江蘇省連云港市沙河中學(xué)中考數(shù)學(xué)全真模擬試題及答案解析_第1頁(yè)
江蘇省連云港市沙河中學(xué)中考數(shù)學(xué)全真模擬試題及答案解析_第2頁(yè)
江蘇省連云港市沙河中學(xué)中考數(shù)學(xué)全真模擬試題及答案解析_第3頁(yè)
江蘇省連云港市沙河中學(xué)中考數(shù)學(xué)全真模擬試題及答案解析_第4頁(yè)
江蘇省連云港市沙河中學(xué)中考數(shù)學(xué)全真模擬試題及答案解析_第5頁(yè)
已閱讀5頁(yè),還剩17頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

江蘇省連云港市沙河中學(xué)中考數(shù)學(xué)全真模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.下列各組數(shù)中,互為相反數(shù)的是()A.﹣1與(﹣1)2 B.(﹣1)2與1 C.2與 D.2與|﹣2|2.下列圖形中,周長(zhǎng)不是32m的圖形是()A. B. C. D.3.如圖,平行四邊形ABCD中,點(diǎn)A在反比例函數(shù)y=(k≠0)的圖象上,點(diǎn)D在y軸上,點(diǎn)B、點(diǎn)C在x軸上.若平行四邊形ABCD的面積為10,則k的值是()A.﹣10 B.﹣5 C.5 D.104.統(tǒng)計(jì)學(xué)校排球隊(duì)員的年齡,發(fā)現(xiàn)有12、13、14、15等四種年齡,統(tǒng)計(jì)結(jié)果如下表:年齡(歲)12131415人數(shù)(個(gè))2468根據(jù)表中信息可以判斷該排球隊(duì)員年齡的平均數(shù)、眾數(shù)、中位數(shù)分別為()A.13、15、14 B.14、15、14 C.13.5、15、14 D.15、15、155.在△ABC中,∠C=90°,AC=9,sinB=,則AB=(

)A.15

B.12

C.9

D.66.如圖,直線(xiàn)a∥b,直線(xiàn)分別交a,b于點(diǎn)A,C,∠BAC的平分線(xiàn)交直線(xiàn)b于點(diǎn)D,若∠1=50°,則∠2的度數(shù)是A.50° B.70° C.80° D.110°7.下列基本幾何體中,三視圖都是相同圖形的是()A. B. C. D.8.﹣6的倒數(shù)是()A.﹣16 B.19.已知xa=2,xb=3,則x3a﹣2b等于()A. B.﹣1 C.17 D.7210.如圖,△ABC中,∠C=90°,D、E是AB、BC上兩點(diǎn),將△ABC沿DE折疊,使點(diǎn)B落在AC邊上點(diǎn)F處,并且DF∥BC,若CF=3,BC=9,則AB的長(zhǎng)是()A. B.15 C. D.9二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如圖(1),在矩形ABCD中,將矩形折疊,使點(diǎn)B落在邊AD上,這時(shí)折痕與邊AD和BC分別交于點(diǎn)E、點(diǎn)F.然后再展開(kāi)鋪平,以B、E、F為頂點(diǎn)的△BEF稱(chēng)為矩形ABCD的“折痕三角形”.如圖(2),在矩形ABCD中,AB=2,BC=4,當(dāng)“折痕△BEF”面積最大時(shí),點(diǎn)E的坐標(biāo)為_(kāi)________________________.12.如圖所示是一組有規(guī)律的圖案,第l個(gè)圖案由4個(gè)基礎(chǔ)圖形組成,第2個(gè)圖案由7個(gè)基礎(chǔ)圖形組成,……,第n(n是正整數(shù))個(gè)圖案中的基礎(chǔ)圖形個(gè)數(shù)為_(kāi)______(用含n的式子表示).13.兩圓內(nèi)切,其中一個(gè)圓的半徑長(zhǎng)為6,圓心距等于2,那么另一個(gè)圓的半徑長(zhǎng)等于__.14.如圖,在矩形ABCD中,AB=,AD=1,把該矩形繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α度得矩形AB′C′D′,點(diǎn)C′落在AB的延長(zhǎng)線(xiàn)上,則圖中陰影部分的面積是_____.15.某商場(chǎng)對(duì)今年端午節(jié)這天銷(xiāo)售A、B、C三種品牌粽子的情況進(jìn)行了統(tǒng)計(jì),繪制了如圖1和圖2所示的統(tǒng)計(jì)圖,則B品牌粽子在圖2中所對(duì)應(yīng)的扇形的心角的度數(shù)是_____.16.計(jì)算:=____.三、解答題(共8題,共72分)17.(8分)某品牌牛奶供應(yīng)商提供A,B,C,D四種不同口味的牛奶供學(xué)生飲用.某校為了了解學(xué)生對(duì)不同口味的牛奶的喜好,對(duì)全校訂牛奶的學(xué)生進(jìn)行了隨機(jī)調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖.根據(jù)統(tǒng)計(jì)圖的信息解決下列問(wèn)題:本次調(diào)查的學(xué)生有多少人?補(bǔ)全上面的條形統(tǒng)計(jì)圖;扇形統(tǒng)計(jì)圖中C對(duì)應(yīng)的中心角度數(shù)是;若該校有600名學(xué)生訂了該品牌的牛奶,每名學(xué)生每天只訂一盒牛奶,要使學(xué)生能喝到自己喜歡的牛奶,則該牛奶供應(yīng)商送往該校的牛奶中,A,B口味的牛奶共約多少盒?18.(8分)某校為了解學(xué)生的安全意識(shí)情況,在全校范圍內(nèi)隨機(jī)抽取部分學(xué)生進(jìn)行問(wèn)卷調(diào)查,根據(jù)調(diào)查結(jié)果,把學(xué)生的安全意識(shí)分成“淡薄”、“一般”、“較強(qiáng)”、“很強(qiáng)”四個(gè)層次,并繪制成如下兩幅尚不完整的統(tǒng)計(jì)圖.根據(jù)以上信息,解答下列問(wèn)題:(1)這次調(diào)查一共抽取了名學(xué)生,其中安全意識(shí)為“很強(qiáng)”的學(xué)生占被調(diào)查學(xué)生總數(shù)的百分比是;(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;(3)該校有1800名學(xué)生,現(xiàn)要對(duì)安全意識(shí)為“淡薄”、“一般”的學(xué)生強(qiáng)化安全教育,根據(jù)調(diào)查結(jié)果,估計(jì)全校需要強(qiáng)化安全教育的學(xué)生約有名.19.(8分)如圖,在⊙O中,AB是直徑,點(diǎn)C是圓上一點(diǎn),點(diǎn)D是弧BC中點(diǎn),過(guò)點(diǎn)D作⊙O切線(xiàn)DF,連接AC并延長(zhǎng)交DF于點(diǎn)E.(1)求證:AE⊥EF;(2)若圓的半徑為5,BD=6求AE的長(zhǎng)度.20.(8分)在△ABC中,∠ACB=45°.點(diǎn)D(與點(diǎn)B、C不重合)為射線(xiàn)BC上一動(dòng)點(diǎn),連接AD,以AD為一邊且在AD的右側(cè)作正方形ADEF.(1)如果AB=AC.如圖①,且點(diǎn)D在線(xiàn)段BC上運(yùn)動(dòng).試判斷線(xiàn)段CF與BD之間的位置關(guān)系,并證明你的結(jié)論.(2)如果AB≠AC,如圖②,且點(diǎn)D在線(xiàn)段BC上運(yùn)動(dòng).(1)中結(jié)論是否成立,為什么?(3)若正方形ADEF的邊DE所在直線(xiàn)與線(xiàn)段CF所在直線(xiàn)相交于點(diǎn)P,設(shè)AC=4,BC=3,CD=x,求線(xiàn)段CP的長(zhǎng).(用含x的式子表示)21.(8分)某跳水隊(duì)為了解運(yùn)動(dòng)員的年齡情況,作了一次年齡調(diào)查,根據(jù)跳水運(yùn)動(dòng)員的年齡(單位:歲),繪制出如下的統(tǒng)計(jì)圖①和圖②.請(qǐng)根據(jù)相關(guān)信息,解答下列問(wèn)題:本次接受調(diào)查的跳水運(yùn)動(dòng)員人數(shù)為,圖①中m的值為;求統(tǒng)計(jì)的這組跳水運(yùn)動(dòng)員年齡數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù).22.(10分)如圖1,正方形ABCD的邊長(zhǎng)為4,把三角板的直角頂點(diǎn)放置BC中點(diǎn)E處,三角板繞點(diǎn)E旋轉(zhuǎn),三角板的兩邊分別交邊AB、CD于點(diǎn)G、F.(1)求證:△GBE∽△GEF.(2)設(shè)AG=x,GF=y,求Y關(guān)于X的函數(shù)表達(dá)式,并寫(xiě)出自變量取值范圍.(3)如圖2,連接AC交GF于點(diǎn)Q,交EF于點(diǎn)P.當(dāng)△AGQ與△CEP相似,求線(xiàn)段AG的長(zhǎng).23.(12分)已知關(guān)于x的一元二次方程x2﹣(2k+1)x+k2+k=1.(1)求證:方程有兩個(gè)不相等的實(shí)數(shù)根;(2)當(dāng)方程有一個(gè)根為1時(shí),求k的值.24.在平面直角坐標(biāo)系中,函數(shù)()的圖象經(jīng)過(guò)點(diǎn)(4,1),直線(xiàn)與圖象交于點(diǎn),與軸交于點(diǎn).求的值;橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).記圖象在點(diǎn),之間的部分與線(xiàn)段,,圍成的區(qū)域(不含邊界)為.①當(dāng)時(shí),直接寫(xiě)出區(qū)域內(nèi)的整點(diǎn)個(gè)數(shù);②若區(qū)域內(nèi)恰有4個(gè)整點(diǎn),結(jié)合函數(shù)圖象,求的取值范圍.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】

根據(jù)相反數(shù)的定義,對(duì)每個(gè)選項(xiàng)進(jìn)行判斷即可.【詳解】解:A、(﹣1)2=1,1與﹣1互為相反數(shù),正確;B、(﹣1)2=1,故錯(cuò)誤;C、2與互為倒數(shù),故錯(cuò)誤;D、2=|﹣2|,故錯(cuò)誤;故選:A.【點(diǎn)睛】本題考查了相反數(shù)的定義,解題的關(guān)鍵是掌握相反數(shù)的定義.2、B【解析】

根據(jù)所給圖形,分別計(jì)算出它們的周長(zhǎng),然后判斷各選項(xiàng)即可.【詳解】A.L=(6+10)×2=32,其周長(zhǎng)為32.B.該平行四邊形的一邊長(zhǎng)為10,另一邊長(zhǎng)大于6,故其周長(zhǎng)大于32.C.L=(6+10)×2=32,其周長(zhǎng)為32.D.L=(6+10)×2=32,其周長(zhǎng)為32.采用排除法即可選出B故選B.【點(diǎn)睛】此題考查多邊形的周長(zhǎng),解題在于掌握計(jì)算公式.3、A【解析】

作AE⊥BC于E,由四邊形ABCD為平行四邊形得AD∥x軸,則可判斷四邊形ADOE為矩形,所以S平行四邊形ABCD=S矩形ADOE,根據(jù)反比例函數(shù)k的幾何意義得到S矩形ADOE=|?k|,利用反比例函數(shù)圖象得到.【詳解】作AE⊥BC于E,如圖,∵四邊形ABCD為平行四邊形,∴AD∥x軸,∴四邊形ADOE為矩形,∴S平行四邊形ABCD=S矩形ADOE,而S矩形ADOE=|?k|,∴|?k|=1,∵k<0,∴k=?1.故選A.【點(diǎn)睛】本題考查了反比例函數(shù)y=(k≠0)系數(shù)k的幾何意義:從反比例函數(shù)y=(k≠0)圖象上任意一點(diǎn)向x軸和y軸作垂線(xiàn),垂線(xiàn)與坐標(biāo)軸所圍成的矩形面積為|k|.4、B【解析】

根據(jù)加權(quán)平均數(shù)、眾數(shù)、中位數(shù)的計(jì)算方法求解即可.【詳解】,15出現(xiàn)了8次,出現(xiàn)的次數(shù)最多,故眾數(shù)是15,從小到大排列后,排在10、11兩個(gè)位置的數(shù)是14,14,故中位數(shù)是14.故選B.【點(diǎn)睛】本題考查了平均數(shù)、眾數(shù)與中位數(shù)的意義.?dāng)?shù)據(jù)x1、x2、……、xn的加權(quán)平均數(shù):(其中w1、w2、……、wn分別為x1、x2、……、xn的權(quán)數(shù)).一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù).中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻螅钪虚g的那個(gè)數(shù)(或最中間兩個(gè)數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù).5、A【解析】

根據(jù)三角函數(shù)的定義直接求解.【詳解】在Rt△ABC中,∠C=90°,AC=9,∵,∴,解得AB=1.故選A6、C【解析】

根據(jù)平行線(xiàn)的性質(zhì)可得∠BAD=∠1,再根據(jù)AD是∠BAC的平分線(xiàn),進(jìn)而可得∠BAC的度數(shù),再根據(jù)補(bǔ)角定義可得答案.【詳解】因?yàn)閍∥b,所以∠1=∠BAD=50°,因?yàn)锳D是∠BAC的平分線(xiàn),所以∠BAC=2∠BAD=100°,所以∠2=180°-∠BAC=180°-100°=80°.故本題正確答案為C.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是平行線(xiàn)的性質(zhì),解題關(guān)鍵是掌握兩直線(xiàn)平行,內(nèi)錯(cuò)角相等.7、C【解析】

根據(jù)主視圖、左視圖、俯視圖的定義,可得答案.【詳解】球的三視圖都是圓,故選C.【點(diǎn)睛】本題考查了簡(jiǎn)單幾何體的三視圖,熟記特殊幾何體的三視圖是解題關(guān)鍵.8、A【解析】解:﹣6的倒數(shù)是﹣169、A【解析】∵xa=2,xb=3,∴x3a?2b=(xa)3÷(xb)2=8÷9=,故選A.10、C【解析】

由折疊得到EB=EF,∠B=∠DFE,根據(jù)CE+EB=9,得到CE+EF=9,設(shè)EF=x,得到CE=9-x,在直角三角形CEF中,利用勾股定理列出關(guān)于x的方程,求出方程的解得到x的值,確定出EF與CE的長(zhǎng),由FD與BC平行,得到一對(duì)內(nèi)錯(cuò)角相等,等量代換得到一對(duì)同位角相等,進(jìn)而確定出EF與AB平行,由平行得比例,即可求出AB的長(zhǎng).【詳解】由折疊得到EB=EF,∠B=∠DFE,在Rt△ECF中,設(shè)EF=EB=x,得到CE=BC-EB=9-x,根據(jù)勾股定理得:EF2=FC2+EC2,即x2=32+(9-x)2,解得:x=5,∴EF=EB=5,CE=4,∵FD∥BC,∴∠DFE=∠FEC,∴∠FEC=∠B,∴EF∥AB,∴,則AB===,故選C.【點(diǎn)睛】此題考查了翻折變換(折疊問(wèn)題),涉及的知識(shí)有:勾股定理,平行線(xiàn)的判定與性質(zhì),平行線(xiàn)分線(xiàn)段成比例,熟練掌握折疊的性質(zhì)是解本題的關(guān)鍵.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、(,2).【解析】

解:如圖,當(dāng)點(diǎn)B與點(diǎn)D重合時(shí),△BEF面積最大,設(shè)BE=DE=x,則AE=4-x,在RT△ABE中,∵EA2+AB2=BE2,∴(4-x)2+22=x2,∴x=,∴BE=ED=,AE=AD-ED=,∴點(diǎn)E坐標(biāo)(,2).故答案為:(,2).【點(diǎn)睛】本題考查翻折變換(折疊問(wèn)題),利用數(shù)形結(jié)合思想解題是關(guān)鍵.12、3n+1【解析】試題分析:由圖可知每個(gè)圖案一次增加3個(gè)基本圖形,第一個(gè)圖案有4個(gè)基本圖形,則第n個(gè)圖案的基礎(chǔ)圖形有4+3(n-1)=3n+1個(gè)考點(diǎn):規(guī)律型13、4或1【解析】∵兩圓內(nèi)切,一個(gè)圓的半徑是6,圓心距是2,∴另一個(gè)圓的半徑=6-2=4;或另一個(gè)圓的半徑=6+2=1,故答案為4或1.【點(diǎn)睛】本題考查了根據(jù)兩圓位置關(guān)系來(lái)求圓的半徑的方法.注意圓的半徑是6,要分大圓和小圓兩種情況討論.14、【解析】

∵在矩形ABCD中,AB=,∠DAC=60°,∴DC=,AD=1.由旋轉(zhuǎn)的性質(zhì)可知:D′C′=,AD′=1,∴tan∠D′AC′==,∴∠D′AC′=60°.∴∠BAB′=30°,∴S△AB′C′=×1×=,S扇形BAB′==.S陰影=S△AB′C′-S扇形BAB′=-.故答案為-.【點(diǎn)睛】錯(cuò)因分析

中檔題.失分原因有2點(diǎn):(1)不能準(zhǔn)確地將陰影部分面積轉(zhuǎn)化為易求特殊圖形的面積;(2)不能根據(jù)矩形的邊求出α的值.15、120°【解析】

根據(jù)圖1中C品牌粽子1200個(gè),在圖2中占50%,求出三種品牌粽子的總個(gè)數(shù),再求出B品牌粽子的個(gè)數(shù),從而計(jì)算出B品牌粽子占粽子總數(shù)的比例,從而求出B品牌粽子在圖2中所對(duì)應(yīng)的圓心角的度數(shù).【詳解】解:∵三種品牌的粽子總數(shù)為1200÷50%=2400個(gè),又∵A、C品牌的粽子分別有400個(gè)、1200個(gè),∴B品牌的粽子有2400-400-1200=800個(gè),則B品牌粽子在圖2中所對(duì)應(yīng)的圓心角的度數(shù)為360×.故答案為120°.【點(diǎn)睛】本題考查的是條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖的綜合運(yùn)用.讀懂統(tǒng)計(jì)圖,從不同的統(tǒng)計(jì)圖中得到必要的信息是解決問(wèn)題的關(guān)鍵.條形統(tǒng)計(jì)圖能清楚地表示出每個(gè)項(xiàng)目的數(shù)據(jù);扇形統(tǒng)計(jì)圖直接反映部分占總體的百分比大?。?6、1【解析】

根據(jù)算術(shù)平方根的定義進(jìn)行化簡(jiǎn),再根據(jù)算術(shù)平方根的定義求解即可.【詳解】解:∵12=21,

∴=1,

故答案為:1.【點(diǎn)睛】本題考查了算術(shù)平方根的定義,先把化簡(jiǎn)是解題的關(guān)鍵.三、解答題(共8題,共72分)17、(1)150人;(2)補(bǔ)圖見(jiàn)解析;(3)144°;(4)300盒.【解析】

(1)根據(jù)喜好A口味的牛奶的學(xué)生人數(shù)和所占百分比,即可求出本次調(diào)查的學(xué)生數(shù).(2)用調(diào)查總?cè)藬?shù)減去A、B、D三種喜好不同口味牛奶的人數(shù),求出喜好C口味牛奶的人數(shù),補(bǔ)全統(tǒng)計(jì)圖.再用360°乘以喜好C口味的牛奶人數(shù)所占百分比求出對(duì)應(yīng)中心角度數(shù).(3)用總?cè)藬?shù)乘以A、B口味牛奶喜歡人數(shù)所占的百分比得出答案.【詳解】解:(1)本次調(diào)查的學(xué)生有30÷20%=150人;(2)C類(lèi)別人數(shù)為150﹣(30+45+15)=60人,補(bǔ)全條形圖如下:(3)扇形統(tǒng)計(jì)圖中C對(duì)應(yīng)的中心角度數(shù)是360°×=144°故答案為144°(4)600×()=300(人),答:該牛奶供應(yīng)商送往該校的牛奶中,A,B口味的牛奶共約300盒.【點(diǎn)睛】本題考查了條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖的綜合運(yùn)用,讀懂統(tǒng)計(jì)圖,從不同的統(tǒng)計(jì)圖中得出必要的信息是解題的關(guān)鍵.18、(1)120,30%;(2)作圖見(jiàn)解析;(3)1.【解析】試題分析:(1)用安全意識(shí)分“一般”的人數(shù)除以安全意識(shí)分“一般”的人數(shù)所占的百分比即可得這次調(diào)查一共抽取的學(xué)生人數(shù);用安全意識(shí)分“很強(qiáng)”的人數(shù)除以這次調(diào)查一共抽取的學(xué)生人數(shù)即可得安全意識(shí)“很強(qiáng)”的學(xué)生占被調(diào)查學(xué)生總數(shù)的百分比;(2)用這次調(diào)查一共抽取的學(xué)生人數(shù)乘以安全意識(shí)分“較強(qiáng)”的人數(shù)所占的百分比即可得安全意識(shí)分“較強(qiáng)”的人數(shù),在條形統(tǒng)計(jì)圖上畫(huà)出即可;(3)用總?cè)藬?shù)乘以安全意識(shí)為“淡薄”、“一般”的學(xué)生一共所占的百分比即可得全校需要強(qiáng)化安全教育的學(xué)生的人數(shù).試題解析:(1)12÷15%=120人;36÷120=30%;(2)120×45%=54人,補(bǔ)全統(tǒng)計(jì)圖如下:(3)1800×=1人.考點(diǎn):條形統(tǒng)計(jì)圖;扇形統(tǒng)計(jì)圖;用樣本估計(jì)總體.19、(1)詳見(jiàn)解析;(2)AE=6.1.【解析】

(1)連接OD,利用切線(xiàn)的性質(zhì)和三角形的內(nèi)角和證明OD∥EA,即可證得結(jié)論;(2)利用相似三角形的判定和性質(zhì)解答即可.【詳解】(1)連接OD,∵EF是⊙O的切線(xiàn),∴OD⊥EF,∵OD=OA,∴∠ODA=∠OAD,∵點(diǎn)D是弧BC中點(diǎn),∴∠EAD=∠OAD,∴∠EAD=∠ODA,∴OD∥EA,∴AE⊥EF;(2)∵AB是直徑,∴∠ADB=90°,∵圓的半徑為5,BD=6∴AB=10,BD=6,在Rt△ADB中,,∵∠EAD=∠DAB,∠AED=∠ADB=90°,∴△AED∽△ADB,∴,即,解得:AE=6.1.【點(diǎn)睛】本題考查了切線(xiàn)的性質(zhì),相似三角形的判定和性質(zhì),勾股定理的應(yīng)用以及圓周角定理,關(guān)鍵是利用切線(xiàn)的性質(zhì)和相似三角形判定和性質(zhì)進(jìn)行解答.20、(1)CF與BD位置關(guān)系是垂直,理由見(jiàn)解析;(2)AB≠AC時(shí),CF⊥BD的結(jié)論成立,理由見(jiàn)解析;(3)見(jiàn)解析【解析】

(1)由∠ACB=15°,AB=AC,得∠ABD=∠ACB=15°;可得∠BAC=90°,由正方形ADEF,可得∠DAF=90°,AD=AF,∠DAF=∠DAC+∠CAF;∠BAC=∠BAD+∠DAC;得∠CAF=∠BAD.可證△DAB≌△FAC(SAS),得∠ACF=∠ABD=15°,得∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.

(2)過(guò)點(diǎn)A作AG⊥AC交BC于點(diǎn)G,可得出AC=AG,易證:△GAD≌△CAF,所以∠ACF=∠AGD=15°,∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.

(3)若正方形ADEF的邊DE所在直線(xiàn)與線(xiàn)段CF所在直線(xiàn)相交于點(diǎn)P,設(shè)AC=1,BC=3,CD=x,求線(xiàn)段CP的長(zhǎng).考慮點(diǎn)D的位置,分兩種情況去解答.①點(diǎn)D在線(xiàn)段BC上運(yùn)動(dòng),已知∠BCA=15°,可求出AQ=CQ=1.即DQ=1-x,易證△AQD∽△DCP,再根據(jù)相似三角形的性質(zhì)求解問(wèn)題.②點(diǎn)D在線(xiàn)段BC延長(zhǎng)線(xiàn)上運(yùn)動(dòng)時(shí),由∠BCA=15°,可求出AQ=CQ=1,則DQ=1+x.過(guò)A作AQ⊥BC交CB延長(zhǎng)線(xiàn)于點(diǎn)Q,則△AGD∽△ACF,得CF⊥BD,由△AQD∽△DCP,得再根據(jù)相似三角形的性質(zhì)求解問(wèn)題.【詳解】(1)CF與BD位置關(guān)系是垂直;證明如下:∵AB=AC,∠ACB=15°,∴∠ABC=15°.由正方形ADEF得AD=AF,∵∠DAF=∠BAC=90°,∴∠DAB=∠FAC,∴△DAB≌△FAC(SAS),∴∠ACF=∠ABD.∴∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.(2)AB≠AC時(shí),CF⊥BD的結(jié)論成立.理由是:過(guò)點(diǎn)A作GA⊥AC交BC于點(diǎn)G,∵∠ACB=15°,∴∠AGD=15°,∴AC=AG,同理可證:△GAD≌△CAF∴∠ACF=∠AGD=15°,∠BCF=∠ACB+∠ACF=90°,即CF⊥BD.(3)過(guò)點(diǎn)A作AQ⊥BC交CB的延長(zhǎng)線(xiàn)于點(diǎn)Q,①點(diǎn)D在線(xiàn)段BC上運(yùn)動(dòng)時(shí),∵∠BCA=15°,可求出AQ=CQ=1.∴DQ=1﹣x,△AQD∽△DCP,∴,∴,∴.②點(diǎn)D在線(xiàn)段BC延長(zhǎng)線(xiàn)上運(yùn)動(dòng)時(shí),∵∠BCA=15°,∴AQ=CQ=1,∴DQ=1+x.過(guò)A作AQ⊥BC,∴∠Q=∠FAD=90°,∵∠C′AF=∠C′CD=90°,∠AC′F=∠CC′D,∴∠ADQ=∠AFC′,則△AQD∽△AC′F.∴CF⊥BD,∴△AQD∽△DCP,∴,∴,∴.【點(diǎn)睛】綜合性題型,解題關(guān)鍵是靈活運(yùn)用所學(xué)全等、相似、正方形等知識(shí)點(diǎn).21、(1)40人;1;(2)平均數(shù)是15;眾數(shù)16;中位數(shù)15.【解析】

(1)用13歲年齡的人數(shù)除以13歲年齡的人數(shù)所占的百分比,即可得本次接受調(diào)查的跳水運(yùn)動(dòng)員人數(shù);用16歲年齡的人數(shù)除以本次接受調(diào)查的跳水運(yùn)動(dòng)員人數(shù)即可求得m的值;(2)根據(jù)統(tǒng)計(jì)圖中給出的信息,結(jié)合求平均數(shù)、眾數(shù)、中位數(shù)的方法求解即可.【詳解】解:(1)4÷10%=40(人),m=100-27.5-25-7.5-10=1;故答案為40,1.(2)觀察條形統(tǒng)計(jì)圖,∵,∴這組數(shù)據(jù)的平均數(shù)為15;∵在這組數(shù)據(jù)中,16出現(xiàn)了12次,出現(xiàn)的次數(shù)最多,∴這組數(shù)據(jù)的眾數(shù)為16;∵將這組數(shù)據(jù)按照從小到大的順序排列,其中處于中間的兩個(gè)數(shù)都是15,有,∴這組數(shù)據(jù)的中位數(shù)為15.【點(diǎn)睛】本題考查了條形統(tǒng)計(jì)圖,扇形統(tǒng)計(jì)圖,掌握平均數(shù)、眾數(shù)和中位數(shù)的定義是解題的關(guān)鍵.22、(1)見(jiàn)解析;(2)y=4﹣x+(0≤x≤3);(3)當(dāng)△AGQ與△CEP相似,線(xiàn)段AG的長(zhǎng)為2或4﹣.【解析】

(1)先判斷出△BEF'≌△CEF,得出BF'=CF,EF'=EF,進(jìn)而得出∠BGE=∠EGF,即可得出結(jié)論;

(2)先判斷出△BEG∽△CFE進(jìn)而得出CF=,即可得出結(jié)論;

(3)分兩種情況,①△AGQ∽△CEP時(shí),判斷出∠BGE=60°,即可求出BG;

②△AGQ∽△CPE時(shí),判斷出EG∥AC,進(jìn)而得出△BEG∽△BCA即可得出BG,即可得出結(jié)論.【詳解】(1)如圖1,延長(zhǎng)FE交AB的延長(zhǎng)線(xiàn)于F',∵點(diǎn)E是BC的中點(diǎn),∴BE=CE=2,∵四邊形ABCD是正方形,∴AB∥CD,∴∠F'=∠CFE,在△BEF'和△CEF中,,∴△BEF'≌△CEF,∴BF'=CF,EF'=EF,∵∠GEF=90°,∴GF'=GF,∴∠BGE=∠EGF,∵∠GBE=∠GEF=90°,∴△GBE∽△GEF;(2)∵∠FEG=90°,∴∠BEG+∠CEF=90°,∵∠BEG+∠BGE=90°,∴∠BGE=∠CEF,∵∠EBG=∠C=90°,∴△BEG∽△CFE,∴,由(1)知,BE=CE=2,∵AG=x,∴BG=4﹣x,∴,∴CF=,由(1)知,BF'=CF=,由(1)知,GF'=GF=y,∴y=GF'=BG+BF'=4﹣x+當(dāng)CF=4時(shí),即:=4,∴x=3,(0≤x≤3),即:y關(guān)于x的函數(shù)表達(dá)式為y=4﹣x+(0≤x≤3);(3)∵AC是正方形ABCD的對(duì)角線(xiàn),∴∠BAC=∠BCA=45°,∵△AGQ與△CEP相似,∴①△AGQ∽△CEP,∴∠AGQ=∠CEP,由(2)知,∠CEP=∠BGE,∴∠AGQ=

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論