104+200+無+3。,
???個(gè)位數(shù)字等于十位數(shù)字與千位數(shù)字之和,
??d~-d~^c?尤:=2a,
:.F(P)=2006+llc+4a,F(K)=15a+200,
:.F(P)+F(K)=2006+llc+19a+200=(1966+196+7c+14a)+(4b+4+5a+4c),
F(K)=15a+200=(195+13。)+(5+2。),
VF(P)+F(K)能被7整除且尸(K)能被13整除,
:.4b+4+5a+4c能被7整除,5+2a能被13整除,
:TWaW9,
.,.a=4,
46+4+5a+4c=24+4b+4c,
;.24+46+4c能被7整除,
?.TW6W4.KW9,
當(dāng)匕=3,c=5時(shí),F(xiàn)(P)+F(K)能被7整除,此時(shí)尸=4659,
當(dāng)6=4,c=4時(shí),F(xiàn)(P)+F(K)能被7整除,此時(shí)尸=4848,
其余取值均不符合,
,滿足條件的p值的和為4659+4848=9507.
故答案為:7807,9507.
【點(diǎn)評(píng)】本題主要考查了列代數(shù)式、整式的加減等知識(shí)點(diǎn),能正確理解題意并列出代數(shù)式是解決本題的
關(guān)鍵.
14.(2025?市中區(qū)一模)如圖,春節(jié)期間,廣場(chǎng)上空用紅色無人機(jī)(。)和黃色無人機(jī)(△)組成如下圖
案:
oAo
△△
OAO△c△人
o△o£
裝蹩軟
aA△△△
△△△△△△
第1個(gè)圖案第2個(gè)圖案第3個(gè)圖案第4個(gè)圖案
結(jié)合上面圖案中“O”和“△”的排列方式及規(guī)律,當(dāng)正整數(shù)〃=8時(shí),使得紅色無人機(jī)(O)比
黃色無人機(jī)(△)的個(gè)數(shù)多28臺(tái).
【考點(diǎn)】規(guī)律型:圖形的變化類.
【專題】猜想歸納;推理能力.
【答案】8.
【分析】根據(jù)所給圖形,分別求出圖形中。和△的個(gè)數(shù),發(fā)現(xiàn)規(guī)律即可解決問題.
【解答】解:由所給圖形可知,
第1個(gè)圖案中。的個(gè)數(shù)為3=P+2,△的個(gè)數(shù)為10=1X4+6;
第2個(gè)圖案中。的個(gè)數(shù)為6=22+2,△的個(gè)數(shù)為14=2X4+6;
第3個(gè)圖案中。的個(gè)數(shù)為11=32+2,△的個(gè)數(shù)為18=3X4+6;
***J
所以第"個(gè)圖案中。的個(gè)數(shù)為(層+2)個(gè),△的個(gè)數(shù)為(4?+6)個(gè).
由/+2=4〃+6+28得,
m=-4(舍去),砥=8,
所以w的值為8.
故答案為:8.
【點(diǎn)評(píng)】本題主要考查了圖形變化的規(guī)律,能根據(jù)所給圖形發(fā)現(xiàn)。和△個(gè)數(shù)的變化規(guī)律是解題的關(guān)鍵.
15.(2025?海淀區(qū)校級(jí)模擬)某快遞員負(fù)責(zé)為A,B,C,D,E五個(gè)小區(qū)取送快遞,每送一個(gè)快遞收益1
元,每取一個(gè)快遞收益2元,某天5個(gè)小區(qū)需要取送快遞數(shù)量如表
小區(qū)需送快遞數(shù)量需取快遞數(shù)量
A156
B105
C85
D47
E134
(1)如果快遞員一個(gè)上午最多前往3個(gè)小區(qū),且要求他最少送快遞30件,最少取快遞15件,寫出一
種滿足條件的方案ABC或ABE
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025北京京能清潔能源電力內(nèi)蒙古分公司招聘31人考前自測(cè)高頻考點(diǎn)模擬試題帶答案詳解
- 邢臺(tái)市人民醫(yī)院神經(jīng)外傷評(píng)估考核
- 2025黑龍江雞西市博物館現(xiàn)公益性崗位招聘2人模擬試卷及一套完整答案詳解
- 2025黑龍江齊齊哈爾市泰來縣城鎮(zhèn)建設(shè)服務(wù)中心招聘市政園林養(yǎng)護(hù)人員5人考前自測(cè)高頻考點(diǎn)模擬試題及答案詳解(網(wǎng)校專用)
- 邯鄲市人民醫(yī)院風(fēng)濕病消化系統(tǒng)表現(xiàn)識(shí)別考核
- 天津市人民醫(yī)院脊髓電刺激術(shù)資格認(rèn)證
- 2025年甘肅省武威市事業(yè)單位已發(fā)布考前自測(cè)高頻考點(diǎn)模擬試題及答案詳解(有一套)
- 張家口市中醫(yī)院甲狀腺疾病抗體解讀考核
- 石家莊市中醫(yī)院舌診與脈診專項(xiàng)技能分級(jí)考核
- 滄州市中醫(yī)院直接間接檢眼鏡檢查技能考核
- 第6課 推動(dòng)形成全面對(duì)外開放新格局高一思想政治《中國(guó)特色社會(huì)主義》同(高教版2023基礎(chǔ)模塊)
- 社會(huì)調(diào)查研究抽樣課件
- 矩陣論同步學(xué)習(xí)輔導(dǎo) 張凱院 西北工業(yè)大學(xué)出版社
- 英語英語句子成分和基本結(jié)構(gòu)
- GB/T 24218.1-2009紡織品非織造布試驗(yàn)方法第1部分:?jiǎn)挝幻娣e質(zhì)量的測(cè)定
- GB/T 10357.1-2013家具力學(xué)性能試驗(yàn)第1部分:桌類強(qiáng)度和耐久性
- GB 16541-1996豎井罐籠提升信號(hào)系統(tǒng)安全技術(shù)要求
- GB 10068-2000軸中心高為56mm及以上電機(jī)的機(jī)械振動(dòng)振動(dòng)的測(cè)量、評(píng)定及限值
- 電焊工模擬試題(含答案)
- 全國(guó)優(yōu)質(zhì)課一等獎(jiǎng)初中數(shù)學(xué)《有理數(shù)的乘方》精品課件
- 施工現(xiàn)場(chǎng)臨時(shí)用電安全檢查驗(yàn)收表
評(píng)論
0/150
提交評(píng)論