




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
中考數(shù)學總復習《圓》自我提分評估考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,已知長方形中,,圓B的半徑為1,圓A與圓B內切,則點與圓A的位置關系是(
)A.點C在圓A外,點D在圓A內 B.點C在圓A外,點D在圓A外C.點C在圓A上,點D在圓A內 D.點C在圓A內,點D在圓A外2、如圖,破殘的輪子上,弓形的弦AB為4m,高CD為1m,則這個輪子的半徑長為()A.m B.m C.5m D.m3、如圖所示,一個半徑為r(r<1)的圖形紙片在邊長為10的正六邊形內任意運動,則在該六邊形內,這個圓形紙片不能接觸到的部分面積是(
)A. B.C. D.4、如圖,在△ABC中,∠ACB=90°,AC=BC,AB=4cm,CD是中線,點E、F同時從點D出發(fā),以相同的速度分別沿DC、DB方向移動,當點E到達點C時,運動停止,直線AE分別與CF、BC相交于G、H,則在點E、F移動過程中,點G移動路線的長度為(
)A.2 B.π C.2π D.π5、如圖,AB是⊙O的直徑,BC與⊙O相切于點B,AC交⊙O于點D,若∠ACB=50°,則∠BOD等于()A.40° B.50° C.60° D.80°第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖所示的網格由邊長為個單位長度的小正方形組成,點、、、在直角坐標系中的坐標分別為,,,則內心的坐標為______.2、如圖,A、D是⊙O上的兩點,BC是直徑,若∠D=32°,則∠OAC=_______度.3、如圖,四邊形是正方形,曲線是由一段段90度的弧組成的.其中:的圓心為點A,半徑為;的圓心為點B,半徑為;的圓心為點C,半徑為;的圓心為點D,半徑為;…的圓心依次按點A,B,C,D循環(huán).若正方形的邊長為1,則的長是_________.4、如圖,是的直徑,弦于點E,,,則的半徑_______.5、如圖,已知是的直徑,是的切線,連接交于點,連接.若,則的度數(shù)是_________.三、解答題(5小題,每小題10分,共計50分)1、已知圓弧的半徑為15厘米,圓弧的長度為,求圓心角的度數(shù).2、正方形ABCD的四個頂點都在⊙O上,E是⊙O上的一點.(1)如圖①,若點E在上,F(xiàn)是DE上的一點,DF=BE.求證:△ADF≌△ABE;(2)在(1)的條件下,小明還發(fā)現(xiàn)線段DE、BE、AE之間滿足等量關系:DE-BE=AE.請說明理由;(3)如圖②,若點E在上.連接DE,CE,已知BC=5,BE=1,求DE及CE的長.3、如圖所示,四邊形ABCD的頂點在同一個圓上,另一個圓的圓心在AB邊上,且該圓與四邊形ABCD的其余三條邊相切.求證:.4、如圖,已知在⊙O中,直徑MN=10,正方形ABCD的四個頂點分別在⊙O及半徑OM、OP上,并且∠POM=45°,求正方形的邊長.5、已知四邊形內接于⊙O,,垂足為E,,垂足為F,交于點G,連接.(1)求證:;(2)如圖1,若,,求⊙O的半徑;(3)如圖2,連接,交于點H,若,,試判斷是否為定值,若是,求出該定值;若不是,說明理由.-參考答案-一、單選題1、C【解析】【分析】根據內切得出圓A的半徑,再判斷點D、點E到圓心的距離即可【詳解】∵圓A與圓B內切,,圓B的半徑為1∴圓A的半徑為5∵<5∴點D在圓A內在Rt△ABC中,∴點C在圓A上故選:C【考點】本題考查點與圓的位置關系、圓與圓的位置關系、勾股定理,熟練掌握點與圓的位置關系是關鍵2、D【解析】【分析】連接OB,由垂徑定理得出BD的長;連接OB,再在中,由勾股定理得出方程,解方程即可.【詳解】解:連接OB,如圖所示:由題意得:OC⊥AB,∴AD=BD=AB=2(m),在Rt△OBD中,根據勾股定理得:OD2+BD2=OB2,即(OB﹣1)2+22=OB2,解得:OB=(m),即這個輪子的半徑長為m,故選:D.【考點】本題主要考查垂徑定理的應用以及勾股定理,熟練掌握垂徑定理和勾股定理是解題的關鍵.3、C【解析】【分析】當運動到正六邊形的角上時,圓與兩邊的切點分別為,,連接,,,根據正六邊形的性質可知,故,再由銳角三角函數(shù)的定義用表示出的長,可知圓形紙片不能接觸到的部分的面積,由此可得出結論.【詳解】解:如圖所示,連接,,,此多邊形是正六邊形,,.,,,圓形紙片不能接觸到的部分的面積.故選:C.【考點】本題考查的是正多邊形和圓,熟知正六邊形的性質是解答此題的關鍵.4、D【解析】【分析】【詳解】解:如圖,∵CA=CB,∠ACB=90°,AD=DB,∴CD⊥AB,∴∠ADE=∠CDF=90°,CD=AD=DB,在△ADE和△CDF中,,∴△ADE≌△CDF(SAS),∴∠DAE=∠DCF,∵∠AED=∠CEG,∴∠ADE=∠CGE=90°,∴A、C、G、D四點共圓,∴點G的運動軌跡為弧CD,∵AB=4,ABAC,∴AC=2,∴OA=OC,∵DA=DC,OA=OC,∴DO⊥AC,∴∠DOC=90°,∴點G的運動軌跡的長為π.故選:D.5、D【解析】【分析】根據切線的性質得到∠ABC=90°,根據直角三角形的性質求出∠A,根據圓周角定理計算即可.【詳解】∵BC是⊙O的切線,∴∠ABC=90°,∴∠A=90°-∠ACB=40°,由圓周角定理得,∠BOD=2∠A=80°,故選D.【考點】本題考查的是切線的性質、圓周角定理,掌握圓的切線垂直于經過切點的半徑是解題的關鍵.二、填空題1、(2,3)【解析】【分析】根據A、B、C三點的坐標建立如圖所示的坐標系,計算出△ABC各邊的長度,易得該三角形是直角三角形,設BC的關系式為:y=kx+b,求出BC與x軸的交點G的坐標,證出點A與點G關于BD對稱,射線BD是∠ABC的平分線,三角形的內心在BD上,設點M為三角形的內心,內切圓的半徑為r,在BD上找一點M,過點M作ME⊥AB,過點M作MF⊥AC,且ME=MF=r,求出r的值,在△BEM中,利用勾股定理求出BM的值,即可得到點M的坐標.【詳解】解:根據A、B、C三點的坐標建立如圖所示的坐標系,根據題意可得:AB=,AC=,BC=,∵,∴∠BAC=90°,設BC的關系式為:y=kx+b,代入B,C,可得,解得:,∴BC:,當y=0時,x=3,即G(3,0),∴點A與點G關于BD對稱,射線BD是∠ABC的平分線,設點M為三角形的內心,內切圓的半徑為r,在BD上找一點M,過點M作ME⊥AB,過點M作MF⊥AC,且ME=MF=r,∵∠BAC=90°,∴四邊形MEAF為正方形,S△ABC=,解得:,即AE=EM=,∴BE=,∴BM=,∵B(-3,3),∴M(2,3),故答案為:(2,3).【考點】本題考查三角形內心、平面直角坐標系、一次函數(shù)的解析式、勾股定理和正方形的判定與性質等相關知識點,把握內心是三角形內接圓的圓心這個概念,靈活運用各種知識求解即可.2、58【解析】【分析】根據∠D的度數(shù),可以得到∠ABC的度數(shù),然后根據BC是直徑,從而可以得到∠BAC的度數(shù),然后可以得到∠OCA的度數(shù),再根據OA=OC,從而可以得到∠OAC的度數(shù).【詳解】解:∵∠D=32°,∠D=∠ABC∴∠ABC=32°∵BC是直徑∴∠BAC=90°∴∠BCA=90°-∠ABC=90°-32°=58°∴∠OCA=58°∵OA=OC∴∠OAC=∠OCA∴∠OAC=58°故答案為58.【考點】本題考查了圓周角定理,圓心角、弧、弦的關系.解題的關鍵是明確題意,利用數(shù)形結合的思想解答.3、【解析】【分析】曲線是由一段段90度的弧組成的,半徑每次比前一段弧半徑+1,到,,再計算弧長.【詳解】解:由圖可知,曲線是由一段段90度的弧組成的,半徑每次比前一段弧半徑+1,,,……,,,故的半徑為,的弧長=.故答案為:.【考點】此題主要考查了弧長的計算,弧長的計算公式:,找到每段弧的半徑變化規(guī)律是解題關鍵.4、【解析】【分析】設半徑為r,則,得到,由垂徑定理得到,再根據勾股定理,即可求出答案.【詳解】解:由題意,設半徑為r,則,∵,∴,∵是的直徑,弦于點E,∴點E是CD的中點,∵,∴,在直角△OCE中,由勾股定理得,即,解得:.故答案為:.【考點】本題考查了垂徑定理,勾股定理,解題的關鍵是熟練掌握垂徑定理和勾股定理進行解題.5、25【解析】【分析】先由切線的性質可得∠OAC=90°,再根據三角形的內角和定理可求出∠AOD=50°,最后根據“同弧所對的圓周角等于圓心角的一半”即可求出∠B的度數(shù).【詳解】解:∵是的切線,∴∠OAC=90°∵,∴∠AOD=50°,∴∠B=∠AOD=25°故答案為:25.【考點】本題考查了切線的性質和圓周角定理,掌握圓周角定理是解題的關鍵.三、解答題1、【解析】【分析】根據弧長的計算公式計算即可.【詳解】解:圓心角的度數(shù).【考點】本題考查弧長的計算,掌握弧長公式是解題的關鍵.2、(1)證明見解析;(2)理由見解析;(3)DE=7,CE=【解析】【分析】(1)根據正方形的性質,得AB=AD;根據圓周角的性質,得,結合DF=BE,即可完成證明;(2)由(1)結論得AF=AE,;結合∠BAD=90°,得∠EAF=90°,從而得到△EAF是等腰直角三角形,即EF=AE;最后結合DE-DF=EF,從而得到答案;(3)連接BD,將△CBE繞點C順時針旋轉90°至△CDH;結合題意,得∠CBE+∠CDE=180°,從而得到E,D,H三點共線;根據BC=CD,得,從而推導得∠BEC=∠DEC=45°,即△CEH是等腰直角三角形;再根據勾股定理的性質計算,即可得到答案.【詳解】(1)如圖,,,,在正方形ABCD中,AB=AD在△ADF和△ABE中∴△ADF≌△ABE(SAS);(2)由(1)結論得:△ADF≌△ABE∴AF=AE,∠3=∠4正方形ABCD中,∠BAD=90°∴∠BAF+∠3=90°∴∠BAF+∠4=90°∴∠EAF=90°∴△EAF是等腰直角三角形∴EF2=AE2+AF2∴EF2=2AE2∴EF=AE即DE-DF=AE∴DE-BE=AE;(3)連接BD,將△CBE繞點C順時針旋轉90°至△CDH∵四邊形BCDE內接于圓∴∠CBE+∠CDE=180°∴E,D,H三點共線在正方形ABCD中,∠BAD=90°∴∠BED=∠BAD=90°∵BC=CD∴∴∠BEC=∠DEC=45°∴△CEH是等腰直角三角形在Rt△BCD中,由勾股定理得BD=BC=5在Rt△BDE中,由勾股定理得:DE=在Rt△CEH中,由勾股定理得:EH2=CE2+CH2∴(ED+DH)2=2CE2,即(ED+BE)2=2CE2∴64=2CE2∴CE=4.【考點】本題考查了正方形、圓、等腰三角形、勾股定理、全等三角形、旋轉的知識;解題的關鍵是熟練掌握正方形、圓周角、正多邊形與圓、等腰三角形、勾股定理、全等三角形、旋轉的性質,從而完成求解.3、見解析【解析】【分析】證法一,在射線EA上截取,連接OD,OE,OF,OG,因為,所以,所以,,由圓的內接四邊形性質得,由AD,DC是半圓O的切線得,,,即,所以,同理,即可得出結論.證法二,在BO上截取,連接FM,OF.過點O作,交FM的延長線于點N,連接OE,OD,易證,,,所以.由圓的內接四邊形性質得,,所以.因為,所以,得,,所以,同理得,即可得出結論.【詳解】證法一如圖所示,與AD相切于點E,與BC相切于點F,在射線EA上截取,連接OD,OE,OF,OG,則易證.,.四邊形ABCD內接于圓,.AD,DC是半圓O的切線,,,,,,即,同理,.證法二如圖所示,與AD相切于點E,與BC相切于點F,在BO上截取,連接FM,OF.過點O作,交FM的延長線于點N,連接OE,OD.,.,,,,.,,.AD,DC是半圓O的切線,.四邊形ABCD內接于圓,,,.,,,,,同理,.【考點】本題主要考查了圓的內接四邊形性質、切線的性質,解題的關鍵是理清題意,正確作出輔助線.4、【解析】【分析】證出△DCO是等腰直角三角形,得出DC=CO,求出BO=2AB,連接AO,半徑AO=5,再根據勾股定理列方程,即可求出AB的長.【詳解】解:∵四邊形ABCD是正方形,∴∠ABC=∠BCD=90°,AB=BC=CD,∴∠DCO=90°,又∵∠POM=45°,∴∠CDO=45°,∴CD=CO,∴BO=BC+CO=BC+CD,∴BO=2AB,連接AO,如圖:∵MN=10,∴AO=5,又∵在Rt△ABO中,AB2+BO2=AO2,∴AB2+(2AB)2=52,解得:AB=,則正方形ABCD的邊長為.【考點】此題考查了正方形的性質和等腰直角三角形的性質,解題的關鍵是證出△DCO是等腰直角三角形,得出BO=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 房屋建筑材料采購與供應鏈管理方案
- 智算中心多層次數(shù)據備份與災備方案
- 低空經濟環(huán)境保護技術方案
- 隧道施工風險控制與應對方案
- 建設工程進度控制與調度方案
- 測試軟件筆試題目及答案
- 2025年人力專員面試題目及答案
- 未來足球答題題庫及答案
- 2025福建龍巖市上杭縣文化旅游發(fā)展有限公司(上杭古田建設發(fā)展有限公司)所屬企業(yè)招聘人員擬聘用人選模擬試卷附答案詳解(黃金題型)
- 高層建筑消防安全施工方案
- 2025年物流行業(yè)審核合規(guī)性提升方案
- 臺球廳吸引人活動方案
- 2025年產業(yè)規(guī)模預測新能源產業(yè)發(fā)展趨勢深度分析方案
- 架空輸電線路線路檢測質量缺陷及預控措施
- 人工智能與核醫(yī)學的深度融合與應用探索
- 女生青春期性教育核心知識框架
- 日常膝關節(jié)護理
- 船舶消防救生培訓課件
- 初中音標考試題及答案大全人教版
- 貴州貴州磷化有限責任公司招聘筆試真題2024
- 新能源汽車火災事故成因分析及滅火救援措施
評論
0/150
提交評論