2025臨床試驗中的人工智能創(chuàng)新:加速藥物研發(fā)研究報告 AI Innovations in Clinical Trials SpeedingDrug Development_第1頁
2025臨床試驗中的人工智能創(chuàng)新:加速藥物研發(fā)研究報告 AI Innovations in Clinical Trials SpeedingDrug Development_第2頁
2025臨床試驗中的人工智能創(chuàng)新:加速藥物研發(fā)研究報告 AI Innovations in Clinical Trials SpeedingDrug Development_第3頁
2025臨床試驗中的人工智能創(chuàng)新:加速藥物研發(fā)研究報告 AI Innovations in Clinical Trials SpeedingDrug Development_第4頁
2025臨床試驗中的人工智能創(chuàng)新:加速藥物研發(fā)研究報告 AI Innovations in Clinical Trials SpeedingDrug Development_第5頁
已閱讀5頁,還剩38頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

.ntu·t·n.ab·

SoftwareDevelopmentAdrienLaurent

IntuitionLabs-CustomAIfromtheleadingAIexpert

AIInnovationsinClinicalTrials:SpeedingDrugDevelopment

AIInnovationsinClinicalTrials:SpeedingDrugDevelopment

ByInuitionLabs.ai?7/3/2025?50minread

clinicaltrials

drugdevelopment

pharmaceuticalindustry

artificialintelligence

healthcaretechnology

drugapproval

aiapplications

medicalresearch

eaa

e

a

aea

eee

e

ae

ae

us

Aaee

ea

s

eaA

a

eaaae

eae

ee

e

A

e

e

aneasea

asea

ae

eme

a

me

e

asu

e

me

ae

nee

eme

eaa

e

ma

as

e

?2025

IntuitionLabs.ai

-NorthAmerica'sLeadingAISoftwareDevelopmentFirmforPharmaceutical&Biotech.Allrightsreserved.Page1of23

?2025

IntuitionLabs.ai

-NorthAmerica'sLeadingAISoftwareDevelopmentFirmforPharmaceutical&Biotech.Allrightsreserved.Page2of23

AI-AcceleratedClinicalTrials:10

InnovationsSpeedingDrugDevelopment

Thepharmaceuticalindustryhaslonggrappledwiththeslow,costlyprocessofbringingnewdrugstomarket.Itcantakeoveradecadeandmorethan$1billioninR&Dinvestmentto

introduceasinglenewmedicationtopatients

.Roughlyhalfofthistimeandcostisspentonclinicaltrials,whichhavegrownlargerandmorecomplexovertheyears

.

Moreover,onlyabout10–15%ofdrugcandidatesthatenterhumantrialsultimatelyreceive

regulatoryapproval

.Thesechallenges–sometimesdescribedby“Eroom?slaw”(thereverseofMoore?slaw)–havepromptedresearchers,companies,andregulatorstoseeknew

waystoincreaseefficiency.Artificialintelligence(AI)hasemergedasatransformativetooltoaccelerateclinicaltrialsandexpeditethedeliveryofnewdrugstopatients.Fromdiscoveryin

thelabtopatientmonitoringandregulatoryreview,AI-driveninnovationsareimprovingclinicalefficiency,reducingcosts,enhancingpatientsafety,andshorteningdrugdevelopmenttimelines.

Inthiscomprehensivereport,wehighlight10keyAI-driveninnovationsthatarerevolutionizingclinicaltrialsanddrugdevelopment.Eachsectionbelowdetailsoneinnovation,providingreal-

worldusecases,currentandpotentialapplications,andtheimplicationsfortrialefficiency,cost,patientsafety,anddrugapprovaltimelines.Wealsodiscussglobalperspectives–including

regulatoryinitiativesbyagenciesliketheU.S.FDAandEurope?sEMA–toillustratehowAIis

beingleveragedandgovernedworldwide.Asummarytableoftheteninnovations,theirbenefits,andrepresentativecasestudiesisincludedforquickreference,followedbyaconcludingoutlookandreferencestorecentauthoritativesources.

1.AI-DrivenDrugDiscoveryandDesign

AIisdramaticallyspeedinguptheearlystagesofdrugdevelopmentbyidentifyingnewdrugcandidatesfarfasterthantraditionallabmethods.Machinelearningmodels(includingdeeplearningandgenerativeAI)cananalyzemassivechemicalandbiologicaldatasetstopredictpromisingdrug-likemolecules,optimalcompoundstructures,andnoveltherapeutictargets.

Thisacceleratestheleadidentificationandoptimizationprocessthattypicallytakeschemistsyears.Forexample,InsilicoMedicineusedanAI-drivenplatformtodiscoveranoveltarget

(TNIK)foridiopathicpulmonaryfibrosisanddesignaleadcompoundinonly18months

–an“impressivetimeline”comparedtothemulti-yearspanofconventional

discoveryefforts.ThatAI-designeddrug(INS018_055)progressedrapidlyintohumantrialsandreachedPhaseIItestingby2024

.Suchspeedisunprecedented,highlightinghowAIcancompressdiscoverytimelines.

?2025

IntuitionLabs.ai

-NorthAmerica'sLeadingAISoftwareDevelopmentFirmforPharmaceutical&Biotech.Allrightsreserved.Page3of23

MajorpharmaceuticalcompanieshaveintegratedAIintotheirR&Dpipelinestoboost

productivity.Johnson&JohnsonemploysAIto“acceleratetheidentificationofnewdrug

targets,optimizemoleculediscovery,andstreamlinepatientrecruitment,”leadingtomore

efficientdevelopmentcycles

.Similarly,AbbVie?sAI-poweredplatform(theARCHhub)aggregatesdiversedataandusespredictivealgorithmstofindnewtargetsanddesigndrug

candidates

.Inonecollaboration,EliLillypartneredwiththeAIbiotechInsilico(and

otherslikeAtomwise)toidentifynovelcompoundsformetabolicdiseases,anapproach

expectedtoshortenthepathtohumantrials

.Thefinancialimpactissignificant:AIcanreducethenumberoffaileddrugcandidatesandautomatelabor-intensiveresearch,cutting

R&Dcostsandtimelines

.AnalystsprojectthattheseAI-drivenefficienciesintargetdiscovery,proteinstructureprediction(e.g.AlphaFoldbreakthroughs),andmedicinalchemistrycouldsaveyearsinearlydrugdevelopment

.Bydeliveringbetterstarter

compoundsandnarrowingdownthemostviabletargets,AIsetsthestageforclinicaltrialswithhigherchancesofsuccess.

Implications:Clinicalefficiencyandcost:Fasteridentificationofhigh-qualitydrugcandidatesmeansfewerresourceswastedonineffectivecompounds,improvingtheyieldofthepipeline.

Patientimpact:AI-designeddrugscanadvancetotrialssooner,potentiallyaddressingunmet

medicalneedsyearsearlierthantraditionalapproaches.Globalnote:NumerousAI-discoveredorAI-designedmolecules(forcancer,fibrosis,neurology,etc.)havealreadyenteredtrialsacrosstheU.S.,Europe,andAsia,signalingaworldwideshifttowardinsilicodiscoveryasanewnormindrugR&D

.

2.AI-PoweredDrugRepurposing

AnotherwayAIisexpeditingnewtherapiestopatientsisbyuncoveringnewusesforexisting

drugs–astrategyknownasdrugrepurposingorrepositioning.Byminingvastbiomedicaldata(literature,molecularpathways,clinicaldata),AIcanmatchapproveddrugstonewdiseases

muchfasterthanhumanscan.Thisapproachskipstheearlydevelopmentstagessincethe

drug?ssafetyisalreadyestablished,allowingrapidentryintoclinicaltrialsforthenewindication.AdramaticexamplecameearlyintheCOVID-19pandemic:inJanuary2020,AIalgorithmsat

BenevolentAIanalyzedrelationshipsbetweenviralinfectionmechanismsandexistingdrug

actions.Inunder48hours,thesystemidentifiedbaricitinib–arheumatoidarthritisdrug–asapotentialtreatmenttoquellthedeadlyinflammatoryresponseofsevereCOVID-19

.ResearcherspublishedtheAI-drivenhypothesisinTheLancetbyearlyFebruary

2020

,catchingtheattentionofpharmaceuticalmakerEliLilly.ByApril,

baricitinibhadenteredalargeNIH-supportedclinicaltrial–anextraordinarilyfastprogression

fromcomputerinsighttobedsidetest

.PatrikJonssonofEliLillynotedthatit“usuallytakesyearstodesign,organize,andlaunchatrial,”yetthebaricitinibCOVIDtrialwasupandrunningwithinmonths

.Thedrugwentontoshowpositiveresults,reducingmortalityinhospitalizedpatients,andby2022theWHOstronglyrecommendedbaricitinibfor

?2025

IntuitionLabs.ai

-NorthAmerica'sLeadingAISoftwareDevelopmentFirmforPharmaceutical&Biotech.Allrightsreserved.Page4of23

severeCOVID-19

.ThissuccessstoryhighlightshowAI-drivenrepurposingcandramaticallycompressdrugtimelinesinapublichealthcrisis.

BeyondCOVID-19,AI-basedrepurposingenginesarebeingappliedtocancer,neurological

diseases,andraredisorders.Thesesystemsusetechniqueslikeknowledgegraphsandnaturallanguageprocessingtosiftthroughknowndrug-target-diseaserelationshipsandpredictnoveltherapeuticmatches.Theimpactistwofold:(a)itcanbreathenewlifeintoshelvedoroff-patentdrugsbyfindingnewindications,and(b)itcanprovidepatientsfasteraccesstotreatments

sincerepurposeddrugsoftenleapdirectlyintoPhaseIIorIIItrials.Forinstance,AIalgorithmshaveidentifiedexistingoncologydrugsthatmighttreatautoimmunediseasesbyanalyzing

sharedmolecularpathways

.Regulatorybodiesare

increasinglyreceptivetowell-substantiatedrepurposingproposals,especiallyforurgentneeds.IntheU.S.,theFDA?sCoronavirusTreatmentAccelerationProgram(CTAP)fast-trackedtrialsofrepurposeddrugslikebaricitinibduringthepandemic,reflectingaflexibleregulatoryapproachwhenAIevidenceiscompelling.Lookingahead,thesynergyofAIwiththevasttrovesofomicsandreal-worlddatapromisesanacceleratingstreamofrepurposedtherapiesreachingpatientsmuchsoonerthandenovodrugprogramscould

.

Implications:Timelineacceleration:RepurposingbackedbyAIcanshrinkdevelopment

timelinesfrommanyyearstoafraction,assafetyandmanufacturingareknownandearlytrialscanbebypassedorabbreviated.Costreduction:R&Dexpensesaredramaticallylowerwhen

re-usinganexistingcompound,improvingROIfordrugdevelopersandpotentiallylowering

costsforhealthcaresystems.Patientsafety:Knownsafetyprofilesmeanfewerunknownrisksfortrialparticipants,thoughefficacymuststillbeproven.Regulatorynote:AuthoritieslikeFDAandEMAhaveshownwillingnesstofast-trackrepurposeddrugs(especiallyinemergencies),

andAIisbecominganimportanttooltoidentifyandjustifysuchcandidates

.

3.IntelligentClinicalTrialDesignandProtocolOptimization

AIisenhancingthewayclinicaltrialsaredesigned,helpingresearcherscraftsmarterprotocolsthatcanyieldclearresultsfasterandwithfewerresources.Traditionaltrialdesignoftenreliesonprecedentandexpertopinion,butAIenablesadata-drivenapproach:bysimulatingtrials,

analyzingpaststudies,andmodelingdiversepatientpopulations,AIcanoptimizekey

parameters(endpoints,samplesize,eligibilitycriteria,dosingschedules,etc.)beforethetrialevenbegins.Thisreducesthelikelihoodoftrialfailureduetosuboptimaldesignandcan

eliminateunnecessaryprocedures.

Oneareaofimpactiseligibilitycriteriaoptimization.Clinicaltrialstypicallyincludestrict

inclusion/exclusioncriteriatoprotectpatientsafetyandensuredataintegrity.However,overly

restrictivecriteriacanslowrecruitmentandneedlesslyexcludepatientswithoutimprovingsafety

.ntu·t·n.ab·

SoftwareDevelopmentAdrienLaurent

IntuitionLabs-CustomAIfromtheleadingAIexpert

AIInnovationsinClinicalTrials:SpeedingDrugDevelopment

?2025

IntuitionLabs.ai

-NorthAmerica'sLeadingAISoftwareDevelopmentFirmforPharmaceutical&Biotech.Allrightsreserved.Page5of23

outcomes.A2021NaturestudyusedAIandreal-worlddatatoevaluateoncologytrialcriteria,findingthatmanyexclusions(e.g.basedonlabvaluesorcomorbidities)did“l(fā)ittletopreventadverseevents”yeteliminatedlargepoolsofpotentialparticipants

.Theauthorsdemonstratedviamodelingthatlooseningcertaincriteriawouldnotcompromisepatientsafetyortrialresults–indeed,manytrialsmighthave

succeededhaddata-drivenmodelingbeenusedtofindanoptimalparticipantpoolupfront

.ThissuggestsAIcanhelpdesignersbroadencriteriarationallyto

accelerateenrollmentwhilemaintainingsafety,especiallyinPhaseIIItrialswherestrictcriteriacancost“billions”inlostopportunitiesiftherightpatientsarenotenrolledintime

.

AI-driventrialsimulationandbiosimulationtoolsarealsoemerging.Byleveragingpriorclinicaldataandadvancedmodels,thesetoolscreate“virtualpopulations”orinsilicotrialstopredicthowastudymightplayout.Forexample,biosimulationplatformscandigitallymodelhuman

physiologyanddruginteractionstotestdifferenttrialscenariosbeforeexecutingtheminreality

.Suchsimulationscanguidedoseselection,predictoutcomevariability,andidentifythemostsensitiveendpoints.VeriSIMLifesBIOiSIMplatform,forinstance,usesAI/MLtosimulatehowadrugaffectsbothindividualorgansandwhole-bodysystems

.Thishelpsresearchersexplorequestionslikeoptimaldosingorpotentialtoxicitieswithoutrealpatientexposure,thusfine-tuningthetrialdesign.AIcanevenassistinselectingappropriateendpointsandbiomarkersbyanalyzingwhichmeasuresaremost

predictiveofclinicalbenefit.Companiesareusingmachinelearningtominehistoricaltrialsandreal-worldevidencetodiscoversurrogateendpointsthatcouldshortentrialduration(for

example,anAImightrevealthatacertainearlyimagingresultpredictslong-termoutcomes,suggestingitcouldserveasanearlierendpoint).

Furthermore,AIenablesadaptiveandefficienttrialdesigns.Machinelearningmodelscancontinuouslyingestinterimtrialdataandadviseonmodifications–suchasdroppingan

ineffectivedosearmorreallocatingpatientstoaresponsivesubgroup–underpre-specifiedadaptiveprotocols.SimulationoftheseadaptivestrategiesviaAIensuresthatsuchtrials

maintainstatisticalrigor.Theresultisatrialthatlearnsandadjustsonthefly,potentially

reachingconclusionsfasterwithfewerpatients.EarlyusecaseshaveshownthatAI-simulatedadaptivedesignscanmaintainpowerwhilecuttingdowntriallength,benefitingsponsorsandpatientsalike

.

Implications:Clinicalefficiency:AI-informeddesignreducesmid-trialprotocolamendments

andfailurerates,savingtime.Smartercriteriaandendpointsmeantrialscanmeettheirgoals

withsmallersamplesizesorshorterfollow-up,directlyacceleratingcompletion.Patientimpact:

Moreinclusivecriteria(guidedbyAIevidence)alloweligiblepatientswhowouldhavebeen

unjustifiablyexcludedtoaccessexperimentaltherapies,addressingahistoricalbiastoward

narrowtrialpopulations

.Cost:Avoidingonefailedtrialoramajorredesigncansavemillions;broadeningcriteriaspeedsrecruitment,shorteningcostlytrialtimelines.Regulatory:Regulatorssupportinnovativedesigns–FDA?sComplex

.ntu·t·n.ab·

SoftwareDevelopmentAdrienLaurent

IntuitionLabs-CustomAIfromtheleadingAIexpert

AIInnovationsinClinicalTrials:SpeedingDrugDevelopment

?2025

IntuitionLabs.ai

-NorthAmerica'sLeadingAISoftwareDevelopmentFirmforPharmaceutical&Biotech.Allrightsreserved.Page6of23

InnovativeTrialDesignsprogramandEMA?sguidanceencourageuseofmodeling/simulationintrialplanning.AsAIgainstrust,regulatoryagenciesmayincreasinglyacceptAI-optimized

protocolsandevendatafrominsilicoarms(asnotedbyEMA?sacceptanceofAI-generatedanalysesinarecentqualificationopinion

ema.europa.euema.europa.eu

).

4.AIinPatientRecruitmentandSiteSelection

Patientrecruitmentisoftentherate-limitingstepofclinicaltrials–findingenougheligible

participantscantakeyears,especiallyforstringentprotocolsorrarediseases.AIisprovingtobeagame-changerinthisdomainbyrapidlymatchingpatientstotrialsandidentifyingoptimaltrialsites.Machinelearningalgorithmscansiftthroughmountainsofhealthcaredata–electronic

healthrecords(EHRs),medicalimages,labresults,geneticinformation,evensocialmediaanddiseaseregistrydata–toidentifypatientswhomeetcomplexeligibilitycriteriamuchfasterthanmanualscreening.Thisnotonlyacceleratesenrollmentbutcanalsoimprovethediversityandsuitabilityofparticipants.

NaturallanguageprocessingandpredictivemodelsareusedtoscanEHRsandphysiciannotestoflagpatientswhomightqualifyforopenstudies.Forexample,researchersatMountSinai

appliedanAItechniquecalledtopologicaldataanalysistopatientrecordsandgenomics,whichgroupedtype2diabetespatientsintosubtypeswithdifferentclinicalcharacteristics

.Insightsfromsuchclusteringcanhelptargetspecificpatientsubgroupsfortrialsorpredicthowindividualsmightrespondtoatreatment

.Ona

broaderscale,theU.S.NationalLibraryofMedicinerecentlydevelopedTrialGPT,alarge

languagemodelthatreadsmedicalsummariesandfindsmatchingtrialsforpatients.Intests,TrialGPTcouldmatchpatientstoappropriatetrialswith87%accuracy–nearlyonparwith

humanexperts–andhelpedcliniciansscreenpatients40%fasterthanmanualmethods

.ThisdemonstratesthepotentialforAItosignificantlycutdownthetimecliniciansspendontrialmatching,freeingthemtofocusonpatientcare.

AIalsoaidsinsiteselectionandoutreachbyanalyzingepidemiologicaldataandevenonline

patientcommunitydiscussions.Machinelearningcanpinpointgeographic“hotspots”where

eligiblepatientsareconcentrated

.Thisallows

sponsorstostrategicallyopentrialsitesinregionswithhigherprevalenceofthetarget

condition,ratherthanrelyingonhistoricsitenetworks.Socialmediaanalysis,forinstance,mightrevealanunder-servedpatientclustertalkingabouttheirillnessinacertaincity–anopportunitytolocateatrialsitethereandreachpatientsinneed

.CompanieslikeDeep6AIandIBM(WatsonforClinicalTrialMatching)havedevelopedplatformsthatcombthroughmedicaldatabasestofindcandidates,oftenidentifyinginsecondswhat

mighttakerecruitersweeks.

Anotherbenefitisstreamliningprescreening.AIcanautomatetheinitialeligibilitychecksbycomparingpatientdataagainstthetrial?sinclusion/exclusioncriteria.Inpractice,thismeans

?2025

IntuitionLabs.ai

-NorthAmerica'sLeadingAISoftwareDevelopmentFirmforPharmaceutical&Biotech.Allrightsreserved.Page7of23

fewer“unnecessarychecks”andlessburdenonresearchcoordinators

.ArecentexampleisInato?sAI-basedprescreeningagent,whichhelpsresearchsitesquicklyde-identifyandevaluatetheirpatientrecordstoseewhofitsanupcomingtrial,boostingefficiencyforsitestaff

.Thiskindofautomationreducesthemanualtoiland

potentiallyminimizeshumanerrorinoverlookingacandidate.

Moreover,AIcanenhancerecruitmentoutreach.Predictivemodelscanidentifypatientslikelytoconsideratrialandpersonalizeengagement(throughtailoredmessagingorinterventionsviaapps).Bylearningfrompastrecruitmentsuccessesandfailures,AIhelpsrefinerecruitment

strategiescontinuously.Pharmaceuticalcompaniesreportthatdata-drivenrecruitmentpoweredbyAIhascutenrollmenttimessignificantlyonsomestudies

.Pfizer,for

example,haspartneredwithanAIacceleratortoimproveits“patientdraftingsystem”,aimingforfasterandmoreeffectiveoutreachtoeligiblepatients

.

Implications:Timetoenrollment:WithAImininghealthrecordsatlightningspeedand

prioritizingthebestmatches,trialscanreachfullenrollmentmonthsfaster,directlyshorteningtheoverallstudytimeline

.Cost:Everymonthsavedinrecruitmentis

significant,assitesandstaffcanmovetothenextphasesooner;AI-drivensiteselectionalso

avoidsopeningsitesthatfailtoenroll,savingmoney.Patientaccessanddiversity:AIcanhelpensurethatthe“rightpatients”–includingtraditionallyunderrepresentedminoritiesor

geographicallyremotepatients–areidentifiedandinvited,improvingdiversityandfairnessintrials.Byanalyzingbroaderdatasets(notjustacademiccenterrecords),AIuncoverseligiblepatientsincommunityhospitalsorclinicswhomightotherwisebemissed,therebybringing

innovativetreatmentstothosepatientssooner

.

Globalreach:Thesetoolsarebeingappliedglobally–forinstance,healthcaresystemsin

EuropeareusingAItoscannationalhealthrecordsfortrialmatches,andemergingmarketswithlargepatientdatabases(likeChinaandIndia)areexploringAItoleveragetheirdata-rich

resourcesforfasterrecruitment.

5.PrecisionPatientStratificationwithAI

Enrollingtherightpatientsinatrialisnotjustaboutfindinganyonewhomeetsthecriteria,butfindingthosemostlikelytobenefitorrespond–thisisthepromiseofprecisionmedicine,andAIisacriticalenabler.AI-drivenpatientstratificationinvolvesanalyzingcomplexpatientdata(genomicprofiles,biomarkers,medicalhistory,etc.)tocategorizepatientsintosubgroupswithsharedcharacteristicsorriskprofiles.Bydoingso,clinicaltrialscanbedesignedoranalyzedinawaythattargetsthesesubpopulations,leadingtocleareroutcomesandpotentiallyshorter

trials.

ArecentbreakthroughinthisareawasreportedinNatureCommunications(2025)byateamatWeillCornellMedicineandRegeneron.TheydevelopedanAImethodthat“accuratelysorts

cancerpatientsintogroupswithsimilarcharacteristicsbeforetreatmentandsimilaroutcomes

?2025

IntuitionLabs.ai

-NorthAmerica'sLeadingAISoftwareDevelopmentFirmforPharmaceutical&Biotech.Allrightsreserved.Page8of23

aftertreatment.”

.Intheirstudyonadvancedlungcancerpatientsreceivingimmunotherapy,themachinelearningplatformused100+clinicalvariablestoclusterpatients.

Theresult:itidentifieddistinctriskgroupswhosesurvivaloutcomesdiffereddramatically–

onegrouplivedtwiceaslongonaverageasanotherunderthesametreatment

.Notably,theAI?sabilitytopredictpatientsurvivaltimesfrombaselinehealthrecorddata

outperformedallexistingmethods

.Thiskindofstratificationtoolcanbeappliedprospectivelyintrials:forexample,enrichingatrialwithmorepatientsfromthesubgrouplikelytorespond(todemonstratedrugefficacyfaster),orexcludingasubgroup

unlikelytorespond(toavoiddilutingtheresultsorexposingthemtopotentialharm).TheCornellteamisnowworkingtointegratethisplatformintothedesignofnewclinicaltrialsand

personalizingtreatmentsforindividuals

.

Inpractice,AI-drivenstratificationcanincreasethe“probabilityoftrialsuccessandregulatoryapproval”byidentifyingresponsivepatientsandappropriatebiomarkers

.Inoncology,wheremanytherapiesonlyworkforsubsetsofpatientsdefinedbymolecularmarkers,AIhelpsdecipherthosesubgroupsfromcomplexgenomicdata.Deeplearningmodelshave

beenusedtofindpatternsintumorgeneexpressionorpathologyimagesthatcorrelatewith

treatmentresponse,whichcanthenguideinclusioncriteriaorstratifiedrandomization.For

instance,sometrialsnowincorporateAIpathologyanalysistoensureonlypatientswhose

tumorshavecertainAI-identifiedfeatures(indicativeoflikelyresponse)areenrolled–effectivelyraisingthetrial?ssignal-to-noiseratio.Onepublishedapproachuseddeepneuralnetworkson

historicaltrialdatatoidentifywhichcombinationsofpatientfeaturespredictedbetteroutcomes,thensimulatedhowan“enriched”trialcouldachieveresultsfasterandwithfewerpatients

.Thesimulationsshowedsmaller,targetedtrialscouldmaintainstatisticalpowerwhilebeingmorethan13%cheaperthanconventionaldesigns,thankstofocusingon

likelyresponders

.

Beyondtrialdesign,AI-basedstratificationalsoaidspost-hocanalysis–findingresponder

subgroupsincompletedtrials.Thiscansalvagedrugsthatfailedabroadtrialbyrevealingtheyactuallyworkedforaspecificsubgroup,whichcanthenleadtoasuccessfulfollow-uptrialoranapprovalinthatniche.Regulatorshaveembracedsuchapproachesinsomecases(withpropervalidation).Globally,initiativesliketheAllofUsresearchprogram(USA)orGenomicsEngland

aregeneratinghugedatasetsthatAIcanminetounderstandpopulationheterogeneityindrugresponse,informingsmartertrialstratificationacrossdifferentethnicandgeneticbackgrounds.

Implications:Efficiencyandsuccessrates:Byreducingheterogeneityandtargetingpatientsmostlikelytobenefit,trialscandemonstrateefficacywithfewerparticipantsorinshortertime,andthechanceofaclearpositiveoutcomeishigher

.Thismeansfewerfailedtrialsandlesstimelostonineffectivebroadstudies.Patientsafety:High-riskornon-responderpatientscanbesparedfromexposuretodrugsunlikelytohelpthem,focusinginvestigational

treatmentsonthoseforwhomtherisk-benefitisfavorable.Cost:Enrichedtrialscutdownthe

samplesizeandtriallengthneededtoreachendpoints,savingmoneyinexpensivelate-stage

trials.Regulatory:AgencieslikeFDAencouragetheuseofbiomarkersforenrichment;AIsimply

?2025

IntuitionLabs.ai

-NorthAmerica'sLeadingAISoftwareDevelopmentFirmforPharmaceutical&Biotech.Allrightsreserved.Page9of23

superchargesthebiomarkerdiscoveryprocess.RegulatorswillstillrequirevalidationofanyAI-derivedstratificationcriteria,butsuccessesliketheWeillCornellmethod

showthatAIcanproduceclinicallymeaningfulgroupingsthatcouldbeusedtosupportdrugapprovals(e.g.,approvingadrugforpatientsidentifiedbyaspecificalgorithmashighresponders).

6.AI-EnhancedPatientMonitoringandAdherence

Evenafteratrialisunderwaywiththerightpatients,ensuringthatthosepatientsadheretotheprotocol(takingmedicationsonschedule,reportingsymptoms,attendingvisits)andcollectinghigh-qualitydatafromthemisahugechallenge.Pooradherenceandmissingdatacan

compromisetrialoutcomes,increaserequiredsamplesizes,andevencausetrialstofail.AItechnologiesaretacklingthisproblembyenablingbetterremotepatientmonitoring,datacapture,andbydirectlyboostingadherencethroughsmartinterventions.

OnemajortrendistheuseofwearabledevicesandsensorscombinedwithAIanalyticsto

continuouslymonitorpatienthealthindicatorsduringtrials.Deviceslikesmartwatches,patch

sensors,orsmartphoneappscangatherreal-timedataonvitalsigns,activitylevels,heart

rhythm,bloodglucose,etc.AIalgorithmsthenprocessthesestreamstodetectanomaliesor

trendsthatmatterforthetrial.Forinstance,inaheartfailuretrial,anAImightanalyzedatafromawearabletodetectearl

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論