難點解析江西省德興市中考數(shù)學(xué)過關(guān)檢測試卷及參考答案詳解(滿分必刷)_第1頁
難點解析江西省德興市中考數(shù)學(xué)過關(guān)檢測試卷及參考答案詳解(滿分必刷)_第2頁
難點解析江西省德興市中考數(shù)學(xué)過關(guān)檢測試卷及參考答案詳解(滿分必刷)_第3頁
難點解析江西省德興市中考數(shù)學(xué)過關(guān)檢測試卷及參考答案詳解(滿分必刷)_第4頁
難點解析江西省德興市中考數(shù)學(xué)過關(guān)檢測試卷及參考答案詳解(滿分必刷)_第5頁
已閱讀5頁,還剩21頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

江西省德興市中考數(shù)學(xué)過關(guān)檢測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、將拋物線C1:y=(x-3)2+2向左平移3個單位長度,得到拋物線C2,拋物線C2與拋物線C3關(guān)于x軸對稱,則拋物線C3的解析式為().A.y=x2-2 B.y=-x2+2 C.y=x2+2 D.y=-x2-22、如圖,正五邊形內(nèi)接于⊙,為上的一點(點不與點重合),則的度數(shù)為(

)A. B. C. D.3、一元二次方程,用配方法解該方程,配方后的方程為()A. B.C. D.4、三孔橋橫截面的三個孔都呈拋物線形,兩小孔形狀、大小完全相同.當(dāng)水面剛好淹沒小孔時,大孔水面寬度為10米,孔頂離水面1.5米;當(dāng)水位下降,大孔水面寬度為14米時,單個小孔的水面寬度為4米,若大孔水面寬度為20米,則單個小孔的水面寬度為()A.4米 B.5米 C.2米 D.7米5、為了解某地區(qū)九年級男生的身高情況,隨機抽取了該地區(qū)1000名九年級男生的身高數(shù)據(jù),統(tǒng)計結(jié)果如下.身高人數(shù)60260550130根據(jù)以上統(tǒng)計結(jié)果,隨機抽取該地區(qū)一名九年級男生,估計他的身高不低于的概率是(

)A.0.32 B.0.55 C.0.68 D.0.87二、多選題(5小題,每小題3分,共計15分)1、請觀察下列美麗的圖案,你認(rèn)為既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.2、一個兩位數(shù),十位數(shù)字與個位數(shù)字之和是5,把這個數(shù)的個位數(shù)字與十位數(shù)字對調(diào)后,所得的新的兩位數(shù)與原來的兩位數(shù)的乘積是736,原來的兩位數(shù)是(

)A.23 B.32 C. D.3、下列說法正確的是(

)A.圓是軸對稱圖形,它有無數(shù)條對稱軸B.圓的半徑、弦長的一半、弦上的弦心距能組成一個直角三角形,且圓的半徑是此直角三角形的斜邊C.弦長相等,則弦所對的弦心距也相等D.垂直于弦的直徑平分這條弦,并且平分弦所對的弧4、下列命題不正確的是(

)A.三角形的內(nèi)心到三角形三個頂點的距離相等B.三角形的內(nèi)心不一定在三角形的內(nèi)部C.等邊三角形的內(nèi)心,外心重合D.一個圓一定有唯一一個外切三角形5、下列圖案中,是中心對稱圖形的是(

)A. B. C. D.第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、若點A(m,5)與點B(-4,n)關(guān)于原點成中心對稱,則m+n=________.2、如圖,,,是上的三個點,四邊形是平行四邊形,連接,,若,則_____.3、如圖,在中,的半徑為點是邊上的動點,過點作的一條切線(其中點為切點),則線段長度的最小值為____.4、如圖,,,以為直徑作半圓,圓心為點;以點為圓心,為半徑作,過點作的平行線交兩弧于點、,則陰影部分的面積是________.5、如圖,直線y=﹣x+6與x軸、y軸分別交于A、B兩點,點P是以C(﹣1,0)為圓心,1為半徑的圓上一點,連接PA,PB,則△PAB面積的最大值為_____.四、解答題(6小題,每小題10分,共計60分)1、已知拋物線y=ax2+3ax+c(a≠0)與y軸交于點A(1)若a>0①當(dāng)a=1,c=-1,求該拋物線與x軸交點坐標(biāo);②點P(m,n)在二次函數(shù)拋物線y=ax2+3ax+c的圖象上,且n-c>0,試求m的取值范圍;(2)若拋物線恒在x軸下方,且符合條件的整數(shù)a只有三個,求實數(shù)c的最小值;(3)若點A的坐標(biāo)是(0,1),當(dāng)-2c<x<c時,拋物線與x軸只有一個公共點,求a的取值范圍.2、如圖,已知點在上,點在外,求作一個圓,使它經(jīng)過點,并且與相切于點.(要求寫出作法,不要求證明)3、用配方法解方程:.4、解下列方程:(1);(2).5、如圖,拋物線y=2(x-2)2與平行于x軸的直線交于點A,B,拋物線頂點為C,△ABC為等邊三角形,求S△ABC;6、某商場經(jīng)營某種品牌的玩具,購進的單價是30元,根據(jù)市場調(diào)查,在一段時間內(nèi),銷售單價是40元時,銷售量是600元,而銷售單價每漲1元,就會少售出10件玩具.(1)設(shè)該種品牌玩具的銷售單價為x元,請你分別用x的代數(shù)式來表示銷售量y件和銷售該品牌玩具獲利利潤W元;(2)在(1)的條件下,若商場獲利了10000元銷售利潤,求該玩具銷售單價x應(yīng)定為多少元?(3)在(1)的條件下,若玩具廠規(guī)定該品牌玩具銷售單價不低于45元,且商場要完成不少于480件的銷售任務(wù),求商場銷售該品牌玩具獲利的最大利潤是多少元?-參考答案-一、單選題1、D【解析】【分析】根據(jù)拋物線C1的解析式得到頂點坐標(biāo),利用二次函數(shù)平移的規(guī)律:左加右減,上加下減,并根據(jù)平移前后二次項的系數(shù)不變可得拋物線C2的頂點坐標(biāo),再根據(jù)關(guān)于x軸對稱的兩條拋物線的頂點橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù),二次項系數(shù)互為相反數(shù)可得到拋物線C3所對應(yīng)的解析式.【詳解】解:∵拋物線C1:y=(x-3)2+2,其頂點坐標(biāo)為(3,2)∵向左平移3個單位長度,得到拋物線C2∴拋物線C2的頂點坐標(biāo)為(0,2)∵拋物線C2與拋物線C3關(guān)于x軸對稱∴拋物線C3的橫坐標(biāo)不變,縱坐標(biāo)互為相反數(shù),二次項系數(shù)互為相反數(shù)∴拋物線C3的頂點坐標(biāo)為(0,-2),二次項系數(shù)為-1∴拋物線C3的解析式為y=-x2-2故選:D.【考點】本題主要考查了二次函數(shù)圖象的平移、對稱問題,熟練掌握平移的規(guī)律以及關(guān)于x軸對稱的兩條拋物線的頂點的橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù),二次項系數(shù)互為相反數(shù)是解題的關(guān)鍵.2、B【解析】【分析】根據(jù)圓周角的性質(zhì)即可求解.【詳解】連接CO、DO,正五邊形內(nèi)心與相鄰兩點的夾角為72°,即∠COD=72°,同一圓中,同弧或同弦所對應(yīng)的圓周角為圓心角的一半,故∠CPD=,故選B.【考點】此題主要考查圓內(nèi)接多邊形的性質(zhì),解題的關(guān)鍵是熟知圓周角定理的應(yīng)用.3、D【解析】【分析】按照配方法的步驟,移項,配方,配一次項系數(shù)一半的平方.【詳解】∵x2?2x?m=0,∴x2?2x=m,∴x2?2x+1=m+1,∴(x?1)2=m+1.故選D.【考點】此題考查了配方法解一元二次方程,解題時要注意解題步驟的準(zhǔn)確使用.4、B【解析】【分析】根據(jù)題意,可以畫出相應(yīng)的拋物線,然后即可得到大孔所在拋物線解析式,再求出頂點為A的小孔所在拋物線的解析式,將x=﹣10代入可求解.【詳解】解:如圖,建立如圖所示的平面直角坐標(biāo)系,由題意可得MN=4,EF=14,BC=10,DO=,設(shè)大孔所在拋物線解析式為y=ax2+,∵BC=10,∴點B(﹣5,0),∴0=a×(﹣5)2+,∴a=-,∴大孔所在拋物線解析式為y=-x2+,設(shè)點A(b,0),則設(shè)頂點為A的小孔所在拋物線的解析式為y=m(x﹣b)2,∵EF=14,∴點E的橫坐標(biāo)為-7,∴點E坐標(biāo)為(-7,-),

∴-=m(x﹣b)2,∴x1=+b,x2=-+b,∴MN=4,∴|+b-(-+b)|=4∴m=-,∴頂點為A的小孔所在拋物線的解析式為y=-(x﹣b)2,∵大孔水面寬度為20米,∴當(dāng)x=-10時,y=-,∴-=-(x﹣b)2,∴x1=+b,x2=-+b,∴單個小孔的水面寬度=|(+b)-(-+b)|=5(米),故選:B.【考點】本題考查二次函數(shù)的應(yīng)用,解答本題的關(guān)鍵是明確題意,利用二次函數(shù)的性質(zhì)和數(shù)形結(jié)合的思想解答.5、C【解析】【分析】先計算出樣本中身高不低于170cm的頻率,然后根據(jù)利用頻率估計概率求解.【詳解】解:樣本中身高不低于170cm的頻率,所以估計抽查該地區(qū)一名九年級男生的身高不低于170cm的概率是0.68.故選:C.【考點】本題考查了利用頻率估計概率:大量重復(fù)實驗時,事件發(fā)生的頻率在某個固定位置左右擺動,并且擺動的幅度越來越小,根據(jù)這個頻率穩(wěn)定性定理,可以用頻率的集中趨勢來估計概率,這個固定的近似值就是這個事件的概率.用頻率估計概率得到的是近似值,隨實驗次數(shù)的增多,值越來越精確.二、多選題1、AB【解析】【分析】根據(jù)軸對稱圖形(如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合)和中心對稱圖形(把一個圖形繞某一點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合)的定義進行判斷.【詳解】A選項:可以找到多條對稱軸,是軸對稱圖形;繞某一點旋轉(zhuǎn)180°,旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,是中心對稱圖形,所以符合題意;B選項:可以找到多條對稱軸,是軸對稱圖形;繞某一點旋轉(zhuǎn)180°,旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,是中心對稱圖形,所以符合題意;C選項:可以找到多條對稱軸,是軸對稱圖形;繞某一點旋轉(zhuǎn)180°,旋轉(zhuǎn)后的圖形不能夠與原來的圖形重合,不是中心對稱圖形,所以不符合題意;D選項:可以找到多條對稱軸,是軸對稱圖形;繞某一點旋轉(zhuǎn)180°,旋轉(zhuǎn)后的圖形不能夠與原來的圖形重合,不是中心對稱圖形,所以不符合題意.故選:AB.【考點】考查中心對稱圖形和軸對稱圖形的概念,解題關(guān)鍵是熟記其概念:把一個圖形繞某一點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形;如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形.2、AB【解析】【分析】設(shè)原來的兩位數(shù)十位上的數(shù)字為,則個位上的數(shù)字為,根據(jù)所得到的新兩位數(shù)與原來的兩位數(shù)的乘積為736,可列出方程求解即可.【詳解】解:設(shè)原來的兩位數(shù)十位上的數(shù)字為,則個位上的數(shù)字為,依題意可得:,解得:,,當(dāng)時,,符合題意,原來的兩位數(shù)是23,當(dāng)時,,符合題意,原來的兩位數(shù)是32,∴原來的兩位數(shù)是23或32,故選AB.【考點】本題考查了一元二次方程的應(yīng)用,解題的關(guān)鍵是能正確用每一數(shù)位上的數(shù)字表示這個兩位數(shù).3、ABD【解析】【分析】根據(jù)圓的相關(guān)知識和垂徑定理進行分析即可.【詳解】解:A.圓是軸對稱圖形,它有無數(shù)條對稱軸,正確;B.圓的半徑、弦長的一半、弦上的弦心距能組成一個直角三角形,且圓的半徑是此直角三角形的斜邊,正確;C.弦長相等,則弦所對的弦心距也相等,不正確,只有在同圓或等圓中,弦長相等,則弦所對的弦心距也相等;D.垂直于弦的直徑平分這條弦,并且平分弦所對的弧,正確.故選:ABD.【考點】本題考查了學(xué)生對圓的基本概念和垂徑定理的理解,屬于基礎(chǔ)題.4、ABD【解析】【分析】根據(jù)三角形內(nèi)心的定義和圓的外切三角形的定義判斷即可.【詳解】解:A、三角形的內(nèi)心是三個內(nèi)角平分線的交點,內(nèi)心到三角形三邊的距離相等,錯誤,該選項符合題意;B、三角形的內(nèi)心是三個內(nèi)角平分線的交點,三角形的內(nèi)心一定在三角形的內(nèi)部,錯誤,該選項符合題意;C、等邊三角形的內(nèi)心,外心重合,正確,該選項不符合題意;D、經(jīng)過圓上的三點作圓的切線,三條切線相交,即可得到圓的一個外切三角形,所以一個圓有無數(shù)個外切三角形,錯誤,該選項符合題意;故選:ABD.【考點】本題主要考查了內(nèi)心和外心以及命題的真假判斷,正確的命題叫真命題,錯誤的命題叫做假命題.判斷命題的真假關(guān)鍵是要熟悉課本中的定義與定理.5、ABD【解析】【分析】在平面內(nèi),把一個圖形繞著某個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形與另一個圖形重合,這個圖形就是中心對稱圖形,根據(jù)定義判斷即可.【詳解】、是中心對稱圖形,選項正確;B、是中心對稱圖形,選項正確;C、不是中心對稱圖形,選項錯誤;D、是中心對稱圖形,選項正確.故選:ABD【考點】本題考查中心對稱圖形的定義,牢記定義是解題關(guān)鍵.三、填空題1、【解析】【分析】根據(jù)關(guān)于原點對稱的點的坐標(biāo)特征:關(guān)于原點對稱的點,橫縱坐標(biāo)都互為相反數(shù),進行求解即可.【詳解】解:∵點A(m,5)與點B(-4,n)關(guān)于原點成中心對稱,∴m=4,n=-5,∴m+n=-5+4=-1,故答案為:-1.【考點】本題主要考查了關(guān)于原點對稱點的坐標(biāo)特征,代數(shù)式求值,熟知關(guān)于原點對稱的點的坐標(biāo)特征是解題的關(guān)鍵.2、64【解析】【分析】先根據(jù)圓周角定理求出∠O的度數(shù),然后根據(jù)平行四邊形的對角相等求解即可.【詳解】∵,∴∠O=2,∵四邊形是平行四邊形,∴∠O=.故答案為:64.【考點】本題考查了圓周角定理,平行四變形的性質(zhì),熟練掌握圓周角定理是解答本題的關(guān)鍵.在同圓或等圓中,同弧或等弧所對的圓周角等于這條弧所對的圓心角的一半.3、【解析】【分析】如圖:連接OP、OQ,根據(jù),可得當(dāng)OP⊥AB時,PQ最短;在中運用含30°的直角三角形的性質(zhì)和勾股定理求得AB、AQ的長,然后再運用等面積法求得OP的長,最后運用勾股定理解答即可.【詳解】解:如圖:連接OP、OQ,∵是的一條切線∴PQ⊥OQ∴∴當(dāng)OP⊥AB時,如圖OP′,PQ最短在Rt△ABC中,∴AB=2OB=,AO=cos∠A·AB=∵S△AOB=∴,即OP=3在Rt△OPQ中,OP=3,OQ=1∴PQ=.故答案為.【考點】本題考查了切線的性質(zhì)、含30°直角三角形的性質(zhì)、勾股定理等知識點,此正確作出輔助線、根據(jù)勾股定理確定當(dāng)PO⊥AB時、線段PQ最短是解答本題的關(guān)鍵.4、【解析】【分析】連接CE,如圖,利用平行線的性質(zhì)得∠COE=∠EOB=90°,再利用勾股定理計算出OE=,利用余弦的定義得到∠OCE=60°,然后根據(jù)扇形面積公式,利用S陰影部分=S扇形BCE?S△OCE?S扇形BOD進行計算即可.【詳解】解:連接CE,如圖,∵AC⊥BC,∴∠ACB=90°,∵AC∥OE,∴∠COE=∠EOB=90°,∵OC=1,CE=2,∴OE=,cos∠OCE=,∴∠OCE=60°,∴S陰影部分=S扇形BCE?S△OCE?S扇形BOD=,故答案為.【考點】本題考查了扇形面積的計算:求陰影面積的主要思路是將不規(guī)則圖形面積轉(zhuǎn)化為規(guī)則圖形的面積.5、32【解析】【分析】如圖,作CH⊥AB于H交⊙O于E、F,求出A、B的坐標(biāo),根據(jù)勾股定理求出AB,再由S△ABC=AB?CH=OB?AC求出點C到AB的距離CH,即可求出圓C上點到AB的最大距離,根據(jù)面積公式求出即可.【詳解】如圖,作CH⊥AB于H交⊙O于E、F,∵直線y=﹣x+6與x軸、y軸分別交于A、B兩點,∴當(dāng)y=0時,可得0=﹣x+6,解得:x=8,∴A(8,0),當(dāng)x=0時,得y=6,∴B(0,6),∴OA=8,OB=6,∴=10,∵C(﹣1,0),∴AC=8+1=9,∴S△ABC=AB?CH=OB?AC,∴,∴CH=5.4,∴FH=CH+CF=5.4+1=6.4,即⊙C上到AB的最大距離為6.4,∴△PAB面積的最大值=×10×6.4=32,故答案為32.【考點】本題考查了三角形的面積,勾股定理、三角形等面積法求高、求圓心到直線的距離等知識,解此題的關(guān)鍵是求出圓上的點到直線AB的最大距離.四、解答題1、(1)①,,,②m>0或m<-3(2)-9(3)或或【解析】【分析】(1)當(dāng),時,,令時,求解方程的解即可;②將P(m,n)代入y=ax2+3ax+c中,要使n-c>0,即可得,解出不等式即可;(2)根據(jù)拋物線恒在x軸下方,可得,求出a的取值范圍,根據(jù)符合條件的整數(shù)a只有三個,判斷并求出c的取值范圍,從而求出c的最小值;(3)根據(jù)點A的坐標(biāo)得到拋物線解析式為,然后根據(jù)-2c<x<c時,拋物線與x軸只有一個公共點,分三種情況:①當(dāng)時,②當(dāng)時,③當(dāng)時,進行分類討論求出符合題意的a的取值范圍.(1)解:①當(dāng),時,,當(dāng)時,,解得:,,拋物線與軸的交點坐標(biāo),,,;②,,,,解得:或;(2)解:∵拋物線恒在x軸下方,,解得:,∵符合條件的整數(shù)a只有三個,,解得:,的最小值為,(3)解:∵點A的坐標(biāo)是(0,1),,,又∵當(dāng)時,拋物線與x軸只有一個公共點,當(dāng)時,,當(dāng)時,,①當(dāng)時,,解得:,或者,無解②當(dāng)時,,無解,或者,解得:,③當(dāng)時,解得:,此時,,令時,則,解得:,,符合題意,綜合上述可知:a的取值范圍為:或或.【考點】此題主要考查的是函數(shù)圖象與x軸的交點問題,在x的取值范圍內(nèi),根據(jù)交點個數(shù)進行分類討論,從而求出a的取值范圍.2、見解析【解析】【分析】先確定圓心,再確定圓的半徑,畫圓即可.【詳解】解:如圖,①連接、,②作線段的垂直平分線交的延長線于一點,交點即為,③以為圓心,或的長度為半徑作圓,④即為所求.【考點】本題考查了確定圓的條件和相切兩圓的性質(zhì),作圖是難點,注:確定圓,即確定圓心和半徑.3、x1=+3,x2=﹣3.【解析】【分析】根據(jù)配方法,兩邊配上一次項系數(shù)一半的平方即可得到,然后利用直接開平方法求解.【詳解】解:x2-2x=4,x2-2x+5=4+5,即(x-)2=9,∴x-=±3,∴x1=+3,x2=﹣3.【考點】本題主要考查配方法解一元二次方程,掌握配方法解一元二次方程的方法與步驟是解題關(guān)鍵.4、(1),(2),【解析】【分析】(1)將分解因式得到(x-2)(x-4)=0,得到x-2=0,x-4=0,解得,;(2)將化簡得到,分解因式得到(x-3)(x+1)=0,得到x-3=0,x+1=0,求出,.(1),(x-2)(x-4)=0,x-2=0,x-4=0,x=2或x=4,∴,;(2)(2).,(x-3)(x+1)=0,x-3=0,x+1=0,x=3或x=-1,∴,.【考點】本題考查了解一元二次方程,解決問題的關(guān)鍵是把方程化成一般形式,用分解因式的方法解答.5、【解析】【分析】過B作BP⊥x軸交于點P,連接AC,BC,由拋物線y=得C(2,0),于是得到對稱軸為直線x=2,設(shè)B(m,n),根據(jù)△ABC是等邊三角形,得到BC=AB=2m-4,∠BCP=∠ABC=60°,求出PB=PC=(m-2),由于PB=n=,于是得到(m

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論