黑龍江省鶴崗市重點中學2023學年高考全國統(tǒng)考預測密卷數(shù)學試卷(含解析)_第1頁
黑龍江省鶴崗市重點中學2023學年高考全國統(tǒng)考預測密卷數(shù)學試卷(含解析)_第2頁
黑龍江省鶴崗市重點中學2023學年高考全國統(tǒng)考預測密卷數(shù)學試卷(含解析)_第3頁
黑龍江省鶴崗市重點中學2023學年高考全國統(tǒng)考預測密卷數(shù)學試卷(含解析)_第4頁
黑龍江省鶴崗市重點中學2023學年高考全國統(tǒng)考預測密卷數(shù)學試卷(含解析)_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

1、2023學年高考數(shù)學模擬測試卷注意事項:1答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1根據(jù)黨中央關于“精準”脫貧的要求,我市某農(nóng)業(yè)經(jīng)濟部門派四位專家對三個縣區(qū)進行調(diào)研,每個縣區(qū)至少派一位專家,則甲,乙兩位專家派遣至同一縣區(qū)的概率為()ABCD2已知點是拋物線:的焦點,點為

2、拋物線的對稱軸與其準線的交點,過作拋物線的切線,切點為,若點恰好在以,為焦點的雙曲線上,則雙曲線的離心率為( )ABCD3設等差數(shù)列的前n項和為,且,則( )A9B12CD4集合,則( )ABCD5在條件下,目標函數(shù)的最大值為40,則的最小值是( )ABCD26已知拋物線y2= 4x的焦點為F,拋物線上任意一點P,且PQy軸交y軸于點Q,則 的最小值為( )ABClD17以下兩個圖表是2019年初的4個月我國四大城市的居民消費價格指數(shù)(上一年同月)變化圖表,則以下說法錯誤的是( )(注:圖表一每個城市的條形圖從左到右依次是1、2、3、4月份;圖表二每個月份的條形圖從左到右四個城市依次是北京、天

3、津、上海、重慶)A3月份四個城市之間的居民消費價格指數(shù)與其它月份相比增長幅度較為平均B4月份僅有三個城市居民消費價格指數(shù)超過102C四個月的數(shù)據(jù)顯示北京市的居民消費價格指數(shù)增長幅度波動較小D僅有天津市從年初開始居民消費價格指數(shù)的增長呈上升趨勢8數(shù)學中有許多形狀優(yōu)美、寓意美好的曲線,例如:四葉草曲線就是其中一種,其方程為.給出下列四個結論:曲線有四條對稱軸;曲線上的點到原點的最大距離為;曲線第一象限上任意一點作兩坐標軸的垂線與兩坐標軸圍成的矩形面積最大值為;四葉草面積小于.其中,所有正確結論的序號是( )ABCD9復數(shù)滿足,則( )ABCD10在邊長為1的等邊三角形中,點E是中點,點F是中點,則

4、( )ABCD11一艘海輪從A處出發(fā),以每小時24海里的速度沿南偏東40的方向直線航行,30分鐘后到達B處,在C處有一座燈塔,海輪在A處觀察燈塔,其方向是南偏東70,在B處觀察燈塔,其方向是北偏東65,那么B,C兩點間的距離是( )A6 海里B6海里C8海里D8海里12將函數(shù)的圖象沿軸向左平移個單位長度后,得到函數(shù)的圖象,則“”是“是偶函數(shù)”的( )A充分不必要條件B必要不充分條件C充分必要條件D既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13一個四面體的頂點在空間直角坐標系中的坐標分別是,則該四面體的外接球的體積為_14設的內(nèi)角的對邊分別為,若,則_15定義在R上的函

5、數(shù)滿足:對任意的,都有;當時,則函數(shù)的解析式可以是_.16的展開式中的常數(shù)項為_.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)已知函數(shù),若存在實數(shù)使成立,求實數(shù)的取值范圍.18(12分)已知函數(shù).(1)求曲線在點處的切線方程;(2)若對任意的,當時,都有恒成立,求最大的整數(shù).(參考數(shù)據(jù):)19(12分)設數(shù)列是等差數(shù)列,其前項和為,且,.(1)求數(shù)列的通項公式;(2)證明:.20(12分)已知數(shù)列滿足,等差數(shù)列滿足,(1)分別求出,的通項公式;(2)設數(shù)列的前n項和為,數(shù)列的前n項和為證明:21(12分)已知函數(shù).(1)當時,求函數(shù)的值域;(2)的角的對邊分別為

6、且,求邊上的高的最大值.22(10分)已知函數(shù).(1)若,求證:.(2)討論函數(shù)的極值;(3)是否存在實數(shù),使得不等式在上恒成立?若存在,求出的最小值;若不存在,請說明理由.2023學年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【答案解析】每個縣區(qū)至少派一位專家,基本事件總數(shù),甲,乙兩位專家派遣至同一縣區(qū)包含的基本事件個數(shù),由此能求出甲,乙兩位專家派遣至同一縣區(qū)的概率.【題目詳解】派四位專家對三個縣區(qū)進行調(diào)研,每個縣區(qū)至少派一位專家基本事件總數(shù):甲,乙兩位專家派遣至同一縣區(qū)包含的基本事件個數(shù):甲,

7、乙兩位專家派遣至同一縣區(qū)的概率為:本題正確選項:【答案點睛】本題考查概率的求法,考查古典概型等基礎知識,考查運算求解能力,是基礎題.2、D【答案解析】根據(jù)拋物線的性質,設出直線方程,代入拋物線方程,求得k的值,設出雙曲線方程,求得2a丨AF2丨丨AF1丨(1)p,利用雙曲線的離心率公式求得e【題目詳解】直線F2A的直線方程為:ykx,F(xiàn)1(0,),F(xiàn)2(0,),代入拋物線C:x22py方程,整理得:x22pkx+p20,4k2p24p20,解得:k1,A(p,),設雙曲線方程為:1,丨AF1丨p,丨AF2丨p,2a丨AF2丨丨AF1丨( 1)p,2cp,離心率e1,故選:D【答案點睛】本題考查

8、拋物線及雙曲線的方程及簡單性質,考查轉化思想,考查計算能力,屬于中檔題3、A【答案解析】由,可得以及,而,代入即可得到答案.【題目詳解】設公差為d,則解得,所以.故選:A.【答案點睛】本題考查等差數(shù)列基本量的計算,考查學生運算求解能力,是一道基礎題.4、A【答案解析】解一元二次不等式化簡集合A,再根據(jù)對數(shù)的真數(shù)大于零化簡集合B,求交集運算即可.【題目詳解】由可得,所以,由可得,所以,所以,故選A【答案點睛】本題主要考查了集合的交集運算,涉及一元二次不等式解法及對數(shù)的概念,屬于中檔題.5、B【答案解析】畫出可行域和目標函數(shù),根據(jù)平移得到最值點,再利用均值不等式得到答案.【題目詳解】如圖所示,畫出

9、可行域和目標函數(shù),根據(jù)圖像知:當時,有最大值為,即,故.當,即時等號成立.故選:.【答案點睛】本題考查了線性規(guī)劃中根據(jù)最值求參數(shù),均值不等式,意在考查學生的綜合應用能力.6、A【答案解析】設點,則點,利用向量數(shù)量積的坐標運算可得,利用二次函數(shù)的性質可得最值.【題目詳解】解:設點,則點,當時,取最小值,最小值為.故選:A.【答案點睛】本題考查拋物線背景下的向量的坐標運算,考查學生的計算能力,是基礎題.7、D【答案解析】采用逐一驗證法,根據(jù)圖表,可得結果.【題目詳解】A正確,從圖表二可知,3月份四個城市的居民消費價格指數(shù)相差不大B正確,從圖表二可知,4月份只有北京市居民消費價格指數(shù)低于102C正確

10、,從圖表一中可知,只有北京市4個月的居民消費價格指數(shù)相差不大D錯誤,從圖表一可知上海市也是從年初開始居民消費價格指數(shù)的增長呈上升趨勢故選:D【答案點睛】本題考查圖表的認識,審清題意,細心觀察,屬基礎題.8、C【答案解析】利用之間的代換判斷出對稱軸的條數(shù);利用基本不等式求解出到原點的距離最大值;將面積轉化為的關系式,然后根據(jù)基本不等式求解出最大值;根據(jù)滿足的不等式判斷出四葉草與對應圓的關系,從而判斷出面積是否小于.【題目詳解】:當變?yōu)闀r, 不變,所以四葉草圖象關于軸對稱;當變?yōu)闀r,不變,所以四葉草圖象關于軸對稱;當變?yōu)闀r,不變,所以四葉草圖象關于軸對稱;當變?yōu)闀r,不變,所以四葉草圖象關于軸對稱;

11、綜上可知:有四條對稱軸,故正確;:因為,所以,所以,所以,取等號時,所以最大距離為,故錯誤;:設任意一點,所以圍成的矩形面積為,因為,所以,所以,取等號時,所以圍成矩形面積的最大值為,故正確;:由可知,所以四葉草包含在圓的內(nèi)部,因為圓的面積為:,所以四葉草的面積小于,故正確.故選:C.【答案點睛】本題考查曲線與方程的綜合運用,其中涉及到曲線的對稱性分析以及基本不等式的運用,難度較難.分析方程所表示曲線的對稱性,可通過替換方程中去分析證明.9、C【答案解析】利用復數(shù)模與除法運算即可得到結果.【題目詳解】解: ,故選:C【答案點睛】本題考查復數(shù)除法運算,考查復數(shù)的模,考查計算能力,屬于基礎題.10

12、、C【答案解析】根據(jù)平面向量基本定理,用來表示,然后利用數(shù)量積公式,簡單計算,可得結果.【題目詳解】由題可知:點E是中點,點F是中點,所以又所以則故選:C【答案點睛】本題考查平面向量基本定理以及數(shù)量積公式,掌握公式,細心觀察,屬基礎題.11、A【答案解析】先根據(jù)給的條件求出三角形ABC的三個內(nèi)角,再結合AB可求,應用正弦定理即可求解.【題目詳解】由題意可知:BAC704030.ACD110,ACB1106545,ABC1803045105.又AB240.512.在ABC中,由正弦定理得,即,.故選:A.【答案點睛】本題考查正弦定理的實際應用,關鍵是將給的角度、線段長度轉化為三角形的邊角關系,利

13、用正余弦定理求解.屬于中檔題.12、A【答案解析】求出函數(shù)的解析式,由函數(shù)為偶函數(shù)得出的表達式,然后利用充分條件和必要條件的定義判斷即可.【題目詳解】將函數(shù)的圖象沿軸向左平移個單位長度,得到的圖象對應函數(shù)的解析式為,若函數(shù)為偶函數(shù),則,解得,當時,.因此,“”是“是偶函數(shù)”的充分不必要條件.故選:A.【答案點睛】本題考查充分不必要條件的判斷,同時也考查了利用圖象變換求三角函數(shù)解析式以及利用三角函數(shù)的奇偶性求參數(shù),考查運算求解能力與推理能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13、【答案解析】將四面體補充為長寬高分別為的長方體,體對角線即為外接球的直徑,從而得解.【題目

14、詳解】采用補體法,由空間點坐標可知,該四面體的四個頂點在一個長方體上,該長方體的長寬高分別為,長方體的外接球即為該四面體的外接球,外接球的直徑即為長方體的體對角線,所以球半徑為,體積為.【答案點睛】本題主要考查了四面體外接球的常用求法:補體法,通過補體得到長方體的外接球從而得解,屬于基礎題.14、或【答案解析】試題分析:由,則可運用同角三角函數(shù)的平方關系:,已知兩邊及其對角,求角用正弦定理;,則;可得考點:運用正弦定理解三角形(注意多解的情況判斷)15、(或,答案不唯一)【答案解析】由可得是奇函數(shù),再由時,可得到滿足條件的奇函數(shù)非常多,屬于開放性試題.【題目詳解】在中,令,得;令,則,故是奇函

15、數(shù),由時,知或等,答案不唯一.故答案為:(或,答案不唯一).【答案點睛】本題考查抽象函數(shù)的性質,涉及到由表達式確定函數(shù)奇偶性,是一道開放性的題,難度不大.16、160【答案解析】先求的展開式中通項,令的指數(shù)為3即可求解結論.【題目詳解】解:因為的展開式的通項公式為:;令,可得;的展開式中的常數(shù)項為:.故答案為:160.【答案點睛】本題考查二項式系數(shù)的性質,關鍵是熟記二項展開式的通項,屬于基礎題三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、【答案解析】試題分析:先將問題“ 存在實數(shù)使成立”轉化為“求函數(shù)的最大值”,再借助柯西不等式求出的最大值即可獲解.試題解析:存在實數(shù)使成

16、立,等價于的最大值大于,因為,由柯西不等式:,所以,當且僅當時取“”,故常數(shù)的取值范圍是考點:柯西不等式即運用和轉化與化歸的數(shù)學思想的運用.18、(1)(2)2【答案解析】(1)先求得切點坐標,利用導數(shù)求得切線的斜率,由此求得切線方程.(2)對分成,兩種情況進行分類討論.當時 ,將不等式轉化為,構造函數(shù),利用導數(shù)求得的最小值(設為)的取值范圍,由的得在上恒成立,結合一元二次不等式恒成立,判別式小于零列不等式,解不等式求得的取值范圍.【題目詳解】(1)已知函數(shù),則處即為,又,可知函數(shù)過點的切線為,即.(2)注意到,不等式中,當時,顯然成立;當時,不等式可化為令,則,所以存在,使.由于在上遞增,在

17、上遞減,所以是的唯一零點.且在區(qū)間上,遞減,在區(qū)間上,遞增,即的最小值為,令,則,將的最小值設為,則,因此原式需滿足,即在上恒成立,又,可知判別式即可,即,且可以取到的最大整數(shù)為2.【答案點睛】本小題主要考查利用導數(shù)求切線方程,考查利用導數(shù)研究不等式恒成立問題,考查化歸與轉化的數(shù)學思想方法,屬于難題.19、(1)(2)見解析【答案解析】(1)設數(shù)列的公差為,由,得到,再結合題干所給數(shù)據(jù)得到公差,即可求得數(shù)列的通項公式;(2)由(1)可得,再利用放縮法證明不等式即可;【題目詳解】解:(1)設數(shù)列的公差為,.(2),.【答案點睛】本題考查等差數(shù)列的通項公式的計算,放縮法證明數(shù)列不等式,屬于中檔題.

18、20、 (1) (2)證明見解析【答案解析】(1)因為,所以,所以,即,又因為,所以數(shù)列為等差數(shù)列,且公差為1,首項為1,則,即.設的公差為,則,所以(),則(),所以,因此,綜上,(2)設數(shù)列的前n項和為,則兩式相減得,所以, 設則,所以.21、(1).(2)【答案解析】(1)由題意利用三角恒等變換化簡函數(shù)的解析式,再利用正弦函數(shù)的定義域和值域,得出結論.(2)由題意利用余弦定理三角形的面積公式基本不等式求得的最大值,可得邊上的高的最大值.【題目詳解】解:(1)函數(shù),當時,.(2)中,.由余弦定理可得,當且僅當時,取等號,即的最大值為3.再根據(jù),故當取得最大值3時,取得最大值為.【答案點睛】本題考查降冪公式、兩角和的正弦公式,考查正弦函數(shù)的性質,余弦定理,三角形面積公式,所用公式較多,選用恰當?shù)墓绞墙忸}關鍵,本題屬于中檔題22、(1)證明見解析;(2)見解析;(3)存在,1.【答案解析】(1),求出單調(diào)區(qū)間,進而求出,即可證明結論;(2)對(或)是否恒成立分類討論,若恒成立,沒有極值點,若不恒成立,求出的解,即可求出結論;(3)令,可證恒成立,而,由(2)得,在為減函數(shù),在上單調(diào)遞減,在都存在,不滿足,當時,設,且,只需求出在單調(diào)遞增時的取值范圍即可.【題目詳解】(1),

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論