




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
UDEC/3DECShortCourseItascaSoftwareTrainingCourseTongjiUniversityShanghai,ChinaOctober27-31,2008PeterCundall,YanhuiHan&RogerHartItascaConsultingGroup,Inc..TrainingSchedule
October28,2008(afternoon)02:00-03:15 OverviewofUDEC/3DECFeaturesandCapabilities
-Overviewofcapabilitiesingeo-engineering -NewfeaturesinUDECand3DEC -Theoreticalbasis03:15-03:30Break03:30-05:00 RunningModelsinUDEC -Menu-drivenversuscommand-drivenoperation-Simpletutorial
.UDECisaDEMcodethatallowsthesimulationoftheinteractionofblocks.Thismaybeajointedrockmass,amasonrywall,oranymaterialwherethemodeofdisplacementmayoccuralongpre-existingplanesofweaknessordiscontinuity.Anygeometrycanberepresented,andtheboundaryconditionsarequitegeneral.UDECalsosimulatesthebehavioroftheintactmaterialbetweentheplanesofweaknessasanonlinearcontinuum,usingthegeneralizedfinite-differencemethod(arbitraryelementshapes),knownasthefinitevolumemethod.UDECsolvesthefulldynamicequationsofmotionevenforquasi-staticproblems.Thishasadvantagesforproblemsthatinvolvephysicalinstability,suchascollapse,aswillbeexplainedlater.Tomodelthe“static”responseofasystem,dampingisusedtoabsorbkineticenergy.WhatisUDEC?.UDECDiscontinuousmediummodeledasanassemblage
ofconvexorconcaveblocks;blocksmayberigidordeformable.Discontinuitiestreatedasboundaryconditionsbetweenblocks.Motionalongdiscontinuitiesgovernedbylinearandnon-linearforce-displacementrelationsformovementsinboththenormalandsheardirection.Manybuilt-inblockandjointconstitutivemodelsthatarerepresentativeofgeologic,orsimilar,materials;optionaluser-writtenmodels.Plane-strain,plane-stressandaxisymmetricgeometrymodes.Structuralelementmodelsforrock-structureinteraction–cables,piles,beams,liners,shotcrete,soilreinforcement,etc.Staticanddynamicanalysiscapabilities.Transientandsteadystatefluidflowinjoints.Viscoelasticandviscoplastic(creep)models.Thermalanalysiscapability,withcouplingtosolidandfluid…isbestsuitedtomodelingdiscontinuousmaterials(containingmanyintersectingdiscontinuities)thatexhibitnonlinearbehavior.Inparticular,itfeatures:.3DECsimilartoUDEC,butinthreedimensionscontainsthesamefeaturesaslistedforUDEC
Modelofarchdamusingfinite-elementblocks.NewFeaturesinUDEC4.0
GraphicaluserinterfaceFactor-of-safetycalculationbasedontheshearstrengthreductionmethodUser-definedzoneandjointconstitutivemodelsMixeddiscretizationtoprovidemoreaccuracyforplasticityanalysisTwo-phaseflowinjointsNetworkkeylicenseversionNewFeatureinUDEC4.01ReleasedinOctober2008Improvedandre-structuredgraphicaluserinterface(availableatnoadditionalchargetocurrentVersion4.0owners).PlannedNewFeaturesinUDEC5.0Generic“virtual-model”generationtooltofacilitatemodelcreationSpeedupofdouble-precisionversionbyconvertingtoIntelFortrancompilerMixedDiscretizationschemefortriangularelements“NodalMixedDiscretization”toprovidemoreaccuratesolutionofplasticityproblemsusingtriangulargridsRockboltelementstosimulaterockreinforcementincludingtensilerupture,strain-softeningbehaviorofgroutandeffectofchangingconfiningstressHelpFilecontainingCommandReference,FISHReferenceandExampleApplicationsEstimatedrelease:mid2009.NewFeaturesin3DEC4.1Acceleratedinteractivegraphics(OpenGLbasedplotting)withnewgraphicalstructureNewMixedDiscretizationschemefortetrahedralelements“NodalMixedDiscretization”providesmoreaccuratesolutionofplasticityproblemsusingtetrahedralgrids64-bitversionFactorofSafetycalculationmodeImprovementstouser-definedconstitutivemodelsandadditionofuser-definedjointconstitutivemodelsImprovementstostructuralelementlogicincludinginstallationattunnelintersectionsHelpFilecontainingCommandReference,FISHReferenceandExampleApplicationsNewPGENinterfaceImprovedFISHlanguageReleasedinJanuary2008.TheExplicitDynamicSolutionSchemeandtheDistinctElementMethod
in
UDEC&3DEC.DEMDefinitionsThename“DiscreteElementMethod”(DEM)shouldbeappliedtoamethodonlyifit*:allowsfinitedisplacementsandrotationsofdiscretebodies;includingcompletedetachmentrecognizesnewinteractions(contact)automaticallyasthecalculationprogressesAdiscreteelementcodewillembodyanefficientalgorithmfordetectingandclassifyingcontacts.Itwillmaintainadatastructureandmemoryallocationschemethatcanhandlemanyhundredsorthousandsofdiscontinuitiesorcontacts.Thename“DistinctElementMethod”isusedforaDEMthatusesanexplicitdynamicsolutiontoNewton’slawsofmotion.*Cundall,P.A.,andR.D.Hart.”NumericalModelingofDiscontinua,”EngineeringComputations,9(2),101-113(1992).Finiteelementcodesformodeling“discontinua”areoftenmodifiedcontinuumprograms,whichcannothandlegeneralinteractiongeometry(e.g.manyintersectingjoints).Theirefficiencymaydegeneratedrasticallywhenconnectionsarebrokenrepeatedly..TypesofDiscreteElementMethodsforDiscontinuumAnalysisDistinctElementUseexplicittime-marchingschemetosolveequationsofmotiondirectly.Bodiesmayberigidordeformable,contactsaredeformableModalMethodsSimilartodistinctelementmethodinthecaseofrigidblocks.Fordeformablebodies,modalsuperpositionisusedsonon-linearityisdifficulttoimplementDiscontinuousDeformationAnalysisAssumescontactsarerigidbodiesandbodiesmayberigidordeformable.No-penetrationisachievedbyiterationMomentumExchangeMethodsAssumeboththecontactsandbodiestoberigid.Momentumisexchangedbetweentwocontactingbodiesduringcollision.Canrepresentfrictionsliding..DistinctElementMethodThreeaspects...GeometryContactmechanicsSolidbodymechanics.DistinctElementMethodGeometrySpecificationofshapesin2and3dimensionsInteractionofpairsofcontactingblocksorparticlesIdentificationofcontactcharacterbetween2blocks.DistinctElementMethodSpecificationofshapesin2and3dimensions2&3dimensions–PFC
disks&spheres2dimensions–UDEC arbitrarypolygons–convexandconcave–withroundedcorners3dimensions–3DEC arbitrarypolyhedra–concavebodiesareconstructedofseveralconvexbodiesattachedtogether.DistinctElementMethodInteractionofpairsofcontactingblocksorparticlesIfweattempttoidentifyneighboringblocksbyanexhaustivescan(i.e.eachblocktestedagainsteachother),thenthesearch-timeisproportionaltoN2whereNisthenumberofblocks.Twomethodstoreducesearchtime:Cell-mapping,usedinUDEC&3DECCirculatingdatastructure,thatmimicsthetopologyofthesystemasusedinUDEC.Cell-mapping
Thesolution-spaceiscoveredbyrectangularcells.Eachblockdepositsamarkerinallthecellsthatitoverlaps–thisprocesstakesNproportionaltime.Eachblockcanfindallofitsneighborsbylookinginjustthosecellsthatitoverlaps-thisprocessisalsoNproportional,ifthecellsizeisofasimilarordertotheblocksize..Circulatingdatastructure
Linkedliststhatdescribeblockboundariesalsotraceoutthevoidspacesautomatically.Ablockneedsonlytosearchitslocalvoidspacestofinditsneighbors.Thisschemebreaksdownifmanyblocksbecomedisconnected,butitiswellsuitedtomodelfluidflowinjoints.closeddomaincanrestrictsearchtothecloseddomain–anynewcontactsmustbethere.DistinctElementMethod Identificationofcontactcharacterbetween2blocks
Weneedtoknow: typeofcontact(e.g.corner-to-corner,corner-to-edge,etc.)directionofnormaltoslidingdirectiongapbetweenblocks,orcontactoverlap.Block2Jointun2us2Block1us1un1InitialPositionofblock2xyblockcentroidContactBetweentwoRigidBlocks
Acontactiscreatedateachcornerinteractingwithacorneroredgeofanopposingblock..RoundedCornersinUDECCornerroundingschemewithconstantlengthdrdd=rd>>rrdd =distancetothecorner r=radiusoftheroundedcornerrdd=rdrd>>rCornerroundingschemewithconstantradiusr,showingthatsmallanglesinthecornerleadstolargedistancesd.
DefinitionofcontactnormalRoundedcorner-to-edgecontactRoundedcorner-to-cornercontact.L1L2L3123ElementNodes123Corner-EdgecontactsL1,L2,L3LengthsassociatedtothecontactsContactsandDomainsbetweenTwoDeformableBlocksD1D2D1D2DomainsBLOCK1BLOCK2.InteractionoftwosquaresMaximumnumberoftests124corners4edgescorneredgecorner16edge16corner16edge16.Interactionoftwocubes126faces12edges8cornersface36edge72corner48face48edge96corner64face72edge144corner96Total676facecorneredge.Modesofcontactscorner-corneredge-edgecorner-facecorner-edge.Modesofcontactsface-faceedge-face.“Commonplane”logicAlgorithmexecutedinparallelwithmechanicalcalculation:“maximizethegapbetweenthecommonplane(c-p)andtheclosestvertex”c-p12.“Commonplane”logicIfweassumeac-pcanbefound,blocksareconvex then...testforcontactsiseasytestcornersofbothblocksforcontactwithc-p(16dotproducts)iftestforbothblocksarepositivethenblocksaretouchingdetermininggapiseasysumofmin.distancesfromeachblock’scornertoc-pcontactnormalis...thenormalofthec-pisalwaysdefined.CommonplanelogicWhataboutassumptions?Usethealgorithm“maximizethesmallestgapbetweeneachblock(ofacontact-pair)andtheplane”Constructconcaveblocksfromseveralconvexblocks(the“join”doesnotexist,asfarasphysicsisconcerned)shift,then...rotation.CommonplanelogicModesofcontactcanbefoundeasilywithcontact-planelogic“countthenumberofcornersthattouchthecommonplane”modeofcontactisdeterminedbycounts:e.g.1-4=“corner-face”note:”touch”impliesgap<0BlockA1corner2edge3faceBlockB1corner2edge3face.DistinctElementMethodContactmechanics Allcontactsareassumedtobe“soft”-i.e.contactforcesaredirectlyrelatedtothedeformationsor“overlaps”atcontacts.Forpoint-contact,Hertz/Mindlincontactlawscanbeused.Foredge-to-edgecontact,suchasrockjoints,variousconstitutivelawscanbeused–e.g.,elastic/Coulombslip.
UDEC&3DECalsohavethe”continuouslyyielding”model,whichemployscontinuousfunctionsfortheforcedisplacementrelations.Thereisalsointernaldamageaccumulation..DistinctElementMethodSolidbodymechanics TherearetwoformulationsRigidbodytranslationandrotationDeformablebodymechanics
.Rigidbodytranslationandrotation
Ifmostofthemovementinasystemtakesplaceinadiscontinuousway(e.g.sliding,opening,relativerotation,interlocking),thenthebodiesmaybeassumedtoberigid.DistinctElementMethod.Deformablebodymechanics
Ifthereisappreciabledeformationoftheintactmaterial,comparedtodiscontinuousmotion,thenthebodiesmustbetakenasdeformable.DistinctElementMethod.Deformablebodymechanics
Inordertomodeldeformableblocks,thereareautomaticgenerators–inUDECtodivideabodyintotriangles,andin3DECtodividebodiesintotetrahedra.Thefinite-differenceformulationfortheseinternalelementsisidenticaltothatforFLAC.Severallinearandnon-linearconstitutivemodelscanbeusedintheinternalelements.
DistinctElementMethod.TheExplicitDynamicSolutionScheme
appliedwiththe
DistinctElementMethod
.UDECand3DECsolvethefulldynamicequationsofmotionevenforquasi-staticproblems.Thishasadvantagesforproblemsthatinvolvephysicalinstability,suchascollapse.Tomodelthe“static”responseofasystem,arelaxationschemeisusedinwhichdampingabsorbskineticenergy.Thisapproachcanmodelcollapseproblemsinamorerealisticandefficientmannerthanotherschemes,e.g.,matrix-solutionmethods.BasisoftheSolutionSchememovie.OverviewofDEM&explicit,dynamicsolutionschemeTheformulationisverysimple.Forexample,foraballimpactingawall,massOnetimestep,
unknownsknowns(allcontacts,ingeneral)(allparticles,ingeneral)Fulldynamicequations
(integrationofNewton’s2ndlaw)
Explicit
solutionschemeThreeconsequencesofthisformulationareasfollows…(centraldifference–2ndorderaccurate).1.Treatingeachbodyasdiscrete
(DEM)
allowsdiscontinuousmaterial(suchasarockmass)tobemodeledeasily.2.
Fulldynamicequationsofmotionallowtheevolutionofunstablesystemstobesimulatedrealistically.3.
Explicitsolutionschememakesthetaskofhandlingnonlinearitytrivial.Examplesofnonlinearitiesare:(a)contactmaking&breaking;(b)softeningmaterialbehavior(rock-like);e.g.,forcedisplacementINPUTOUTPUTTheexplicitschemeusesatimestepsosmallthat
informationcannotpropagatebetweenneighborsinonestep.Thus,eachelementisisolatedduringonestep,enablingmtkD<S.ComputationCycleinUDEC&3DECksknFnFsDunDusAllthecontactsCONSTITUTIVE+MxiAtthecentroidALLTHEBLOCKSMOVEMENTzonenodeAttheelementAtthenodeMOVEMENTALLTHEBLOCKSRIGIDBLOCKSDEFORMABLEBLOCKSGoto.TIMESTEPThesolutionschemeusedinDEMisconditionallystable.Alimitingtimestepmustsatisfyboththecalculationforinternalblockdeformationandinter-blockrelativedisplacement.Forstabilityoftheblockdeformationcomputation:wheremiisthemassassociatedwithblocknodei;andkiisthemeasureofstiffnessoftheelementssurroundingthenode.Forcalculationsoftheinter-blockrelativedisplacement,thelimitingtimestepiswhereMministhemassofthesmallestblockinthesystem;andKministhemaximumcontactstiffness.Thecontrollingtimestepis.MECHANICALDAMPINGMechanicaldampingisusedinUDECand3DECforstatic(non-inertial)solutionsandfordynamicsolutions.Forstaticanalysis,theapproachissimilarto“dynamicrelaxation.”Theequationsofmotionaredampedtoreachastaticstateasquicklyaspossibleundertheappliedinitialandboundaryconditions..DYNAMICRELAXATIONIndynamicrelaxationblocks(andgridpoints)aremovedaccordingtoNewton’slawofmotion.TheequationsofmotionaredampedtoreachaforceequilibriumstateasquicklyaspossibleDampingisvelocity-proportional–i.e.,themagnitudeofthedampingforceisproportionaltothevelocityoftheblocks.
Velocity-proportionaldampingintroducesbodyforcesthatcanaffectthesolution.UDECand3DECprovidetwodifferenttypesofdampingtominimizethisproblemforstaticanalysis:adaptiveglobaldamping(DAMPauto)localdamping(DAMPlocal).ADAPTIVEGLOBALDAMPINGAdaptiveglobaldampingisaservo-mechanismusedtoadjustthedampingconstantautomaticallysuchthatthepowerabsorbedbydampingisproportionaltotherateofchangeofkineticenergyinthesystem.Adjustmentoftheviscosityconstantismadebyanumericalservo-mechanismthatseekstokeeptheratio,R,equaltoagivenratio(e.g.,0.5)..LOCALDAMPINGThedampingforce,
Fd
is:
Dampingforcesareintroducedtotheequationsofmotion:whereFi
istheunbalancedforce
InUDECand3DECtheunbalancedforceratio(ratioofunbalancedforce,
Fi
,totheappliedforcemagnitude,Fm)ismonitoredtodeterminethestaticstate.
Bydefault,whenFi
/Fm
<10-5inUDEC(or10-4in3DEC)thenthemodelisconsideredtobeinanequilibriumstate.Thedampingforceatagridpointisproportionaltothemagnitudeoftheunbalancedforcewiththesignsettoensurethatvibrationalmodesaredamped..BASISOFSTATICSOLUTIONSINUDECand3DECTheunbalancedforceratio(ratioofunbalancedforce,Fi
,totheappliedforcemagnitude,Fm)ismonitoredtodeterminethestaticstate.Boththeadaptiveglobaldampingandlocaldampingdynamicsolutionmethodsprovideastaticsolution(withtheeffectofinertialforcesminimized)providedtheunbalancedforceratioreachesasmallvalue.Thisiscomparabletothe“l(fā)evelofresidualerror”or“convergencecriterion”definedformatrixsolutionmethodsusedinmanyfiniteelementprograms.InUDECand3DEC,theleveloferrorisquantifiedbytheunbalancedforceratio.InbothUDEC/3DECandFEsolutions,thestaticsolutionprocessterminateswhentheerrorisbelowadesiredvalue..ComparisonofadaptiveglobaldampingandlocaldampingAsimpleexample:tenblocksslideonaroughbase*Velocityproportionaltoout-of-balanceforcewithproportionalityconstantDynamicrelaxationwithstandardvelocity-proportionaldampingAdaptiveglobaldampingLocaldamping*.MASS(DENSITY)SCALINGForstaticanalysis,materialinertialmassescanbescaledsothatlocalcriticaltimestepsareincreased.Thevalueofinertialmassisirrelevanttomodelingstaticsystems,providedgravityforcesarecorrectlypreserved.(Notethatgravitationalmassesarenotaffected.)Criticaltimestepcanbeincreasedbecauseitisproportionalto.Theprocedure,called“densityscaling,”scalestheinertialdensityofblocksorzonesbasedontheiraverageblock,orzone,mass.DensityscalingisinvokedwiththeMSCALEcommand.Itisturnedonautomaticallywheneverlocaldampingoradaptiveglobaldampingisused..RunningModelsinUDEC.OverviewofUDECoperation(1)-Engineeringsimulationsusuallyconsistofalengthysequenceofoperations.-AUDECdatafilecanbeeasilymodifiedwithatexteditor.Severalfilescanbelinkedtogether.-Thewordorientedinputfilesprovideanexcellentmeansforkeepingadocumentedrecordofanalyses.-Thecommanddrivenstructureallowsthedevelopmentofpre-andpost-processingprogramstomanipulateUDEC
inputoroutputasdesired.UDECisacommand-drivenprogram.COMMAND
keyword
value…<keyword
value>CommandSyntaxExample,new (clearsthememory)
block0,00,1010,1010,0(createsablock)crack0,28,10 (createsasinglefractureinblock)plotblock (drawstheblockonthescreen)Thereareover50commandsand400keywordsinUDEC!!!OverviewofUDECoperation(2).UDECisamenu-drivenprogram-Point-and-clickoperationaccessesallcommandsandfacilitiesinUDEC.-DesignedtoemulateexpectedWindowsfeatures.-Digitizedplotsorgraphicsfilescanbeimportedtoguidemodelgeneration.-Providesaccesstoadatabaseofmaterialproperties.OverviewofUDECoperation(3).TheGIICisaJAVA-basedapplicationthatrunsindependentlyofUDEC;dataa
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年云南昭通云富街道招聘鄉(xiāng)村公益性崗位工作人員考試真題
- 2025安徽宿州學院專職輔導員招聘12人模擬試卷參考答案詳解
- 2025廣東深圳市九洲電器有限公司招聘產(chǎn)品經(jīng)理模擬試卷及參考答案詳解1套
- 鐵合金特種冶煉工崗位安全技術規(guī)程
- 飛機電纜盤箱工跨部門項目協(xié)調(diào)考核試卷及答案
- 電動機檢修工語言能力考核試卷及答案
- 公司壓電石英晶片加工工設備技術規(guī)程
- 電切削工檢驗儀器校準實操考核試卷及答案
- 2025年臺州天臺縣醫(yī)療衛(wèi)生事業(yè)單位公開招聘衛(wèi)技人員31人考前自測高頻考點模擬試題及答案詳解(易錯題)
- 公司工業(yè)型煤工現(xiàn)場作業(yè)技術規(guī)程
- 抖音基礎入門教程課件
- 藥食同源產(chǎn)品標準通則
- 學堂在線 科研倫理與學術規(guī)范 期末考試答案
- 局文件收發(fā)管理制度
- 中樞性抗膽堿藥苯海索
- 冠心病中西醫(yī)結(jié)合治療的現(xiàn)狀與進展
- 父母出資寫協(xié)議書
- 工人受傷免責協(xié)議書
- 車庫出租放物品合同協(xié)議
- 2025-2030中國脫硝催化劑行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略研究報告
- 水手船員考試題及答案
評論
0/150
提交評論