




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
人教版8年級數(shù)學(xué)上冊《全等三角形》達(dá)標(biāo)測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,已知,,,則的長為(
)A.7 B.3.5 C.3 D.22、如圖,,,要使,直接利用三角形全等的判定方法是A.AAS B.SAS C.ASA D.SSS3、已知銳角,如圖,(1)在射線上取點,,分別以點為圓心,,長為半徑作弧,交射線于點,;(2)連接,交于點.根據(jù)以上作圖過程及所作圖形,下列結(jié)論錯誤的是(
)A. B.C.若,則 D.點在的平分線上4、作的平分線時,以O(shè)為圓心,某一長度為半徑作弧,與OA,OB分別相交于C,D,然后分別以C,D為圓心,適當(dāng)?shù)拈L度為半徑作弧使兩弧在的內(nèi)部相交于一點,則這個適當(dāng)?shù)拈L度(
)A.大于 B.等于 C.小于 D.以上都不對5、下列說法正確的是(
)①近似數(shù)精確到十分位;②在,,,中,最小的是;③如圖所示,在數(shù)軸上點所表示的數(shù)為;④用反證法證明命題“一個三角形最多有一個鈍角”時,首先應(yīng)假設(shè)“這個三角形中有兩個鈍角”;⑤如圖,在內(nèi)一點到這三條邊的距離相等,則點是三個角平分線的交點.A.1 B.2 C.3 D.4第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、已知:如圖,AC=DC,∠1=∠2,請?zhí)砑右粋€已知條件:_____,使ABCDEC.2、如圖是由九個邊長為1的小正方形拼成的大正方形,圖中∠1+∠2+∠3+∠4+∠5的度數(shù)為______.3、在△ABC中,∠C=90°,AD是△ABC的角平分線,BC=6、AC=8、AB=10,則點D到AB的距離為_______.4、如圖,在和中,,,,,以點為頂點作,兩邊分別交,于點,,連接,則的周長為______.5、如圖,是一個中心對稱圖形,A為對稱中心,若,則________,________.三、解答題(5小題,每小題10分,共計50分)1、如圖,在中,D是邊上的點,,垂足分別為E,F(xiàn),且.求證:.2、如圖,在中,,點在邊上,使,過點作,分別交于點,交的延長線于點.求證:.3、已知如圖,△ABC中,AB=AC,D、E分別是AC、AB上的點,M、N分別是CE、BD上的點,若MA⊥CE,AN⊥BD,AM=AN.求證:EM=DN.4、如圖,已知在中,,,求證:.5、如圖,在△ABC中∠ABC=45°,AD⊥BC于點D,點E為AD上的一點,且BE=AC,延長BE交AC于點F,連接FD.(1)求證:△BED≌△ACD;(2)若FC=c,F(xiàn)B=b,求的值.(用含a,b的式子表示)-參考答案-一、單選題1、C【解析】【分析】利用全等三角形的性質(zhì)求解即可.【詳解】解:∵△ABC≌△DAE,∴AC=DE=5,AE=BC=2,∴CE=AC-AE=3,故選C.【考點】本題主要考查了全等三角形的性質(zhì),熟知全等三角形對應(yīng)邊相等是解題的關(guān)鍵.2、B【解析】【分析】根據(jù)平行線性質(zhì)得出∠ABD=∠CDB,再加上AB=DC,BD=DB,根據(jù)全等三角形的判定定理SAS即可推出△ABD≌△CDB,從而推出∠A=∠C,即可得出答案.【詳解】,,在和中,,≌,,故選B.【考點】本題考查了平行線性質(zhì)、全等三角形的判定與性質(zhì)的應(yīng)用,熟練掌握全等三角形的判定與性質(zhì)定理是解題的關(guān)鍵.3、C【解析】【分析】根據(jù)題意可知,即可推斷結(jié)論A;先證明,再證明即可證明結(jié)論B;連接OP,可證明可證明結(jié)論D;由此可知答案.【詳解】解:由題意可知,,,故選項A正確,不符合題意;在和中,,,在和中,,,,故選項B正確,不符合題意;連接OP,,,在和中,,,,點在的平分線上,故選項D正確,不符合題意;若,,則,而根據(jù)題意不能證明,故不能證明,故選項C錯誤,符合題意;故選:C.【考點】本題考查角平分線的判定,全等三角形的判定與性質(zhì),明確以某一半徑畫弧時,準(zhǔn)確找到相等的線段是解題的關(guān)鍵.4、A【解析】【分析】根據(jù)作已知角的角平分線的方法即可判斷.【詳解】因為分別以C,D為圓心畫弧時,要保證兩弧在的內(nèi)部交于一點,所以半徑應(yīng)大于,故選:A.【考點】本題考查了作圖-基本作圖:熟練掌握5種基本作圖(作一條線段等于已知線段;作一個角等于已知角;作已知線段的垂直平分線;作已知角的角平分線;過一點作已知直線的垂線).5、B【解析】【分析】根據(jù)近似數(shù)的精確度定義,可判斷①;根據(jù)實數(shù)的大小比較,可判斷②;根據(jù)點在數(shù)軸上所對應(yīng)的實數(shù),即可判斷③;根據(jù)反證法的概念,可判斷④;根據(jù)角平分線的性質(zhì),可判斷⑤.【詳解】①近似數(shù)精確到十位,故本小題錯誤;②,,,,最小的是,故本小題正確;③在數(shù)軸上點所表示的數(shù)為,故本小題錯誤;④用反證法證明命題“一個三角形最多有一個鈍角”時,首先應(yīng)假設(shè)“這個三角形中有兩個鈍角或三個鈍角”,故本小題錯誤;⑤在內(nèi)一點到這三條邊的距離相等,則點是三個角平分線的交點,故本小題正確.故選B【考點】本題主要考查近似數(shù)的精確度定義,實數(shù)的大小比較,點在數(shù)軸上所對應(yīng)的實數(shù),反證法的概念,角平分線的性質(zhì),熟練掌握上述知識點,是解題的關(guān)鍵.二、填空題1、【解析】【分析】已知給出了∠1=∠2,可得三角形中一對應(yīng)角相等,又有一邊對應(yīng)相等,根據(jù)邊角邊判定定理,補充BC=AC可得ABCDEC答案可得.【詳解】解:∵∠1=∠2,∴∠BCA=∠ECD,又AC=DC,添加BC=CE,∴ABCDEC(SAS).故答案為:BC=EC.【考點】此題考查了三角形全等的判定方法;判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.解題的關(guān)鍵是添加時注意:AAA、SSA不能判定兩個三角形全等,不能添加,根據(jù)已知結(jié)合圖形及判定方法選擇條件.2、225°【解析】【分析】首先判定△ABC≌△AEF,△ABD≌△AEH,可得∠5=∠BCA,∠4=∠BDA,然后可得∠1+∠5=∠1+∠BCA=90°,∠2+∠4=∠2+∠BDA=90°,即可求得∠1+∠2+∠3+∠4+∠5的值.【詳解】解:如圖所示:在△ABC和△AEF中,∴△ABC≌△AEF(SAS),∴∠5=∠BCA,∴∠1+∠5=∠1+∠BCA=90°,在Rt△ABD和Rt△AEH中,∴Rt△ABD≌Rt△AEH(HL),∴∠4=∠BDA,∴∠2+∠4=∠2+∠BDA=90°,∵∠3=45°,∴∠1+∠2+∠3+∠4+∠5=90°+90°+45°=225°.故答案為:225°.【考點】此題主要考查了全等三角形的判定和性質(zhì),關(guān)鍵是掌握全等三角形的性質(zhì):全等三角形對應(yīng)角相等即可求解.3、或【解析】【分析】作DE⊥AB于E,如圖,先根據(jù)勾股定理計算出BC=8,再利用角平分線的性質(zhì)得到DE=DC,設(shè)DE=DC=x,利用面積法得到10x=6(8-x),然后解方程即可.【詳解】解:作DE⊥AB于E,如圖,∵AD是△ABC的一條角平分線,DC⊥AC,DE⊥AB,∴DE=DC,設(shè)DE=DC=x,S△ABD=DE?AB=AC?BD,即10x=8(6-x),解得x=,即點D到AB邊的距離為.故答案為:.【考點】本題考查了角平分線的性質(zhì):角的平分線上的點到角的兩邊的距離相等,由已知能夠注意到D到AB的距離即為DE長是解決的關(guān)鍵.4、4【解析】【分析】延長AC至E,使CE=BM,連接DE.證明△BDM≌△CDE(SAS),得出MD=ED,∠MDB=∠EDC,證明△MDN≌△EDN(SAS),得出MN=EN=CN+CE,進(jìn)而得出答案.【詳解】延長AC至E,使CE=BM,連接DE.∵BD=CD,且∠BDC=140°,∴∠DBC=∠DCB=20°,∵∠A=40°,AB=AC=2,∴∠ABC=∠ACB=70°,∴∠MBD=∠ABC+∠DBC=90°,同理可得∠NCD=90°,∴∠ECD=∠NCD=∠MBD=90°,在△BDM和△CDE中,,∴△BDM≌△CDE(SAS),∴MD=ED,∠MDB=∠EDC,∴∠MDE=∠BDC=140°,∵∠MDN=70°,∴∠EDN=70°=∠MDN,在△MDN和△EDN中,,∴△MDN≌△EDN(SAS),∴MN=EN=CN+CE,∴△AMN的周長=AM+MN+AN=AM+CN+CE+AN=AM+AN+CN+BM=AB+AC=4;故答案為:4.【考點】本題考查了全等三角形的判定與性質(zhì)、等腰三角形的性質(zhì)等知識;構(gòu)造輔助線證明三角形全等是解題的關(guān)鍵.5、
30°
2【解析】【分析】根據(jù)中心對稱圖形的性質(zhì),得到,再由全等三角形的性質(zhì)解題即可.【詳解】解:∵A為對稱中心,∴繞點A旋轉(zhuǎn)能與重合,∴,∴,,∴.【考點】本題考查中心對稱圖形的性質(zhì)、全等三角形的性質(zhì)等知識,是基礎(chǔ)考點,掌握相關(guān)知識是解題關(guān)鍵.三、解答題1、見解析【解析】【分析】由得出,由SAS證明,得出對應(yīng)角相等即可.【詳解】證明:∵,∴.在和中,∴,∴.【考點】本小題考查垂線的性質(zhì)、全等三角形的判定與性質(zhì)、等基礎(chǔ)知識,考查推理能力、空間觀念與幾何直觀.2、詳見解析【解析】【分析】根據(jù)得出,再根據(jù),故,證明≌即可證明.【詳解】∵,∴.∵,∴.在和中,,∴≌(AAS),∴.【考點】本題考查了直角三角形兩銳角互余以及三角形全等的判定和性質(zhì),熟練掌握直角三角形兩銳角互余以及三角形全等的判定和性質(zhì)是解題的關(guān)鍵.3、見解析.【解析】【分析】首先由已知證明Rt△BAN≌Rt△CAM,得到∠ABN=∠ACM,BN=CM,再根據(jù)ASA證明△ABD≌△ACE,得到BD=CE,由此可得CE-CM=BD-BN,即EM=DN.【詳解】證明:在Rt△BAN和Rt△CAM中,,所以Rt△BAN≌Rt△CAM(HL),∴∠ABN=∠ACM,BN=CM,在△ABD和△ACE中,,∴△ABD≌△ACE(ASA),∴BD=CE,∴CE-CM=BD-BN,即EM=DN.【考點】本題主要考查了三角形全等的判定和性質(zhì),熟練掌握判定定理和性質(zhì)定理并能靈活運用是解題關(guān)鍵.4、見解析.【解析】【分析】證明,為三角形的全等提供條件即可.【詳解】證明:,,,,,在和中,≌(ASA).【考點】本題考查了ASA證明
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025(抵押)反擔(dān)保合同
- 2025杭州市家具買賣合同范本
- 梧州網(wǎng)簽合同范本
- 建筑施工合同范本詳解
- 店鋪臨時聘用合同范本
- 委托培訓(xùn)員工合同范本
- 國家設(shè)計服務(wù)合同范本
- 包裝資料銷毀合同范本
- 旅社整體出租合同范本
- 購房帶裝修 合同范本
- 高速天橋拆除方案(3篇)
- 第1課 鴉片戰(zhàn)爭 課件 歷史統(tǒng)編版2024八年級上冊
- 2025年中國冷鏈物流行業(yè)投資前景分析、未來發(fā)展趨勢研究報告(智研咨詢發(fā)布)
- 2025合作合同范本下載
- 手外傷急救診療流程標(biāo)準(zhǔn)化
- 農(nóng)村土地托管培訓(xùn)課件
- 老年專科護(hù)士學(xué)習(xí)培訓(xùn)匯報
- 基孔肯雅熱防控培訓(xùn)課件
- 公司崗位補助管理辦法
- 游戲與兒童發(fā)展課件
- 捐贈助學(xué)活動方案
評論
0/150
提交評論