




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
北師大版9年級數(shù)學上冊期末測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題24分)一、單選題(6小題,每小題2分,共計12分)1、下列說法中不正確的是()A.任意兩個等邊三角形相似 B.有一個銳角是40°的兩個直角三角形相似C.有一個角是30°的兩個等腰三角形相似 D.任意兩個正方形相似2、一個圓柱體鋼塊,正中央被挖去了一個長方體孔,其俯視圖如圖所示.則此圓柱體鋼塊的主視圖可能是下列選項中的(
)A. B. C. D.3、下圖是由六個相同的小正方體搭成的幾何體,這個幾何體從正面看到的圖形是()A.A B.B C.C D.D4、反比例函數(shù)圖象的兩個分支分別位于第一、三象限,則一次函數(shù)的圖象大致是(
)A. B.C. D.5、如圖,點A是反比例函數(shù)圖象上的一點,過點A作軸,垂足為點C,D為AC的中點,若的面積為1,則k的值為()A. B. C.3 D.46、直角三角形的面積為,斜邊上的中線為,則這個三角形周長為(
)A. B.C. D.二、多選題(6小題,每小題2分,共計12分)1、下列說法中,正確的是(
)A.兩角對應相等的兩個三角形相似B.兩邊對應成比例的兩個三角形相似C.兩邊對應成比例且夾角相等的兩個三角形相似D.三邊對應成比例的兩個三角形相似2、如圖,在直角坐標系中,直線y1=2x﹣2與坐標軸交于A、B兩點,與雙曲線y2=(x>0)交于點C,過點C作CD⊥x軸,垂足為D,且OA=AD,則以下結論中正確的是(
)A.S△ADB=S△ADC;B.當0<x<3時,y1<y2;C.如圖,當x=3時,EF=;D.當x>0時,y1隨x的增大而增大,y2隨x的增大而減?。?、如圖,點P在函數(shù)(x>0,k>2,k為常數(shù))的圖象上,PC⊥x軸交的圖象于點A,PD⊥y軸于點D,交,當點P在(x>0,k>2,k為常數(shù))的圖象上運動時(
)A.ODB與OCA的面積相等 B.四邊形PAOB的面積不會發(fā)生變化C.PA與PB始終相等 D.4、下列方程一定不是一元二次方程的是(
)A. B.C. D.5、如圖,在四邊形ABCD中,∠B=∠C,AB=3,CD=2,BC=6,點P是邊BC上的動點,若△ABP與△CDP相似,則BP=(
)A.3.6 B.C. D.2.46、如圖,將等邊△ABC繞點C順時針旋轉120°得到△EDC,連接AD,BD.則下列結論中正確的是()A.AC=AD B.BD⊥AC C.四邊形ACED是菱形 D.∠ADC=60°第Ⅱ卷(非選擇題76分)三、填空題(8小題,每小題2分,共計16分)1、如圖,在平面直角坐標系中,長方形OABC的邊OA在x軸上,OC在y軸上,OA=1,OC=2,對角線AC的垂直平分線交AB于點E,交AC于點D.若y軸上有一點P(不與點C重合),能使△AEP是以為AE為腰的等腰三角形,則點P的坐標為____.2、對任意實數(shù)a,b,定義一種運算:,若,則x的值為_________.3、如圖,正方形ABCO的邊長為,OA與x軸正半軸的夾角為15°,點B在第一象限,點D在x軸的負半軸上,且滿足∠BDO=15°,直線y=kx+b經(jīng)過B、D兩點,則b﹣k=_____.4、已知關于的方程的一個根是,則____.5、如圖,小明用相似圖形的知識測量旗桿高度,已知小明的眼睛離地面1.5米,他將3米長的標桿豎直放置在身前3米處,此時小明的眼睛、標桿的頂端、旗桿的頂端在一條直線上,通過計算測得旗桿高度為15米,則旗桿和標桿之間距離CE長___________米.6、如圖,在△ABC中,∠A=30°,∠B=90°,D為AB中點,E在線段AC上,,則_____.7、正方形ABCD的邊長為1,點P為對角線AC上任意一點,PE⊥AD,PF⊥CD,垂足分別是E,F(xiàn).則PE+PF=_____.8、如圖,在平行四邊形ABCD中,,,,分別以A,C為圓心,大于的長為半徑畫弧,兩弧相交于點M,N,過M,N兩點作直線,與BC交于點E,與AD交于點F,連接AE,CF,則四邊形AECF的周長為______.四、解答題(6小題,每小題10分,共計60分)1、如圖,在平行四邊形ABCD中,BE⊥AD,BF⊥CD,垂足分別為E,F(xiàn),且AE=CF.(1)求證:平行四邊形ABCD是菱形;(2)若DB=10,AB=13,求平行四邊形ABCD的面積.2、如圖,平行四邊形的對角線、相較于點O,且,,.求證:四邊形是矩形.3、如圖,已知正方形點在邊上,以為邊在左側作正方形;以為鄰邊作平行四邊形連接.(1)判斷和的數(shù)量及位置關系,并說明理由;(2)將繞點順時針旋轉,在旋轉過程中,和的數(shù)量及位置關系是否發(fā)生變化?請說明理由.4、已知:如圖所示,在△ABC中,∠B=90°,AB=5cm,BC=7cm,點P從點A開始沿AB邊向點B以1cm/s的速度移動,點Q從點B開始沿BC邊向點C以2cm/s的速度移動,當其中一點到達終點后,另外一點也隨之停止運動.(1)如果P、Q分別從A、B同時出發(fā),那么幾秒后,△PBQ的面積等于4cm2?(2)在(1)中,△PQB的面積能否等于7cm2?請說明理由.5、端午節(jié)是我國的傳統(tǒng)節(jié)日,益民食品廠為了解市民對去年銷量較好的花生粽子、水果粽子、豆沙粽子、紅棗粽子(分別用A、B、C、D表示)這四種不同口味的粽子的喜愛情況,對某居民區(qū)的市民進行了抽樣調查,并根據(jù)調查結果繪制了如下兩幅不完整的統(tǒng)計圖.(1)本次參加抽樣調查的居民有多少人?(2)將兩幅統(tǒng)計圖補充完整;(3)小明喜歡吃花生粽子和紅棗粽子,媽媽為他準備了四種粽子各一個,請用“列表法”或“畫樹形圖”的方法,求出小明同時選中花生粽子和紅棗粽子的概率.6、某公司前年繳稅40萬元,今年繳稅48.4萬元.該公司繳稅的年均增長率為多少?-參考答案-一、單選題1、C【解析】【分析】直接利用相似圖形的性質分別分析得出答案.【詳解】A.任意兩個等邊三角形相似,說法正確;B.有一個銳角是40°的兩個直角三角形相似,說法正確;C.有一個角是30°的兩個等腰三角形相似,30°有可能是頂角或底角,故說法錯誤;D.任意兩個正方形相似,說法正確.故選:C.【考點】本題主要考查了圖形的相似,正確把握相似圖形的判定方法是解題關鍵.2、C【解析】【分析】主視圖是從物體正面看所得到的圖形.幾何體看得見部分的輪廓線畫成實線,被其他部分遮擋而看不見的部分的輪廓線化成虛線.【詳解】解:此圓柱體鋼塊的主視圖可能是:故選:C.【考點】本題考查簡單組合體的三視圖,畫三視圖時注意“長對正,寬相等,高平齊”,被其他部分遮擋而看不見的部分的輪廓線化成虛線.3、B【解析】【分析】主視圖就是從正面看到的視圖.【詳解】從正面看,一層三個正方形,左側由三層正方形.故選B【考點】本題考查了三視圖的知識,左視圖是從物體的左面看得到的視圖.4、D【解析】【分析】根據(jù)題意可得,進而根據(jù)一次函數(shù)圖像的性質可得的圖象的大致情況.【詳解】反比例函數(shù)圖象的兩個分支分別位于第一、三象限,∴一次函數(shù)的圖象與y軸交于負半軸,且經(jīng)過第一、三、四象限.觀察選項只有D選項符合.故選D【考點】本題考查了反比例函數(shù)的性質,一次函數(shù)圖像的性質,根據(jù)已知求得是解題的關鍵.5、D【解析】【分析】先設出點A的坐標,進而表示出點D的坐標,利用△ADO的面積建立方程求出,即可得出結論.【詳解】點A的坐標為(m,2n),∴,∵D為AC的中點,∴D(m,n),∵AC⊥軸,△ADO的面積為1,∴,∴,∴,故選:D.【考點】本題考查反比例函數(shù)系數(shù)k的幾何意義、反比例函數(shù)圖象上點的坐標特征,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用反比例函數(shù)的性質解答.6、D【解析】【分析】根據(jù)直角三角形的性質求出斜邊長,根據(jù)勾股定理、完全平方公式計算即可.【詳解】解:設直角三角形的兩條直角邊分別為x、y,∵斜邊上的中線為d,∴斜邊長為2d,由勾股定理得,x2+y2=4d2,∵直角三角形的面積為S,∴,則2xy=4S,即(x+y)2=4d2+4S,∴∴這個三角形周長為:,故選D.【考點】本題考查的是勾股定理的應用,直角三角形的兩條直角邊長分別是a,b,斜邊長為c,那么a2+b2=c2.二、多選題1、ACD【解析】【分析】根據(jù)相似三角形的判定定理判斷即可.【詳解】A
“兩角對應相等的兩個三角形相似”是正確的;B
“兩邊對應成比例的兩個三角形相似”是錯誤的,還需添上條件“且夾角相等”才成立;C
“兩邊對應成比例且夾角相等的兩個三角形相似”是正確的;D
“三邊對應成比例的兩個三角形相似”是正確的故選:ACD【考點】本題考查了相似三角形的判定定理,做題的關鍵是熟練掌握相似三角形的判定定理.2、ACD【解析】【分析】對于直線解析式,分別令x與y為0求出y與x的值,確定出A與B坐標,利用AAS得到三角形OBA與三角形CDA全等,利用全等三角形對應邊相等得到,確定出C坐標,代入反比例解析式求出k的值,確定出反比例解析式,由圖象判斷時x的范圍,以及與的增減性,把分別代入直線與反比例解析式,相減求出EF的長,即可做出判斷.【詳解】解:對于直線,令,得到;令,得到,,,即,,在和中,,,,(同底等高三角形面積相等),選項A正確;,把C點坐標代入反比例解析式得:,即,由函數(shù)圖象得:當時,,選項B錯誤;當時,,,即,選項C正確;當時,隨x的增大而增大,隨x的增大而減小,選項D正確.故選:ACD.【考點】此題考查了反比例函數(shù)與一次函數(shù)的交點,涉及的知識有:一次函數(shù)與坐標系的交點,待定系數(shù)法確定反比例函數(shù)解析式,坐標與圖形性質以及反比例函數(shù)的性質,熟練掌握函數(shù)的性質是解本題的關鍵.3、AB【解析】【分析】由反比例函數(shù)k的幾何意義可判斷出各個結論的正誤.【詳解】解:A.∵點A,B在函數(shù)的圖象上,∴,故選項A正確;B.∵矩形OCPD、三角形ODB、三角形OCA為定值,則四邊形PAOB的面積不會發(fā)生變化;故此選項正確.C.PA與PB不一定相等,只有當四邊形OCPD是正方形時滿足PA=PB,故此選項不正確;D.∵A、B在上,∴S△AOC=S△BOE,∴?OC?AC=?OD?BD,∴OC?AC=OD?BD,∵OC=PD,OD=PC,∴PD?AC=DB?PC,∴.故此選項不正確.故選AB【考點】此題是反比例函數(shù)綜合題,主要考查了反比例函數(shù)(k≠0)中k的幾何意義,即過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積為|k|,是經(jīng)??疾榈囊粋€知識點;這里體現(xiàn)了數(shù)形結合的思想,做此類題一定要正確理解k的幾何意義.4、AB【解析】【分析】根據(jù)只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是2的整式方程叫一元二次方程進行分析即可.【詳解】解:A、分母含有未知數(shù),一定不是一元二次方程,故本選項符合題意;B、含有兩個未知數(shù),一定不是一元二次方程,故本選項符合題意;C、當a=0時,不是一元二次方程,當a≠0時,是一元二次方程,故本選項不符合題意;D、是一元二次方程,故本選項不符合題意.故選:AB.【考點】本題考查的是一元二次方程的定義,熟知只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是2的整式方程叫一元二次方程是解答此題的關鍵.5、ABC【解析】【分析】根據(jù)相似求出相似比,根據(jù)相似比分類討論計算出結果即可.【詳解】解:∠B=∠C,根據(jù)題意:或,則:或,則:或,故答案為:或,故選:ABC.【考點】本題考查相似三角形得的性質與應用,能夠熟練掌握相似三角形的性質是解決本題的關鍵.6、ABCD【解析】【分析】由旋轉和等邊三角形性質得到,,,可推導得到是等邊三角形,再由等邊三角形性質判斷A、D是否正確;根據(jù)菱形的判定得到四邊形是菱形,從而判斷C是否正確,結合前兩問可推導得到四邊形是菱形,從而得到B是否正確【詳解】證明:∵將等邊繞點C順時針旋轉得到
∴,∴,∴∴是等邊三角形∴,∵∴四邊形是菱形又∵,且是等邊三角形∴∴四邊形是菱形∴綜上所述:選項A、B、C、D全部正確故選:ABCD【考點】本題考查等邊三角形的性質,菱形的判定和性質,根據(jù)相關定理內容解題是切入點.三、填空題1、,或【解析】【分析】設AE=m,根據(jù)勾股定理求出m的值,得到點E(1,),設點P坐標為(0,y),根據(jù)勾股定理列出方程,即可得到答案.【詳解】∵對角線AC的垂直平分線交AB于點E,∴AE=CE,∵OA=1,OC=2,∴AB=OC=2,BC=OA=1,∴設AE=m,則BE=2-m,CE=m,∴在Rt?BCE中,BE2+BC2=CE2,即:(2-m)2+12=m2,解得:m=,∴E(1,),設點P坐標為(0,y),∵△AEP是以為AE為腰的等腰三角形,當AP=AE,則(1-0)2+(0-y)2=(1-1)2+(0-)2,解得:y=,當EP=AE,則(1-0)2+(-y)2=(1-1)2+(0-)2,解得:y=,∴點P的坐標為,,,故答案是:,,.【考點】本題主要考查等腰三角形的定義,勾股定理,矩形的性質,垂直平分線的性質,掌握勾股定理,列出方程,是解題的關鍵.2、2或-3##-3或2【解析】【分析】根據(jù)題意得到關于x的一元二次方程,解方程即可.【詳解】解:∵,∴,∴,解得或,故答案為:2或-3.【考點】本題主要考查了新定義下的實數(shù)運算,解一元二次方程,正確理解題意是解題的關鍵.3、2﹣.【解析】【分析】連接OB,過點B作BE⊥x軸于點E,根據(jù)正方形的性質可得出∠AOB的度數(shù)及OB的長,結合三角形外角的性質可得出∠BDO=∠DBO,利用等角對等邊可得出OD=OB,進而可得出點D的坐標,在Rt△BOE中,通過解直角三角形可得出點B的坐標,由點B,D的坐標,利用待定系數(shù)法可求出k,b的值,再將其代入(b﹣k)中即可求出結論.【詳解】解:連接OB,過點B作BE⊥x軸于點E,如圖所示.∵正方形ABCO的邊長為,∴∠AOB=45°,OB=OA=2.∵OA與x軸正半軸的夾角為15°,∴∠BOE=45°﹣15°=30°.又∵∠BDO=15°,∴∠DBO=∠BOE﹣∠BDO=15°,∴∠BDO=∠DBO,∴OD=OB=2,∴點D的坐標為(﹣2,0).在Rt△BOE中,OB=2,∠BOE=30°,∴BE=OB=1,OE==,∴點B的坐標為(,1).將B(,1),D(﹣2,0)代入y=kx+b,得:,解得:,∴b﹣k=4﹣2﹣(2﹣)=2﹣.故答案為:2﹣.【考點】此題考查的是正方形的性質、等腰三角形的判定、直角三角形的性質和求一次函數(shù)的解析式,掌握正方形的性質、等角對等邊、30°所對的直角邊是斜邊的一半、勾股定理和利用待定系數(shù)法求一次函數(shù)解析式是解決此題的關鍵.4、【解析】【分析】根據(jù)一元二次方程解的定義將x=1代入即可求出a的值.【詳解】解:∵關于的方程的一個根是∴解得:a=-1故答案為:.【考點】此題考查的是根據(jù)一元二次方程的解,求參數(shù)的值,掌握一元二次方程解的定義是解決此題的關鍵.5、24【解析】【分析】如圖,延長交的延長線于,設米,米.利用相似三角形是性質分別求出,即可.【詳解】解:如圖,延長交的延長線于,設米,米.由題意,米,米,米.,,,,解得,經(jīng)檢驗是分式方程的解,,,,,,經(jīng)檢驗是分式方程的解,(米,故答案為:24.【考點】本題考查相似三角形的判定和性質,解題的關鍵是學會添加常用輔助線,構造相似三角形解決問題.6、或【解析】【分析】由題意可求出,取AC中點E1,連接DE1,則DE1是△ABC的中位線,滿足,進而可求此時,然后在AC上取一點E2,使得DE1=DE2,則,證明△DE1E2是等邊三角形,求出E1E2=,即可得到,問題得解.【詳解】解:∵D為AB中點,∴,即,取AC中點E1,連接DE1,則DE1是△ABC的中位線,此時DE1∥BC,,∴,在AC上取一點E2,使得DE1=DE2,則,∵∠A=30°,∠B=90°,∴∠C=60°,BC=,∵DE1∥BC,∴∠DE1E2=60°,∴△DE1E2是等邊三角形,∴DE1=DE2=E1E2=,∴E1E2=,∵,∴,即,綜上,的值為:或,故答案為:或.【考點】本題考查了三角形中位線的性質,平行線分線段成比例,等邊三角形的判定和性質以及含30°角的直角三角形的性質等,根據(jù)進行分情況求解是解題的關鍵.7、1【解析】【分析】證明四邊形DEPF是矩形得PE=DF,證明△PFC是等腰直角三角形得PF=CF便可求得結果.【詳解】解:∵四邊形ABCD是正方形,∴∠ADC=90°,∠ACD=,∵PE⊥AD,PF⊥CD,∴四邊形DEPF是矩形,∴PE=DF,∵∠ACD=45°,∠PFC=90°,∴PF=CF,∴PE+PF=DF+CF=CD=1,故答案為:1.【考點】本題主要考查了正方形的性質,矩形的性質與判定,等腰直角三角形的判定,關鍵是證明PE=DF,PF=CF.8、10【解析】【分析】根據(jù)作圖可得,且平分,設與的交點為,證明四邊形為菱形,根據(jù)平行線分線段成比例可得為的中線,然后勾股定理求得,根據(jù)直角三角形中斜邊上的中線等于斜邊的一半可得的長,進而根據(jù)菱形的性質即可求解.【詳解】解:如圖,設與的交點為,根據(jù)作圖可得,且平分,,四邊形是平行四邊形,,,又,,,,,四邊形是平行四邊形,垂直平分,,四邊形是菱形,,,,,為的中點,中,,,,,四邊形AECF的周長為.故答案為:.【考點】本題考查了垂直平分線的性質,菱形的性質與判定,勾股定理,平行線分線段成比例,平行四邊形的性質與判定,綜合運用以上知識是解題的關鍵.四、解答題1、(1)見解析(2)120【解析】【分析】(1)根據(jù)平行四邊形的性質可得,利用全等三角形的判定和性質得出,,依據(jù)菱形的判定定理(一組鄰邊相等的平行四邊形的菱形)即可證明;(2)連接AC,交BD于點H,利用菱形的性質及勾股定理可得,再根據(jù)菱形的面積公式求解即可得.(1)證明:∵四邊形ABCD是平行四邊形,∴,∵,,∴,在和中,,∴,∴,∴平行四邊形ABCD是菱形;(2)解:如圖所示:連接AC,交BD于點H,∵四邊形ABCD是菱形,∴,∵,,∴,在中,,∴,∴平行四邊形ABCD的面積為:.【考點】題目主要考查平行四邊形的性質,全等三角形的判定和性質,菱形的判定和性質及其面積公式,勾股定理等,理解題意,熟練掌握各個性質定理是解題關鍵.2、見解析【解析】【分析】先根據(jù)四邊形是平行四邊形且得到平行四邊形是菱形,即可得到,再根據(jù),,證明四邊形是平行四邊形,即可得到平行四邊形是矩形.【詳解】證明:∵四邊形是平行四邊形且∴平行四邊形是菱形∴,即又∵,.∴四邊形是平行四邊形,∴平行四邊形是矩形.【考點】本題主要考查了平行四邊形的判定,矩形的判定,菱形的性質與判定,解題的關鍵在于能夠熟練掌握相關知識進行求解.3、(1);;理由見解析;(2)與的數(shù)量及位置關系都不變;答案見解析.【解析】【分析】(1)證明,由全等三角形的性質得出,,得出,則可得出結論;(2)證明,由全等三角形的性質得出,,由平行線的性質證出,則可得出結論.【詳解】解:(1),.由題意可得,平行四邊形為矩形,,,,,,,,,設與交于點,則,即.(2)與的數(shù)量及位置關系都不變.如圖,延長到點,四邊形為平行四邊形,,,,,,,,,,又,,,,,,,,,即.【考點】本題考查了旋轉的性質,全等三角形的判定和性質,正方形的性質,解題的關鍵是:熟練掌握正方形的性質.4、(1)1秒;(2)不可能,見解析【解析】【分析】(1)經(jīng)過x秒鐘,△PBQ的面積等于4cm2,根據(jù)點P從A點開始沿AB
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 注冊會計師歷年真題摘選附帶答案2024
- 新聞輿論引導與傳播策略面試題目
- 心系國防強國有我文案課件
- 管理學原理??荚囶}含答案
- 兒科考試模擬題含參考答案
- 低壓電工儀表知識培訓課件
- 2025年學校食堂從業(yè)人員培訓考試試題及答案
- 2025年《學前兒童發(fā)展心理學》模擬試題(含答案)
- 低壓供電安全培訓知識課件
- 低體重兒護理查房課件
- 醫(yī)院窗簾、隔簾采購 投標方案(技術方案)
- 2024-2025學年江蘇省蘇州市星海實驗中學高一(上)期中考試物理試卷(含答案)
- 《QC小組培訓》課件
- 2024年海南省中考道德與法治試題卷(含答案解析)
- 糖尿病健康宣教五架馬車
- 【標準】城市森林碳匯計量監(jiān)測技術規(guī)程
- 超市貨架油漆翻新協(xié)議樣本
- 江西省吉安市2024-2025學年高二地理下學期期末考試試題
- 頑童變成小書迷(2023年吉林長春中考語文試卷記敘文閱讀題及答案)
- 兔眼動物模型在眼科研究中的價值
- GB/T 44230-2024政務信息系統(tǒng)基本要求
評論
0/150
提交評論