難點詳解湖北省老河口市中考數學真題分類(平行線的證明)匯編章節(jié)練習試題(含答案解析版)_第1頁
難點詳解湖北省老河口市中考數學真題分類(平行線的證明)匯編章節(jié)練習試題(含答案解析版)_第2頁
難點詳解湖北省老河口市中考數學真題分類(平行線的證明)匯編章節(jié)練習試題(含答案解析版)_第3頁
難點詳解湖北省老河口市中考數學真題分類(平行線的證明)匯編章節(jié)練習試題(含答案解析版)_第4頁
難點詳解湖北省老河口市中考數學真題分類(平行線的證明)匯編章節(jié)練習試題(含答案解析版)_第5頁
已閱讀5頁,還剩27頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖北省老河口市中考數學真題分類(平行線的證明)匯編章節(jié)練習考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、對于命題“若a2>b2,則a>b”,下面四組關于a,b的值中,能說明這個命題是假命題的是()A.a=3,b=2 B.a=-3,b=2 C.a=3,b=-1 D.a=-1,b=32、如圖,在三角形ABC中,,,D是BC上一點,將三角形ABD沿AD翻折后得到三角形AED,邊AE交射線BC于點F,若,則(

)A.120° B.135° C.110° D.150°3、如圖,將沿著平行于的直線折疊,點落在點處,若,則的度數是(

)A.108° B.104° C.96° D.92°4、如圖,結合圖形作出了如下判斷或推理:①如圖甲,如果,為垂足,那么點到的距離等于,兩點間的距離;②如圖乙,如果,那么;③如圖丙,如果,,那么;④如圖丁,如果,,那么.其中正確的有(

)A.1個 B.2個 C.3個 D.4個5、如圖,在△ABC中,D為BC上一點,∠1=∠2,∠3=∠4,∠BAC=105°,則∠DAC的度數為(

)A.80° B.82° C.84° D.86°6、如圖,已知中,,若沿圖中虛線剪去,則等于(

)A.90° B.135° C.270° D.315°7、如圖,若,,則:①;②;③平分;④;⑤,其中正確的結論是A.1個 B.2個 C.3個 D.4個8、如圖,∠ABD、∠ACD的角平分線交于點P,若∠A=50°,∠D=10°,則∠P的度數為(

)A.15° B.20° C.25° D.30°第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、下列說法:(1)兩點之間的所有連線中,線段最短;(2)相等的角是對頂角;(3)過一點有且僅有一條直線與已知直線平行;(4)長方體是四棱柱.其中正確的有______(填正確說法的序號).2、如圖,..∵,∴.∴.∴.3、命題“全等三角形的對應角相等”的逆命題是_____命題.(填“真”或“假”)4、把“對頂角相等”改寫成“如果…那么…”的形式____________________________________________.5、如圖,在△ABC中,∠ACB=60°,D為△ABC邊AC上一點,BC=CD,點M在BC的延長線上,CE平分∠ACM,且AC=CE.連接BE交AC于F,G為邊CE上一點,滿足CG=CF,連接DG交BE于H.以下結論:①△ABC≌△EDC;②∠DHF=60°;③若∠A=60°,則AB∥CE;④若BE平分∠ABC中,則EB平分∠DEC;正確的有_____(只填序號)6、如圖,將沿翻折,頂點均落在O處,且與重合于線段,測得,則________度.7、把“同角的余角相等”改成“如果…,那么…”:_________________________________.三、解答題(7小題,每小題10分,共計70分)1、如圖,在△ABC中,∠ABC的平分線BD交∠ACB的平分線CE于點O.(1)求證:.(2)如圖1,若∠A=60°,請直接寫出BE,CD,BC的數量關系.(3)如圖2,∠A=90°,F是ED的中點,連接FO.①求證:BC?BE?CD=2OF.②延長FO交BC于點G,若OF=2,△DEO的面積為10,直接寫出OG的長.2、△ABC中,AD是∠BAC的角平分線,AE是△ABC的高.(1)如圖1,若∠B=40°,∠C=60°.求∠DAE的度數.(2)如圖2(∠B<∠C),試說明∠DAE與∠B、∠C的數量關系.

(3)拓展:如圖3,四邊形ABDC中,AE是∠BAC的角平分線,DA是∠BDC的角平分線,猜想:∠DAE與∠B、∠C的數量關系是否改變,說明理由.3、已知:如圖1,,BD平分,,過點A作直線,延長CD交MN于點E(1)當時,的度數為______.(2)如圖2,當時,求的度數;(3)設,用含x的代數式表示的度數.4、如圖(1)所示的圖形,像我們常見的學習用品——圓規(guī).我們不妨把這樣圖形叫做“規(guī)形圖”,那么在這一個簡單的圖形中,到底隱藏了哪些數學知識呢?下面就請你發(fā)揮你的聰明才智,解決以下問題:(1)觀察“規(guī)形圖”,試探究∠BDC與∠A、∠B、∠C之間的關系,并說明理由;(2)請你直接利用以上結論,解決以下三個問題:①如圖(2),把一塊三角尺XYZ放置在△ABC上,使三角尺的兩條直角邊XY、圖(1)XZ恰好經過點B、C,若∠A=50°,則∠ABX+∠ACX=__________°;②如圖(3)DC平分∠ADB,EC平分∠AEB,若∠DAE=50°,∠DBE=130°,求∠DCE的度數;(寫出解答過程)③如圖(4),∠ABD,∠ACD的10等分線相交于點G1、G2、G9,若∠BDC=140°,∠BG1C=77°,則∠A的度數=__________°.5、如圖,ABCD,,,試說明:BCDE.請補充說明過程,并在括號內填上相應的理由.解:∵ABCD(已知),,又(已知),,,,BCDE.6、如圖,已知∠1+∠2=180°,∠DEF=∠A,求證:∠ACB=∠DEB.7、如圖,在四邊形中,,,平分交于點,交的延長線于點.(1)求的大小;(2)若,求的大?。?參考答案-一、單選題1、B【解析】【詳解】試題解析:在A中,a2=9,b2=4,且3>2,滿足“若a2>b2,則a>b”,故A選項中a、b的值不能說明命題為假命題;在B中,a2=9,b2=4,且-3<2,此時雖然滿足a2>b2,但a>b不成立,故B選項中a、b的值可以說明命題為假命題;在C中,a2=9,b2=1,且3>-1,滿足“若a2>b2,則a>b”,故C選項中a、b的值不能說明命題為假命題;在D中,a2=1,b2=9,且-1<3,此時滿足a2<b2,得出a<b,即意味著命題“若a2>b2,則a>b”成立,故D選項中a、b的值不能說明命題為假命題;故選B.考點:命題與定理.2、A【解析】【分析】由得到∠FDE=∠C=60°,由折疊的性質知∠DEF=∠B=30°,得到∠DFE=180°-∠FDE-∠DEF=90°,由外角的性質得∠ADC+60°=∠ADE=∠BDA,∠ADB+∠ADC=180°,進一步求得∠ADC=60°,進一步求得∠BDA.【詳解】解:∵,∴∠FDE=∠C=60°,∵三角形ABD沿AD翻折后得到三角形AED,∴∠DEF=∠B=30°,∴∠DFE=180°-∠FDE-∠DEF=90°,∵∠ADC+60°=∠ADE=∠BDA,∠ADB+∠ADC=180°,∴∠ADC+60°+∠ADC=180°,∴∠ADC=60°,∴∠BDA=∠ADC+60°=120°,故選:A【考點】此題考查了折疊的性質,平行線性質,外角的性質等知識,熟練掌握折疊的性質是解題的關鍵.3、D【解析】【分析】根據兩直線平行,同位角相等可得∠ADE=∠B,再根據翻折變換的性質可得∠A′DE=∠ADE,然后根據平角等于180°列式計算即可得解.【詳解】解:∵,∴∠ADE=∠B=44°,∵△ABC沿著平行于BC的直線折疊,點A落到點A′,∴∠A′DE=∠ADE=44°,∴∠A′DB=180°﹣44°﹣44°=92°.故選:D.【考點】本題考查了平行線的性質,翻折變換的性質,三角形的內角和定理,熟記性質并準確識圖理清圖中各角度之間的關系是解題的關鍵.4、B【解析】【分析】根據點到直線的距離及兩點間的距離的定義可判斷①;根據平行線的性質及三角形的外角的性質可判斷②;根據平行線的判定可判斷③;根據平行線的判定與性質可判斷④.【詳解】解:①由于直線外一點到直線的垂線段的長度,叫做這點到這條直線的距離,故正確;②設AB與DE相交于點O.∵AB∥CD,∴∠AOE=∠D.又∵∠AOE>∠B,∴∠D>∠B,故錯誤;③∵∠ACD=∠CAB,∴AB∥CD,,故錯誤;④∵∠1=∠2,∴AD∥BC,∴∠D+∠BCD=180°,又∵∠D=120°,∴∠BCD=60°,故正確.故選:B.【考點】本題主要考查了點到直線的距離的定義,平行線的判定與性質,三角形的外角的性質,正確理解相關概念和性質是解本題的關鍵.5、A【解析】【分析】根據三角形的內角和定理和三角形的外角性質即可解決.【詳解】解:∵∠BAC=105°,∴∠2+∠3=75°①∵∠1=∠2,∴∠4=∠3=∠1+∠2=2∠2②把②代入①得:3∠2=75°,∴∠2=25°.∴∠DAC=105°?25°=80°.故選A.【考點】此題主要考查了三角形的外角性質以及三角形內角和定理,熟記三角形的內角和定理,三角形的外角性質是解題的關鍵.6、C【解析】【分析】如圖(見解析),先根據三角形的外角性質可得,再根據鄰補角的定義即可得.【詳解】如圖,由三角形的外角性質得:,,,故選:C.【考點】本題考查了三角形的外角性質、鄰補角,熟練掌握三角形的外角性質是解題關鍵.7、C【解析】【分析】由平行線的性質得出內錯角相等、同位角相等,得出②正確;再由已知條件證出,得出,①正確;由平行線的性質得出⑤正確;即可得出結果.【詳解】解:,,,故②正確;,,,故①正確;,故⑤正確;而不一定平分,不一定等于,故③,④錯誤;故選:C.【考點】本題考查了平行線的判定與性質,解題的關鍵是熟練掌握平行線的判定與性質,并能進行推理論證.8、B【解析】【分析】利用三角形外角的性質,得到∠ACD與∠ABD的關系,然后用角平分線的性質得到角相等的關系,代入計算即可得到答案.【詳解】解:延長DC,與AB交于點E.∵∠ACD是△ACE的外角,∠A=50°,∴∠ACD=∠A+∠AEC=50°+∠AEC.∵∠AEC是△BDE的外角,∴∠AEC=∠ABD+∠D=∠ABD+10°,∴∠ACD=50°+∠AEC=50°+∠ABD+10°,整理得∠ACD-∠ABD=60°.設AC與BP相交于O,則∠AOB=∠POC,∴∠P+∠ACD=∠A+∠ABD,即∠P=50°-(∠ACD-∠ABD)=20°.故選B.【考點】本題綜合考查角平分線的性質、三角形外角的性質、三角形內角和等知識點.解題的關鍵是熟練的運用所學性質去求解.二、填空題1、(1)、(4).【解析】【分析】根據所學公理和性質解答即可.【詳解】解:(1)兩點之間的所有連線中,線段最短,故本說法正確;(2)相等的角不一定是對頂角,但對頂角相等,故本說法錯誤;(3)應為過直線外一點有且僅有一條直線與已知直線平行,故本說法錯誤;(4)長方體是四棱柱,正確.故答案為(1)、(4).【考點】本題是對數學語言的嚴謹性的考查,記憶數學公理、性質概念等一定要做的嚴謹.2、、、【解析】【分析】根據兩直線平行的性質定理,結合三角形內角和定理推理即可得到正確結果.【詳解】解:∵,∴∴∴∴故答案為:、、【考點】本題考查平行線性質定理以及三角形內角和定理,牢記相關定理內容并能靈活應用是解題的重點.3、假【解析】【分析】首先分清題設是:兩個三角形全等,結論是:對應角相等,把題設與結論互換即可得到逆命題,然后判斷正誤即可.【詳解】解:“全等三角形的對應角相等”的題設是:兩個三角形全等,結論是:對應角相等,因而逆命題是:對應角相等的三角形全等.是一個假命題.故答案為:假.【考點】本題考查了互逆命題的知識,兩個命題中,如果第一個命題的條件是第二個命題的結論,而第一個命題的結論又是第二個命題的條件,那么這兩個命題叫做互逆命題.其中一個命題稱為另一個命題的逆命題.命題的真假判斷,正確的命題叫真命題,錯誤的命題叫做假命題.判斷命題的真假關鍵是要熟悉課本中的性質定理.4、如果兩個角是對頂角,那么它們相等【解析】【分析】先找到命題的題設和結論,再寫成“如果…那么…”的形式.【詳解】解:∵原命題的條件是:“兩個角是對頂角”,結論是:“它們相等”,∴命題“對頂角相等”寫成“如果…那么…”的形式為:“如果兩個角是對頂角,那么它們相等”.故答案為:如果兩個角是對頂角,那么它們相等.【考點】本題考查了命題的條件和結論的敘述,注意確定一個命題的條件與結論的方法是首先把這個命題寫成:“如果…,那么…”的形式.5、①②③④【解析】【分析】①可推導∠ACB=∠ACE=60°,進而可證全等;②先證△BFC≌△DGC,得到∠FBC=∠CDG,∠BFC=∠DFH,從而推導得出∠BCF=∠DHF=60°;③由∠A=60°,∠ACE=60°,可得∠A=∠ACE,即可得出ABCE;④利用△BCE的外角∠ECM和△ABC的外角∠ACM的關系,結合∠DEC=∠A可推導得出.【詳解】解:∵∠ACB=60°,∴∠ACM=180°?∠ACB=120°,∵CE平分∠ACM,∴∠ACE=∠MCE=∠ACM=60°,∴∠ACB=∠ACE.在△ABC和△EDC中,,∴△ABC≌△EDC(SAS),故①正確;在△BCF和△DCG中,,∴△BCF≌△DCG(SAS).∴∠CBF=∠CDG.∵∠ECM=∠CBF+∠BEC=60°,∴∠CDG+∠CEB=60°.∵∠DCE+∠CDE+∠CED=180°,∠DCE=60°,∴∠CDE+∠CED=120°,∴∠HDE+∠HED=60°,∴∠DHF=∠HDE+∠HED=60°,故②正確;∵∠A=60°,∠ACE=60°,∴∠A=∠ACE,∴AB∥CE,故③正確;∵BE平分∠ABC,∴∠ABE=∠CBE.∵△BCF≌△DCG,∴∠CBE=∠CDG.∴∠CDG=∠ABE=∠CBE.∵△ABC≌△EDC,∴∠ABC=∠CDE,∴∠CDG=∠ABE=∠CBE=∠EDG.∵∠ECM=∠CBF+∠BEC=60°,∠DHF=∠EDG+∠DEB=60°,∴∠CBF+∠BEC=∠EDG+∠DEB,∴∠BEC=∠DEB,即EB平分∠DEC,故④正確;綜上,正確的結論有:①②③④.故答案為:①②③④.【考點】本題主要考查了全等三角形的判定定理和性質定理,角平分線的定義,三角形的內角和定理以及平行線的判定定理,正確找出圖中的全等三角形是解題的關鍵.6、96【解析】【分析】延長FO交AC于點G.根據三角形內角和定理可求出.由翻折的性質可知,即得出,從而可求出.由三角形外角性質結合三角形內角和定理即可得出,從而可求出.【詳解】解:如圖,延長FO交AC于點G.∵,∴.由翻折可知,∴,即,∴.∵,,∴,即,∴.故答案為:96.【考點】本題考查三角形內角和定理,三角形外角性質,翻折的性質.正確的作出輔助線是解題關鍵.7、如果兩個角是同一個角的余角,那么這兩個角相等【解析】【詳解】根據命題的特點,可以改寫為:“如果兩個角是同一個角的余角,那么這兩個角相等”故答案為:如果兩個角是同一個角的余角,那么這兩個角相等.【考點】本題考查了命題的特點,解題的關鍵是“如果”后面接題設,“那么”后面接結論.三、解答題1、(1)見解析(2)BE+CD=BC,(3)①見解析;②【解析】【分析】(1)先根據三角形內角和得:∠BOC=180°?(∠OBC+∠OCB),由角平分線定義得:∠OBC=∠ABC,∠OCB=∠ACB,最后由三角形內角和可得結論;(2)在BC上截取BM=BE,證明△BOE≌△BOM,推出∠BOE=∠BOM=60°,再證明△DCO≌△MCO可得結論;(3)①延長OF到點M,使MF=OF,證明△ODF≌△MEF(SAS),推出OD=EM.過點O作CE,BD的垂線,證明△OBE≌△OBK(AAS)和△ODC≌△OHC,推出EO=OK,OD=OH=EM,BE=BK,CD=CH.據此即可證明結論;②利用①的結論以及三角形面積公式即可求解.(1)證明:∵BD平分∠ABC,CE平分∠ACB,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠BOC=180°?(∠OBC+∠OCB)=180°?(∠ABC+∠ACB)=180°?(180°?∠A)=∠A+90°;(2)解:BE+CD=BC.在BC上截取BM=BE,連接OM,如圖:∵∠BOC=∠A+90°=120°,∴∠BOE=60°,∵BD平分∠ABC,∴∠EBO=∠MBO,∴△BOE≌△BOM,∴∠BOE=∠BOM=60°,∴∠MOC=∠DOC=60°,∵OC為∠DCM的角平分線,∴∠DCO=∠MCO,在△DCO與△MCO中,,∴△DCO≌△MCO(ASA),∴CM=CD,∴BC=BM+CM=BE+CD;(3)①證明:如圖,延長OF到點M,使MF=OF,連接EM,∴OM=2OF.∵F是ED的中點,∴EF=DF,∵∠DFO=∠EFM,∴△ODF≌△MEF(SAS),∴OD=EM.過點O作CE,BD的垂線,分別交BC于點K,H,∴∠OCK+∠OKC=90°.∵∠A=90°,∴∠ACE+∠AEC=90°∵∠ACE=∠OCK,∴∠AEO=∠OKC,∴∠BEO=∠BKO,∴△OBE≌△OBK(AAS),同理可得△ODC≌△OHC,∴EO=OK,OD=OH=EM,BE=BK,CD=CH.由(1)可知∠DOE=∠BOC=×90°+90°=135°,∴∠BOE=∠COD=45°,∴∠OEM=∠KOH=45°,∴△OME≌△KHO,∴KH=OM,∴KH=2OF.∵BC?BK?CH=KH=2OE,∴BC?BE?CD=KH=2OF;②解:∵△OME≌△KHO,∴∠EOM=∠OKH,∴FG⊥BC.由①可知KH=2OF=4,△ODF≌△MEF,∴S△DEO=S△OME=S△KHO=10,∴KH×OG×=10,∴OG=5.【考點】本題考查了角平分線的定義、三角形內角和定理、三角形全等的性質和判定.解題的關鍵是靈活運用所學知識解決問題.2、(1)10°;(2)∠DAE∠C∠B,見解析;(3)不變,見解析【解析】【分析】(1)根據三角形的內角和定理可求得∠BAC=80°,由角平分線的定義可得∠CAD的度數,利用三角形的高線可求∠CAE得度數,進而求解即可得出結論;(2)根據(1)的推理方法可求解∠DAE、∠B、∠C的數量關系;(3)連接BC交AD于F,過點A作AM⊥BC于M,過點D作DN⊥BC于N,根據角平分線的定義得到∠EAM(∠ACB﹣∠ABC),同理,∠ADN(∠BCD﹣∠CBD),求得∠MAD=∠ADN,根據角的和差即可得到結論.【詳解】解:(1)∵∠B=40°,∠C=60°,∠BAC+∠B+∠C=180°,∴∠BAC=80°,∵AD是∠BAC的角平分線,∴∠CAD=∠BAD∠BAC=40°,∵AE是△ABC的高,∴∠AEC=90°,∵∠C=60°,∴∠CAE=90°﹣60°=30°,∴∠DAE=∠CAD﹣∠CAE=10°;(2)∵∠BAC+∠B+∠C=180°,∴∠BAC=180°﹣∠B﹣∠C,∵AD是∠BAC的角平分線,∴∠CAD=∠BAD∠BAC,∵AE是△ABC的高,∴∠AEC=90°,∴∠CAE=90°﹣∠C,∴∠DAE=∠CAD﹣∠CAE∠BAC﹣(90°﹣∠C)(180°﹣∠B﹣∠C)﹣90°+∠C∠C∠B,即∠DAE∠C∠B;(3)不變,理由:連接BC交AD于F,過點A作AM⊥BC于M,過點D作DN⊥BC于N,∵AE是∠BAC的角平分線,AM是高,∴∠EAM(∠ACB﹣∠ABC),同理,∠ADN(∠BCD﹣∠CBD),∵∠AFM=∠DFN,∠AMF=∠DNF=90°,∴∠MAD=∠ADN,∴∠DAE=∠EAM+∠MAD=∠EAM+∠ADN(∠ACB﹣∠ABC)(∠BCD﹣∠CBD)(∠ACD﹣∠ABD).【考點】本題考查了角平分線的定義,三角形的內角和定理,三角形的高線,角平分線等知識的綜合運用,熟知相關知識,并根據題意添加輔助線構造圖形是解題關鍵.3、(1)(2)(3)【解析】【分析】(1)根據題意證明,進而可得,根據,即可求解.繼而可得,即可求得;(2)根據全等三角形的性質可得,根據三角形內角和定理可得,進而根據即可求解.(3)根據(1)(2)的方法分類討論即可求解.(1)解:BD平分,,,,,,,,,,,故答案為:,(2)解:由(1)可知,,,,,,,(3)解:設,,,,,當點在點的左側時,,當點在點的右側時,,.【考點】本題考查了全等三角形的性質與判定,三角形的內角和定理的應用,掌握全等三角形的性質與判定是解題的關鍵.4、(1)∠BDC=∠A+∠B+∠C,詳見解析;(2)①40;②∠DCE=90°;③70【解析】【分析】(1)根據題意觀察圖形連接AD并延長至點F,根據一個三角形的外角等于與它不相鄰的兩個內角的和可證∠BDC=∠BDF+∠CDF;(2)①由(1)的結論可得∠ABX+∠ACX+∠A=∠BXC,然后把∠A=50°,∠BXC=90°代入上式即可得到∠ABX+∠ACX的值;②結合圖形可得∠DBE=∠DAE+∠ADB+∠AEB,代入∠DAE=50°,∠DBE=130°即可得到∠ADB+∠AEB的值,再利用上面得出的結論可知∠DCE=(∠ADB+∠AEB)+∠A,易得答案.③由②方法,進而可得答案.【詳解】解:(1)連接AD并延長至點F,由外角定理可得∠BDF=∠BAD+∠B,∠CDF=∠C+∠CAD;∵∠BDC=∠BDF+∠CDF,∴∠BDC=∠BAD+∠B+∠C+∠CAD.∵∠BAC=∠BAD+∠CAD;∴∠BDC=∠BAC+∠B+∠C;(2)①由(1)的結論易得:∠ABX+∠ACX+∠A=∠BXC,∵∠A=50°,∠BXC=90°,∴∠ABX+∠ACX=90°﹣50°=40°.故答案是:40;②由(1)的結論易得∠DBE=∠DAE+∠ADB+∠AEB,∠DCE=∠ADC+∠AEC+∠A∵∠DAE=50°,∠DBE=130°,∴∠ADB+∠AEB=80°;∵DC平分∠ADB,EC平分∠AEB,∴∠ADC=∠ADB,∠AEC=∠AEB∴∠DCE=(∠ADB+∠AEB)+∠A=40°+50°=90°;③由②知,∠BG1C=(∠ABD+∠ACD)+∠A,∵∠BG1C=77°,∴設∠A為x°,∵∠ABD+∠ACD=140°﹣x°,∴(140﹣x)+x=77,∴14﹣x+x=77,∴x=70,∴∠A為70°.故

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論