




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
陜西省華陰市中考數(shù)學真題分類(勾股定理)匯編專項訓練考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計14分)1、如圖,已知點E在正方形ABCD內(nèi),滿足∠AEB=90°,AE=6,BE=8,則陰影部分的面積是()A.48 B.60C.76 D.802、如圖,有一塊直角三角形紙片,∠C=90°,AC=8,BC=6,將斜邊AB翻折,使點B落在直角邊AC的延長線上的點E處,折痕為AD,則BD的長為(
)A.2 B. C. D.43、有一個直角三角形的兩邊長分別為3和4,則第三邊的長為()A.5 B. C. D.5或4、如圖,在2×2的正方形網(wǎng)格中有9個格點,已經(jīng)取定點A和B,在余下的點中任取一點C,使△ABC為直角三角形的概率是(
)A. B. C. D.5、勾股定理是“人類最偉大的十個科學發(fā)現(xiàn)之一”.我國對勾股定理的證明是由漢代的趙爽在注解《周髀算經(jīng)》時給出的,他用來證明勾股定理的圖案被稱為“趙爽弦圖”.2002年在北京召開的國際數(shù)學大會選它作為會徽.下列圖案中是“趙爽弦圖”的是(
)A. B. C. D.6、以下列各組數(shù)的長為邊作三角形,不能構成直角三角形的是(
)A.3,4,5 B.4,5,6 C.6,8,10 D.9,12,157、如圖,長方形紙片ABCD中,AB=3cm,AD=9cm,將此長方形紙片折疊,使點D與點B重合,點C落在點H的位置,折痕為EF,則△ABE的面積為(
)A.6cm2 B.8cm2 C.10cm2 D.12cm2第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計16分)1、如圖,在△ABC中,AB=10,BC=9,AC=17,則BC邊上的高為_______.2、如圖,在的正方形網(wǎng)格中,每個小正方形的頂點稱為格點,點、、均在格點上,則______.3、勘測隊按實際需要構建了平面直角坐標系,并標示了A,B,C三地的坐標,數(shù)據(jù)如圖(單位:km).筆直鐵路經(jīng)過A,B兩地.(1)A,B間的距離為______km;(2)計劃修一條從C到鐵路AB的最短公路l,并在l上建一個維修站D,使D到A,C的距離相等,則C,D間的距離為______km.4、如圖,在四邊形中,,分別以四邊向外做正方形甲、乙、丙、丁,若甲的面積為30,乙的面積為16,丙的面積為17,則丁的面積為______.5、在Rt△ABC中,∠C=90°,且AC∶BC=1∶7,AB=100米,則AC=_________米.6、如圖,CD是△ABC的中線,將△ACD沿CD折疊至,連接交CD于點E,交CB于點F,點F是的中點.若的面積為12,,則點F到AC的距離為______.7、在一棵樹的5米高B處有兩個猴子為搶吃池塘邊水果,一只猴子爬下樹跑到A處(離樹10米)的池塘邊.另一只爬到樹頂D后直接躍到A處,距離以直線計算,如果兩只猴子所經(jīng)過的距離相等,則這棵樹高_______米.8、如圖,一架長5米的梯子A1B1斜靠在墻A1C上,B1到墻底端C的距離為3米,此時梯子的高度達不到工作要求,因此把梯子的B1端向墻的方向移動了1.6米到B處,此時梯子的高度達到工作要求,那么梯子的A1端向上移動了_____米.三、解答題(7小題,每小題10分,共計70分)1、臺風是一種自然災害,它以臺風中心為圓心在周圍上千米的范圍內(nèi)形成極端氣候,有極強的破壞力,有一臺風中心沿東西方向AB由點A行駛向點B,已知點C為一海港,且點C與直線AB上兩點A、B的距離分別為300km和400km,又AB=500km,以臺風中心為圓心周圍250km以內(nèi)為受影響區(qū)域.(1)海港C會受臺風影響嗎?為什么?(2)若臺風的速度為20km/h,臺風影響該海港持續(xù)的時間有多長?2、在△ABC中,,AB=5cm,AC=3cm,動點P從點B出發(fā),沿射線BC以1cm/s的速度移動,設運動的時間為t秒,當△ABP為直角三角形時,求t的值.3、如圖,某商家想在商場大樓上懸掛一塊廣告牌,廣告牌高.根據(jù)商場規(guī)定廣告牌最高點不得高于地面20m,經(jīng)測量,測角儀支架高,在F處測得廣告牌底部點B的仰角為30°,在E處測得標語牌頂部點A的仰角為45°,,請計算說明,商家這樣放廣告牌是否符合規(guī)定?(圖中點A,B,C,D,E,F(xiàn),G,H在同一平面內(nèi))4、如圖,在一次地震中,一棵垂直于地面且高度為16米的大樹被折斷,樹的頂部落在離樹根8米處,即,求這棵樹在離地面多高處被折斷(即求AC的長度)?5、如圖所示,已知△ABC中,∠B=90°,AB=16cm,BC=12cm,P、Q是△ABC邊上的兩個動點,其中點P從點A開始沿A→B方向運動,且速度為每秒1cm,點Q從點B開始沿B→C→A方向運動,且速度為每秒2cm,它們同時出發(fā),設出發(fā)的時間為ts.(1)出發(fā)3s后,求PQ的長;(2)當點Q在邊BC上運動時,出發(fā)多久后,△PQB能形成等腰三角形?(3)當點Q在邊CA上運動時,求能使△BCQ成為等腰三角形的運動時間.6、閱讀與思考:請閱讀下列材料,并完成相應的任務.若直角三角形的三邊的長都是正整數(shù),則三邊的長為“勾股數(shù)”.構造勾股數(shù),就是要尋找3個正整數(shù),使它們滿足“其中兩個數(shù)的平方和(或平方差)等于第三個數(shù)的平方”.通過觀察常見勾股數(shù)“3,4,5”;“5,12,13”;“7,24,25”……猜想當一組勾股數(shù)中(),最小數(shù)為奇數(shù)時,另兩個正整數(shù)和滿足比且,解得,.任務:(1)請證明猜想成立,即證明,,構成勾股數(shù).(2)若一組勾股數(shù)中,最小數(shù)為9,則另兩個數(shù)分別是________和________.7、如圖是“弦圖”的示意圖,“弦圖”最早是由三國時期的數(shù)學家趙爽在為《周髀算經(jīng)》作注時給出的,它標志著中國古代的數(shù)學成就.它由4個全等的直角三角形與一個小正方形組成,恰好拼成一個大正方形,每個直角三角形的兩條直角邊分別為a、b,斜邊為c.請你運用此圖形證明勾股定理:a2+b2=c2.-參考答案-一、單選題1、C【解析】【詳解】解:∵∠AEB=90°,AE=6,BE=8,∴AB=∴S陰影部分=S正方形ABCD-SRt△ABE=102-=100-24=76.故選:C.2、B【解析】【分析】根據(jù)勾股定理求出AB的長,利用翻折得到AE=AB=10,DE=BD,求出CE,由勾股定理得到,列得,求出BD.【詳解】解:∵∠C=90°,AC=8,BC=6,∴,由翻折得AE=AB=10,DE=BD,∴CE=AE-AC=10-8=2,在Rt△CED中,,∴,解得BD=,故選:B.【考點】此題考查了勾股定理的應用,翻折的性質(zhì),熟記勾股定理的計算公式是解題的關鍵.3、D【解析】【分析】分4是直角邊、4是斜邊兩種情況考慮,再根據(jù)勾股定理計算即可.【詳解】解:當4是直角邊時,斜邊==5;當4是斜邊時,另一條直角邊=;故選:D.【考點】本題考查的是勾股定理,如果直角三角形的兩條直角邊長分別是a,b,斜邊長為c,那么a2+b2=c2.4、C【解析】【分析】找到可以組成直角三角形的點,根據(jù)概率公式解答即可.【詳解】解:如圖,,,,均可與點和組成直角三角形.,故選:C.【考點】本題考查了概率公式,解題的關鍵是掌握如果一個事件有種可能,而且這些事件的可能性相同,其中事件出現(xiàn)種結果,那么事件的概率(A).5、B【解析】【分析】“趙爽弦圖”是由四個全等的直角三角形和中間的小正方形拼成的一個大正方形.【詳解】“趙爽弦圖”是由四個全等的直角三角形和中間的小正方形拼成的一個大正方形,如圖所示:故選B.【考點】本題主要考查了勾股定理的證明,證明勾股定理時,用幾個全等的直角三角形拼成一個規(guī)則的圖形,然后利用大圖形的面積等于幾個小圖形的面積和化簡整理得到勾股定理.6、B【解析】【分析】先求出兩小邊的平方和,再求出最長邊的平方,最后看看是否相等即可.【詳解】解:A、32+42=52,故是直角三角形,不符合題意;B、42+52≠62,故不是直角三角形,符合題意;C、62+82=102,故是直角三角形,不符合題意;D、92+122=152,故是直角三角形,不符合題意;故選:B.【考點】此題主要考查了勾股定理逆定理,關鍵是掌握如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形就是直角三角形.7、A【解析】【分析】根據(jù)折疊的條件可得:,在中,利用勾股定理就可以求解.【詳解】將此長方形折疊,使點與點重合,,,根據(jù)勾股定理得:,解得:..故選:A.【考點】本題考查了利用勾股定理解直角三角形,掌握直角三角形兩直角邊的平方和等于斜邊的平方是解題的關鍵.二、填空題1、8【解析】【分析】作交的延長于點,在中,,在中,,根據(jù)列出方程即可求解.【詳解】如圖,作交的延長于點,則即為BC邊上的高,在中,,在中,,,AB=10,BC=9,AC=17,,解得,故答案為:8.【考點】本題考查了勾股定理,掌握三角形的高,直角三角形是解題的關鍵.2、45°##45度【解析】【分析】取正方形網(wǎng)格中格點Q,連接PQ和BQ,證明∠AQB=90°,由勾股定理計算PQ=QB,進而得到△QPB為等腰直角三角形,∠PAB+∠PBA=∠QPF+∠BPF=∠QPB=45°即可求解.【詳解】解:取正方形網(wǎng)格中格點Q,連接PQ和BQ,如下圖所示:∴AE=PF,PE=QF,∠AEP=∠PFQ=90°,∴△APE≌△PQF(SAS),∴∠PAB=∠QPF,∵PF∥BE,∴∠PBA=∠BPF,∴∠PAB+∠PBA=∠QPF+∠BPF=∠QPB,又QA2=22+42=20,QB2=22+12=5,AB2=52=25,∴QA2+QB2=20+5=25=AB2,∴△QAB為直角三角形,∠AQB=90°,∵PQ2=22+12=5=QB2,∴△PQB為等腰直角三角形,∴∠QPB=∠QBP=(180°-90°)÷2=45°,∴∠PAB+∠PBA=∠QPF+∠BPF=∠QPB=45°,故答案為:45°.【考點】本題考查了勾股定理及逆定理、三角形全等的判定等,熟練掌握勾股定理及逆定理是解決本類題的關鍵.3、
20
13【解析】【分析】(1)由垂線段最短以及根據(jù)兩點的縱坐標相同即可求出AB的長度;(2)根據(jù)A、B、C三點的坐標可求出CE與AE的長度,設CD=x,根據(jù)勾股定理即可求出x的值.【詳解】(1)由A、B兩點的縱坐標相同可知:AB∥x軸,∴AB=12﹣(﹣8)=20;(2)過點C作l⊥AB于點E,連接AC,作AC的垂直平分線交直線l于點D,由(1)可知:CE=1﹣(﹣17)=18,AE=12,設CD=x,∴AD=CD=x,由勾股定理可知:x2=(18﹣x)2+122,∴解得:x=13,∴CD=13.故答案為(1)20;(2)13.【考點】本題考查了勾股定理,解題的關鍵是根據(jù)A、B、C三點的坐標求出相關線段的長度,本題屬于中等題型.4、29【解析】【分析】如圖(見解析),先根據(jù)正方形的面積公式可得,再利用勾股定理可得的值,由此即可得出答案.【詳解】如圖,連接AC,由題意得:,在中,,,在中,,,則正方形丁的面積為,故答案為:29.【考點】本題考查了勾股定理的應用,熟練掌握勾股定理是解題關鍵.5、【解析】【分析】首先根據(jù)BC,AC的比設出BC,AC,然后利用勾股定理列式計算求得a,即可求解.【詳解】解:∵AC∶BC=1∶7,∴設AC=a,則BC=7a,∵∠C=90°,∴AB2=AC2+BC2,∴1002=a2+(7a)2,解得:a=10,∴AC=10米.故答案為:10.【考點】本題主要考查勾股定理,掌握勾股定理的內(nèi)容是解題的關鍵.6、【解析】【分析】過點F作FH⊥AC于點H,由翻折的性質(zhì)可知S△AA'D=24,由D為AB的中點,則S△AA'B=2S△AA'D=48,得AA'=12,再通過AAS證明△A'BF≌△ECF,得CE=A'B=8,在Rt△CAE中,由勾股定理求出AC的長,最后通過面積法即可求出FH的長.【詳解】解:如圖,過點F作FH⊥AC于點H,根據(jù)翻折的性質(zhì)得:AD=A'D,AA'⊥CD,AE=A'E,∵CD是△ABC的中線,∴CD=BD,∴AD=BD=A'D,∴∠AA'B=90°,又∵S△A'DE=12,∴S△ADE=12,∴S△ADA'=24,又∵D為AB的中點,∴S△AA'B=2S△AA'D=48,即×AA′×A′B=48,∴AA'=12,又∵F為A'E的中點,∴A'F=EF,在△A'BF與△ECF中,,∴△A'BF≌△ECF(AAS),∴CE=A'B=8,∵AA'=2A'E,A'E=2EF=6,∴EF=3,AF=9,在Rt△CAE中,由勾股定理得:CA==10,在△CAF中,CA?HF=AF?CE,∴HF==,即點F到AC的距離為,故答案為:.【考點】本題主要考查了翻折的性質(zhì),全等三角形的判定與性質(zhì),勾股定理等知識,運用等積法求垂線段的長是解題的關鍵.7、【解析】【分析】由題意知AD+DB=BC+CA,設BD=x,則AD=15-x,且在直角△ACD中,代入勾股定理公式中即可求x的值,樹高CD=(5+x)米即可.【詳解】解:由題意知AD+DB=BC+CA,且CA=10米,BC=5米,設BD=x,則AD=15-x,∵在Rt△ACD中,由勾股定理可得:CD2+CA2=AD2,即,解得x=2.5米,故樹高為CD=5+x=7.5(米),答:樹高為7.5米.故答案為:7.5.【考點】本題考查了勾股定理在實際生活中的應用,本題中找到AD+DB=BC+CA的等量關系,并根據(jù)勾股定理列方程求解是解題的關鍵.8、0.8【解析】【分析】梯子的長是不變的,只要利用勾股定理解出梯子滑動前和滑動后的所構成的兩直角三角形,分別得出AO,A1O的長即可.【詳解】解:在Rt△ABO中,根據(jù)勾股定理知,A1O==4(m),在Rt△ABO中,由題意可得:BO=1.4(m),根據(jù)勾股定理知,AO==4.8(m),所以AA1=AO-A1O=0.8(米).故答案為0.8.【考點】本題考查勾股定理的應用,解題關鍵是從題中抽象出勾股定理這一數(shù)學模型,畫出準確的示意圖.領會數(shù)形結合的思想的應用.三、解答題1、(1)會,理由見解析;(2)7h【解析】【分析】(1)利用勾股定理的逆定理得出△ABC是直角三角形,進而利用三角形面積得出CD的長,從而判斷出海港C是否受臺風影響;(2)利用勾股定理得出ED以及EF的長,進而得出臺風影響該海港持續(xù)的時間.【詳解】解:(1)如圖所示,過點C作CD⊥AB于D點,∵AC=300km,BC=400km,AB=500km,∴,∴△ABC為直角三角形,∴,∴,∴,∵以臺風中心為圓心周圍250km以內(nèi)為受影響區(qū)域,∴海港C會受到臺風影響;(2)由(1)得CD=240km,如圖所示,當EC=FC=250km時,即臺風經(jīng)過EF段時,正好影響到海港C,此時△ECF為等腰三角形,∵,∴EF=140km,∵臺風的速度為20km/h,∴140÷20=7h,∴臺風影響該海港持續(xù)的時間有7h.【考點】本題考查的是勾股定理在實際生活中的運用,解答此類題目的關鍵是構造出直角三角形,再利用勾股定理解答.2、當△ABP為直角三角形時,t=4或.【解析】【分析】當△ABP為直角三角形時,分兩種情況:①當∠APB為直角時,②當∠BAP為直角時,分別求出此時t的值即可.【詳解】在Rt△ABC中,由勾股定理得:,∴BC=4cm,由題意得:BP=tcm.,①當∠APB為直角時,如圖①,點P與點C重合,BP=BC=4cm,∴t=4;②當∠BAP為直角時,如圖②,BP=tcm.CP=(t-4)cm,AC=3cm,在Rt△ACP中,,在Rt△BAP中,,即,解得,答:當△ABP為直角三角形時,t=4或.【考點】本題考查了勾股定理以及直角三角形的知識,解答本題的關鍵是掌握勾股定理的應用,以及分類討論,否則會出現(xiàn)漏解.3、,不符合規(guī)定【解析】【分析】根據(jù)勾股定理即可求解.【詳解】解:設且解得:商家這樣放廣告牌不符合規(guī)定.【考點】本題考查了勾股定理、一元一方程等內(nèi)容,解決問題的關鍵在于理解題意,找到等量關系,列出方程.4、這棵樹在離地面6米處被折斷【解析】【分析】設,利用勾股定理列方程求解即可.【詳解】解:設,∵在中,,∴,∴.答:這棵樹在離地面6米處被折斷【考點】本題考查了勾股定理,熟練掌握勾股定理是解答本題的關鍵.直角三角形兩條直角邊的平方和等于斜邊的平方.當題目中出現(xiàn)直角三角形,且該直角三角形的一邊為待求量時,常使用勾股定理進行求解.有時也可以利用勾股定理列方程求解.5、(1)PQ=cm(2)出發(fā)秒后△PQB能形成等腰三角形(3)當t為11秒或12秒或13.2秒時,△BCQ為等腰三角形.【解析】【分析】(1)可求得AP和BQ,則可求得BP,由勾股定理即可得出結論;(2)用t可分別表示出BP和BQ,根據(jù)等腰三角形的性質(zhì)可得到BP=BQ,可得到關于t的方程,可求得t;(3)用t分別表示出BQ和CQ,利用等腰三角形的性質(zhì)可分BQ=BC、CQ=BC和BQ=CQ三種情況,分別得到關于t的方程,可求得t的值.(1)當t=3時,則AP=3,BQ=2t=6,∵AB=16cm,∴BP=AB﹣
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年金融數(shù)據(jù)治理最佳實踐及隱私保護技術案例分析報告
- 泰山版信息技術(2018)第五冊 《第三單元 創(chuàng)作動畫故事 10 笑臉送福表心愿》教學設計
- 2025年中國高分辨率音頻揚聲器行業(yè)市場分析及投資價值評估前景預測報告
- 化學九年級科粵版 4.3 質(zhì)量守恒定律教學設計
- 2025年中國高純磷化鋅行業(yè)市場分析及投資價值評估前景預測報告
- 2025年中國鈣-鋅熱穩(wěn)定劑行業(yè)市場分析及投資價值評估前景預測報告
- 口腔醫(yī)院知識培訓內(nèi)容課件
- 2025年房地產(chǎn)項目后期運營與維護研究報告:保障項目長期價值
- 醫(yī)療救助知識培訓簡報課件
- 1.1 青春的邀約說課稿-統(tǒng)編版道德與法治七年級下冊
- 2025年汽車駕駛員(高級)理論考試試題及答案
- 2025年及未來5年中國鋰電池疊片機行業(yè)市場深度分析及發(fā)展趨勢預測報告
- 2025年幼兒園保健醫(yī)考核試題及答案
- 烏茲別克語自學課件
- 《“盛世華誕”國慶主題》課件
- 2025年江蘇衛(wèi)生健康職業(yè)學院單招《語文》檢測卷
- 物流客服培訓課件
- 川教版四年級上冊《生命.生態(tài).安全》全冊教案(及計劃)
- 華為技術有限公司企業(yè)簡稱2023環(huán)境、社會與公司治理報告:高科技行業(yè)ESG績效與NGO監(jiān)督
- 縣級醫(yī)療重點??平ㄔO項目申請書范文
- 穿心蓮栽培技術
評論
0/150
提交評論