




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
CharINWhitePaperMegawattChargingSystem(MCS)
RecommendationsandSpecificationforMCSrelatedstandardsbodiesandsolutionsuppliers
Version2.0
2025-05-08
ChargingInterfaceInitiative(CharIN)e.V.
c/oCharINAcademyGmbHEUREF-Campus10-11
10829Berlin
Contact
Phone+49302888388-0
Fax +49302888388-19
Mail coordination@charin.globalWebwww.charin.global
RecommendationsandrequirementsforMCSrelatedstandardsbodiesandsolutionsuppliers,Version2.0,2025-04-11
PAGE
10
Contents
Introduction 4
MCSImportancetoBatteryElectricCommercialVehicleIndustry 4
MCSConsiderationsforPubliccharging 4
Provisionsforautomation 4
Requirements 5
Communication 5
ChargingCommunication-PhysicalLayer 5
High-LevelCommunicationApplicationProtocol 8
Electrical 9
Electromagneticcompatibility 9
Isolation&Safety 9
HVTouchSafety 9
Maximumsocket/pintemperatures 10
Contacttemperaturedifferencecomparedtoambient 10
Permissiblesurfacetemperatures 11
Shortcircuitprotection 11
BusVoltageRange 11
MaximumCurrent 12
MinimumCurrent 12
ThermalManagementSystemstoSupportHighCurrents 12
PEPinSize 13
PEWireSize 13
Insulationrequirements 13
Touchcurrentprotection 14
Auxiliarylowvoltagesupply 14
Hardware 15
CouplerRetention 15
EVSE/PortLocationRecommendations 15
Torquerequirement 16
Insertion/ExtractionForce 16
Droptestrequirement 16
Adapters 16
MatingDurability 17
AutomatedConnection 17
IngressProtection 17
Temperaturerestrictedunlock 17
ThermalBoundaryConditions 17
Cable17
Ergonomics 18
Conclusion 19
Reference 20
Introduction
Thisdocumentgivesanoverviewofseveraltechnicalandnon-technicalaspectsoftheMegawattChargingSystem(MCS),asdiscussedwithintheCharINSubgroupsince2018.Asadescriptivesummary,itprovidestheachievementsinpreparinggeneraldesignaspectsofanMCS.ForfurtherdevelopmentthisdocumentalsoprovidesrecommendedMCSspecificationsforadoptionbyStandardsDevelopmentOrganizations(SDOs).
MCSImportancetoBatteryElectricCommercialVehicleIndustry
Therearetwokeytechnologiestobroadacceptanceofbatteryelectriccommercialvehicles:increasedrangeanddecreasedchargetimes.Chargingtime,whichcanbequantifiedasdistancepertimeunitcharged,shouldbeconsideredacrossthefleet,andshouldalsoconsiderlostchargingtimeduetodelayedchargingorevenchargingequipmentissues.MCSoffersthechargeratenecessarytorealizewidespreadadoptionofbatteryelectrificationinthecommercialvehiclemarketbyincreasingdrivingrangegainedperminutespentcharging.MCSalsooffersimprovedrobustnessofcommunication,whichwillreducedowntimerelatedtofailedchargingevents.
Commercialvehiclesdutycyclesarespecifictotheirapplications.TheincreasedchargerateofferedbyMCSwillallowthevehiclestodrivemoredistanceperdaybyutilizingthemandatedbreak-timefromthehours-of-serviceregulations.Theseregulationsstatethatdriversmusttakeabreakonoccasionduring
theirdrivecycle;theexactamountvariesbylocation,butit’swellunderstoodthatreducingchargingtimestofitintonormalbreaksinthedutycycleisanenablerforimprovedelectrificationforcommercialvehicles.ThisisjustonespecificexampleofhowtheMCSchargeratecanenablethemarket.
MCSConsiderationsforPubliccharging
AccessibilityhastobeconsideredwheninstallingMCSchargersinpublicinfrastructure.MCSisanenablingtechnologytocommercialvehicleelectrification.ItiscriticalthatMCSchargersareaccessiblebylargecommercialvehiclesrequiringdrivethroughcapabilities.PleasehavealookintotheWhitepaper“ChargingSiteRecommendations”ofCharINforfurtherinformation.
Provisionsforautomation
WhilethepredominateimplementationofMCScharginginfrastructureisexpectedtobehuman-operatedchargingconnectors,provisionforautomatedcouplingispossible.
Requirements
ThischaptersummarizesimportantrequirementsdefinedfortheMegawattChargingSystemwithregardstosafety,communicationandhardwareaspects.Thesetechnicalrequirementswerediscussedbynumerousexpertsfromdifferentindustriesandshouldensureasafeandreliablechargingsystem.
Communication
CommunicationtopologyisanimportantpartoftheMCSspecification.FollowingtheOSImodelforcommunication,oneimportantpartoftheworkdoneintheMCSgroupisdefiningaphysicalcommunicationlayer.Chargingsystemsdeployedthroughouttheworldpresentlyusephysicallayerswithdifferenttechnologies,eachwiththeirownprosandcons.CharINmembershavesuccessfullyimplementedimprovementstotheCCSarchitectureformanyyears,whichusespowerline
communication(PLC)withtheHomePlugGreenPHYcommunicationprotocol.This“singleended”PLCusedforCCSsupportedawidevarietyofusecaseswiththebenefitofnotneedingdedicatedconnectionpinsforcommunicationbetweenEVandEVSE.
ChargingCommunication-PhysicalLayer
MCSisdesignedfora6-foldhighercurrentandupto10-foldhigherpowercomparedtoCCS.Therefore,thesingle-endedimplementationoftoday’sPLCwasconsiderednotrobustenoughfortheexpectedincreaseinelectro-magneticinterference(EMI)emissionscomparedwithCCS.
Afterassessingdifferentphysicallayers(includingCAN,Ethernet,PLC),CharINrecommendsadaptingEthernet–specifically10Base-T1S(IEEE802.3),usingthededicatedchargingcommunicationpinsoftheMCSconnector.EthernetnativelysupportstheTCP/IPcommunicationstackaswellasIPV6.Thissolutionassureshighsignalstabilityandimmunitytoelectromagneticdisturbances.
PLCA
ThePhysicalLayerCollisionAvoidance(PLCA)isapartoftheReconciliationSublayer(RS)whichactsasawrapperbetweenthePHYandtheMAClayer,thereforethistechnologyisusedinthe10BASE-T1Stopreventcollisionsofthedataonthephysicallayer.TheISO15118-10recommendsusinghalf-duplexmultidropmodeofcommunicationduetothemajoradvantageonthesame.Theinformationbetweenthenodesissharedviaroundrobinfashion,givingeachnodeanopportunitytotransmitsitsdataoverthebusline.BEACON,COMMIT,DATAandSILENCEarethePLCAvariables.
Figure1PLCAMessagestructure
Source:Source:Physical-LayerCollisionAvoidancein10BASE-T1SAutomotiveEthernet”.Informationavailable:TestHappens-TeledyneLeCroyBlog:Physical-LayerCollisionAvoidancein10Base-T1SAutomotiveEthernet
Themessagestructureisdescribedasfollows:
BEACON:TheBEACONissignaledbythePHYwithnodeID=0,alsoknownasPLCAcoordinatortoindicatethestartofnewPLCAcycle.
COMMIT:TheCOMMITrequestisgeneratedbythePLCAControlstatemachine.Uponthereceptionofthisrequest,CRS(CarrierSense)signalisassertedbyPHY.
SILENCE:OnceaPLCAcoordinatorsendsaBEACONsignaltostartanewPLCAcycle,eachnodeinthenetworkisgrantedatransmitopportunityinaroundrobinfashion.
AdvantagesofPLCAin10BASE-T1SEthernetoverPLCCommunication
ReducedCollisions:ThePLCAworksontheprincipleofCSMA/CA(CarrierSenseMultipleAccess/CollisionAvoidance)comparedtoPLCcommunicationwhichworksontheCSMA/CD(CarrierSenseMultipleAccess/CollisionDetection),wherethelaterbasicallyonlydetectsthecollisioninsteadofavoidingitandduetowhichoncollisionthepacketsaredroppedresultinginslowmodeofcommunicationastheinformationneedstoberetransmitted.
ImprovedThroughput:Duetonocollisions,thenetworkcanhandlemoredatatraffic,leadingtoimprovedoverallefficiencyofthecommunicationcomparedtoPLC.
EnhancedReliability:WiththePLCA,dataaretransmittedinaroundrobinfashion,withoutanycollisionsaseverynodegetsitsequalopportunitytimetotransmittheinformation.AspertheIEEE802.3normandexplicitlymentionedintheISO15118-10itsmandatorytoconfigureitas32-bittimesoneachnode,thereforemakingitareliablemodeofcommunication.
Figure2ComparisonofCSMA/CDandPLCAintermsofthroughputandaccesslatencySource:OnSemi–NCN26010SinglePairEthernet10BASE-T1SProductOverview
Abbreviations:
CSMA/CD:CarrierSenseMultipleAccess/CollisionDetection
PLCA:PhysicalLayerCollisionAvoidance
NodeConfiguration
Figure3SinglePairEthernetwithMultidropmodeofcommunicationSource:ISO15118-10
NodeID=0(EVSE),configuredastheBEACONasthechargingstationcontrollerwouldinitiatethecommunicationoverthebus
NodeID=1(EV),configuredasthevehiclecontrollerwouldthenrespondbacktoanyinformationsentfromtheEVSE.
NodeID=2(Connector),NodeID=3(Inlet)andNodeID=4(Adaptor),theseareoptionalnodeandifrequiredcouldbeusedintheimplementation.
NodeID=5to7arereservedforanyfuturechangesorimplementations.
High-LevelCommunicationApplicationProtocol
ISO15118isthewell-establishedstandardwithmanysubgroupsworkingondifferentimplementationdetails.ISO15118-2manyhasbeeninusethroughoutthechargingindustryformanyyearsbuthadsomelimitationsaswellasdifferentimplementationsduetoinconsistentinterpretationandimplementationofthestandard.Inaddition,otherDINandSAEprotocolsforcommunicationhavealsobeenusedinthechargingindustryformanyyears,butthoseearlierprotocolsalsohaveevenmorelimitationsandlooseinterpretations.
Asaresultofthesignificantlymorecomplexusecasesthatneedsupporting,suchassecurehandlingofpaymentsystemswith“plugandcharge”,flexiblechargemanagementoperationswithfleetsandlargesites,vehicletogridexportpowerneeds,etc.necessitatinganimprovedcommunicationprotocolultimatelyleadingtothedevelopmentofISO15118-20.Thisprotocolhasbeenpublishedandisavailableforusesinceearly2022.
BecauseofthesignificantnumberofimprovementsofferedbyISO15118-20comparedtopreviousprotocols,ISO15118-20representsthemostcompleteandrobustcommunicationprotocolavailableglobally.Asaresult,CharINrecommendsthatMCSusesISO15118-20exclusively,withnoother(older)protocolssupported,toensuretheabsolutehighestlevelofuserexperienceandsecuritytoequipmentusingMCS
1.
WhileISO15118-20mandatesstrongsecuritymeasures,includingtheuseofTLS1.3forencryptedcommunication,itisworthnotingthatcertaindeploymentscenarios—suchasprivateordepot-basedchargingwheretheinfrastructureisunderstrictoperationalcontrol—maynotrequirethesamelevelofnetworksecurityaspubliccharging.Inthesecontrolledenvironments,avoidingtheimplementationofTLS1.3couldsimplifysystemintegration,reducecosts,andacceleratedeployment,providedthatriskassessmentsconfirmadequateprotectionthroughphysicalsecurityandnetworkisolation.Nonetheless,suchexceptionsshouldbeconsideredcarefullyandonacase-by-casebasis,withaclearunderstandingofthepotentialtrade-offsinsecurityandinteroperability.
1ISO15118-20:2022/DAM1:2024,AnnexKfortheMCSservice
Electrical
Electromagneticcompatibility
EMCrobustnessisatthecoreofchargingcommunicationperformance.ThestandardIEC61851-21-2definesthenecessaryrequirements.CharINmembershavefundedstudiesbyindependentlabs/researchorganizationsintotherobustnessoftheMCSsetupusingsinglepairEthernet.Thesetestswereperformedwithdirectlyinjectednoiseprofiles(bulkcurrentinjection(BCI)couplingtests)tosimulatecouplingofnoisefromthetractionvoltagelinesandadjacentcommunicationlines,tosimulatecommonusecases/industryscenarios.Thefailureconditionsforthesetestsweredefinedasthelossofjustonedatapacket,oralatencytimeof>60ms,whichisverystringent.Theresultsofthesestudiesindicatedthatshieldedtwistedpair(STP)isnotnecessary,andthatunshieldedtwistedpair(UTP)isadequatefortheanticipatednoiselevelsatfullpower.
TheseresultsformthebasesoftherecommendationofEthernetinfurthersections.
Isolation&Safety
MCSisdesignedasachargingsystemthatisgalvanicallyisolatedfromthegrid.Allstate-of-the-artelectricalsafetyrequirementsfromISO5474,IEC60664andIEC61851serieswereconsidered.Furtherkeyrequirementsforthesystemdesignare:
LimitationoftransientvoltagesbetweenHV+orHV-toPEto2.5kVbytheEVSE
LimitationoftheYcapacitancesonEVSEandEVsidedependingonthemaximumoperatingvoltage(seechapter
XV
)
HVTouchSafety
InthissectionHVisconsideredas>60Vand<1500VDC.
Highvoltage(HV)touchsafetyisameasureintendedtopreventlivingobjectsfromcontactingconductivepathsthatmayhaveahighvoltageand/orhightemperature.GloballymanygovernmentalbodiesrequireIPXXBforhighvoltageconnectionsthatareoutsideofapassengercompartment.IPXXBisdefinedbyIEC60529andisintendedtopreventadefined“finger”fromcontactinganyhazardsurface.
MCSneverintendstohaveanyhighvoltageexposurewhentheconnectorandinletarenotmated.BasedupontheexperiencewiththeCCSstandardsdevelopmentandthelessonslearnedtowardbroaderadoptionoftheCCSinterfaceinregionswithotherguidelinesrelatedtotouch-safetyprotections,theMCSdesignfollowedtheselearningsandisconstructedtoprovideIPXXBleveloftouchsafety.
Maximumsocket/pintemperatures
Werecommendthatthemaximumtemperaturelimitofthepin/socketcontactsforMCSissetto100°Cduetothefollowingreasons:
Adequatetestingresultsdemonstratethatevenat100°Ccontacttemperature,thepermissiblesurfacetemperaturesdefinedinIEC62196andUL2278aremaintained.(ReferenceVI.)
Increasedagingislessofaconcernwithmaterialsandsurfacetreatmentsavailablenow.
Thecurrentstandardsnecessitatetheuseofcompositematerialswithtemperatureratingsexceeding105°C.TheexistinglimitsofIEC62196andUL2278arebaseduponformermateriallimitstherebynecessitatingamaximumtemperaturelimitof90°C.100°Cwasagreedasacompromisetoprovidedesignmarginbelowthematerialslimitsof105°C
Today,commonlyusedcompositeplasticscanbefoundinhigh-temperaturegradeswithrelativelyhigherworkingtemperatures.Thesegradesofplasticsarenotprohibitivelyexpensiveandwouldallowforacontacttemperatureincreasetowhileremainingwithinworkingtemperaturelimits.
TemperaturesensingisrequiredfortheHVDCcontactsonboththeinletandtheconnector.ThesensorbehaviorshallfollowtherequirementsspecifiedinIECTS63379whenpublished.
Thetypeofsensorshallremainatthediscretionoftheinletandconnectormanufacturers,respectively.
Contacttemperaturedifferencecomparedtoambient
Werecommendthattheretobenospecificrequirementformaximumtemperaturedifferencebetweensocket/pintemperatureandambienttemperatureforMCS.
Existingstandardsspecifyadualrequirement:
Amaximumsocket/pintemperature(e.g.,90°C)and
Amaximumtemperaturedeltabetweenambientandsocket/pintemperature(e.g.,50°C).
CharINdoesnotrecommendtrackingdualrequirementslikethis.Rather,thefocusisonlimitingmaximumabsolutetemperature,thereforeonlyasinglemaximumtemperatureshouldbereferencedandnoreferencetoambienttemperatureisneeded.
Toclarifyanexample,usecase:Ifavehicleischargingin–10°Cambientairconditions,ifadeltatemperatureof50°Cwasconsidered,thiswouldrequirethatmaximumpin/sockettemperaturesremainbelow40°C(duetothe50°Cdeltarequirement).Havingpintemperaturesabove40°Cwouldnotcauseissues,particularlyrelatedtosafety;therefore,weshouldnotlimitthechargingpowerasaresultofthislowambienttemperature.
Permissiblesurfacetemperatures
CharINrecommendsinlinewithexistingstandards:
Themaximumpermissibletemperatureofthosepartsoftheaccessoryandcableassemblythatcanbegraspedduringnormaloperationcarryingtheratedcurrentshallnotexceed:
50°Cformetalparts,
60°Cfornon-metalparts.
Forpartswhichmaybetouchedbutnotgrasped,thepermissibletemperaturesare:60°Cformetalparts,
85°Cfornon-metalparts.
Shortcircuitprotection
Basedontheprospectiveshortcircuitcurrentsfrommultiplebatterypacks,asavailableatthevehicleinlet,theshortcircuitcurrentshouldbelimitedbythevehicletoapeakcurrentof70kAand12MA2sbetweentheDC+andDC-terminals.TheEVsupplyequipmentshalllimitthepeakcurrentto30kAand1MA2satthevehicleconnector.Incaseoftwoindependentfaults(oneinthevehicleandoneintheEVsupplyequipment)ashortcircuitcurrentmayflowthroughtheprotectiveconductor.Basedontheaddedimpedanceofthechargingcable,thepeakcurrentwillbelimitedto55kA,and11MA2s.TheEVandEVSE,includingthelockedcoupler,shallbedesignedtowithstandthesecurrents.TheinductanceoftheEVSEoutputcircuitandofthevehicleshallbelimitedincoordinationwiththeshortcircuitprotectivedevices.
ProvisionallytheinductanceoftheEVSEoutputcircuitis100μHandfortheEVitisforeseentobebetween30-50μH.
BusVoltageRange
Theoperatingvoltagerangeforachargingsystem(whichincludestheEVSEandEV)mustbeestablishedwhileconsideringaverycomplexamountofinformation.ThiscomplicatedselectionconsidersmetricssuchasavailabilityofpowerelectronicsequipmentforbothEVandEVSE,coverageofvehicleapplications,operatingefficiencyacrossthefleetusage,maximumpoweravailable,addressinghighvoltagesafety,andbalancingthechallengeofsimplifyingpowerelectronicsarchitectureswhilemeetingtheneedsoftheusecasesandoptimizingvaluefordevelopingandmanufacturingEVSEandEV.
TheindustryhasexperiencewithCCSdevelopmentinthepastwithoperatingrangesbetweenapproximately200-920VDC.Wideroperatingranges(aslowas50VDCandashighas1000VDC)aredocumentedaspossiblebutaren’timplementedintypicalinstallations.ThisisausefulreferencewhenconsideringpastandpresentstateoftheartcomparedtofutureexpectationsforMCS.
WhenconsideringthevoltagelevelsthatMCSmustsupport,CharINconsidersthemostimportantfactorstobesupportingasmanyvehiclesaspossible(wideroperatingvoltagerangeisbetter)whilebalancingthatwiththetotaloperatingrange(wideroperatingvoltagerangeincreasescomplexity).Alternativeswereconsidered,suchasreducedoperatingperformancewithhigher/lowervoltagesneeded
duetouniqueoperatingmodesorbatterycellchemistries.ButthosealternativesarenotrecommendedbyCharIN.
Withthoseconsiderations,CharINrecommendsthatMCSshoulduseaminimumvoltageof400VDCandamaximumoperationalvoltageof1250VDC.
ItisimportanttonotethatCharINrecommendsthatallMCSEVSEssupportthefulloperatingrangeof400-1250VDC.Pastexperienceofthee-Mobilitymarketshasshownthattheoperatingvoltagerangecompatibilityisamusttoavoidincompatibilitybetweenvehiclesandinfrastructure.Therefore,EVSEmanufacturersarestronglyadvisedagainstsupportingdevelopmentofMCSEVSEthatcan’tsupportthefullrangeof400-1250volts.
Note:TheConnectorisdesignedfor1500VDC.Systemvoltagewith1500VDCisunderconsiderationwithIEC61851-23-3.
MaximumCurrent
ThemaximumcontinuousratingforMCShasbeentestedupto3000ADC.Considerationsforshort-term,duty-cycleratingsweredeferredforfutureMCSdevelopmentandtesting.Highercurrentsshouldbecarefullyexaminedandvalidatedagainstsafetyrequirements.
Note:Activecoolingisrecommendedforhighercurrents,forcablesaswellasconnectorsandinlets.
MinimumCurrent
TheminimumcurrentsupportedbyMCSshallbedeterminedbythemaximumallowablepermissibleerroraccordingtoIEC61851-23-3asdefinedinCC6.2.BecauseMCSusesISO15118-20,the0AmodeaccordingtoCC.5.5.2shallbesupported.
ThermalManagementSystemstoSupportHighCurrents
Thefollowingtworequirementsclearlydefinethedivisionofresponsibilitywithregardtothermalsystemsduringcharging
Thevehicleisresponsibleforcomplyingwithtemperaturerequirementsforthevehicle.
TheEVSEisresponsibleforcomplyingwithtemperaturerequirementsfortheEVSE(includingcable/connector).
Eachmanufacturerisempoweredtochoosethethermalmanagementsystemoftheirchoice,solongastheymeetthetemperaturerequirements(limits)forMCS.
CharINproposesthatthechargingcurrentandvoltagelimitsoftheEVSEshallbecommunicatedtotheEVandtheEVcontrolshowmuchcurrentisrequestedduringchargingperISO15118-20.
Toensurethatcustomerexpectationsaremetatawidevarietyofoperatingconditions,theEVSEshouldbedesignedinawaysuchthatpowerratingsareprovidedatambienttemperaturesupto40°C.
PEPinSize
8mmdiameterisusedintheMCSconnectordesignforthePEpin.
PEWireSize
ThepotentialequalizationwireincludedintheMCSconnectorfollowstheindustrystandardthatisalreadywellestablishedinhighvoltageconnection,allowingasafepathforhighvoltageshortcircuitcurrentsthroughtheconnectorassemblyfordefinedconditions.
Thecableshallbecapableofwithstandingashortcircuitcurrentof11MA2s,whichtypicallyresultsinaminimumcrosssectionof25mm2.
Insulationrequirements
TheelectricalinsulationrequirementsfortheMCSchargingsystemarederivedfromtheexistingStandardswithappropriateamendmentstoaddresstheincreasedMCSchargingpowerlevels.TherelevantStandardsincludeISO5474forEVs;IEC61851-1andIEC61851-23-3(underdevelopment)forEVSEs;andIECTS63379(underdevelopment)forthechargingconnectorandvehicleinlet.
Touchcurrentprotection
Limitingthetouchenergyasanadditionalprotectionprovisionisanestablishedrequirementinthepublishedstagesofthe2ndeditionofIEC61851-23.DuetothehigherpowerlevelsprovidedbyMCS,higherYcapacitanceswillbeneededinthesystem.TherearevariousconceptstoallowfortheneededYcapacitancesbystillstayingbelowthecriticallimits.
CharINproposestheselimits:
Table1CharINproposedY-capacitancelimits
Vdc+toVdc-
Cysystem(μF)
CyEVtotal(μF)
CyEVperDCline(μF)
1078<Vdc≤1250
ln(0,5???????+75
0,5? 758 )
?0,007
0,5?????????????????
0,25?????????????????
Vdc≤1078
30
15
7,5
thec1limitoffigure22(DC)ofIEC604791(moreconservativethanc1infigure20(AC))
withahumanbodyresistanceof575?
Seeclause8.105.1ofIEC61851-23-3(indevelopment)
Auxiliarylowvoltagesupply
Whenconsideringusecases,CharINreviewedthepossibletechnicalsolutionsofimplementinganauxiliarylowvoltagesupplyinthesystem.ThiswouldbeconsideredashelpfulforusecaseswheretheEVSEorEVdonothavelowvoltageavailableforbasiccommunicationsinordertosupportchargingorexportpowerfeatures(suchasvehicle-to-grid(V2G)incaseofapoweroutage).Afterreviewingthetechnicalconceptsandchallengesassociatedwithdifferentoptions,theconclusionisthatalowvoltageauxiliarysupplyintegratedwiththeMCSconnectorisnotrecommendedasarequirementbutshouldbeconsideredasanoptionalfeaturethatshallnotimpactthefunctionofthecommunicationschemeutilizingthesamecircuit(s).WhenthereisnoauxiliarylowvoltagesupplyintegratedwithMCS,ifanEVSEneedsanabilitytocommunicateforsupportingVehicle-to-gridoperations,theEVSEshouldbesuppliedwithanuninterruptablepowersupply(UPS)orsimilar.Incaseavehiclehasalowvoltagebatteryproblemsuchthatitcan’tbegincharging,itisrecommendedtofollowtheindustrystandardofusing“jumper”cablesora“jumpbox”totemporarilyprovidelowvoltagepowertothatvehicleuntilitcanbegincharging.
Hardware
CouplerRetention
TherearemanylessonslearnedfromthedifferentimplementationsofCCSretainingmeansandlatches,whichincludedbothmechanicalandelectricalinterlockmechanisms,controlledbyindividualusersandalsobyelectronicdevices.TherecommendedMCSretentionisbasedonthoselessonslearned.
TheMCSinterfaceshallincludeanelectricallyactivated/actuatedlocktoensurethattheconnectorremainsengagedwiththeinletduringallnormaloperationandalsoincaseofshortcircuit.ThiselectricallyactivatedretainingmeansshallprovidefeedbacktotheEVandshallbecontrolledindependentlyofbuttonsorswitchesusedforeithernormaluserrequestedshutdownsoremergencyshutdowns.TheretainingmeansshallbeintegratedintotheinletsideoftheMCScoupleronatleastonelocation,andupto3locations,asincludedintheMCSconnectordimensionproposals.Thelockshallhaveapinorslotdesignthatoperatesconsistentlyinallexpectedoperatingconditions,especiallyconsideringtemperatureandweathervariationsforchargingoperationsinextremeenvironments,andwithexpectedtolerancesandwear.
EVSE/PortLocationRecommendations
CharINexpectsthatMCSwillbeusedonmanydifferentvehicleswithmanydifferentusecasesandconfigurations.CharINrecommendsthatfortrucks,theinletlocationshouldbeontheleftsideofthevehicle,behindthemost-forwardaxle.Thisconsistentlocationsupportsbestpracticesfromexperienceswithearlydevelopmentandlessonslearnedfrompreviouschargingexperiences.
AsurveyamongthevehiclemanufacturerswithintheMCSSubgroupresultedininletpositionsbetween2mand4,8m,measuredfromthefrontofthevehicle.
Figure4OutcomeanalysisMCSinletpositionfortrucks
ThefuturereadinessofMCSiscloselylinkedtotheintegrationofautomatedElectricVehicleSupplyEquipment(aEVSE)technology.Astheindustrymovestowardautomatedsolutions,itbecomes
increasinglyimportanttodefinethedatumplaneanddatumaxisfortheinletatanearlystageofdevelopment.Thesestandardizedreferencepointsenableprecisepositioningandalignmentforautomateddockingandundocking,aswellasintegrationwithAutomatedVehicleDockingSystems(AVDS)asspecifiedinISO12768-1.
ByadoptingstandardizedinletpositioningandaccommodatingaEVSEintegrationfromtheoutset,MCStechnologycanbettersupportautonomoustruckingandlong-haulapplications,whereautomatedchargingsolutionswillplayavitalrole.HarmonizingMCSdesignwithemergingautomationtechnologiesensuresfuturereadinessand
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025貴州福泉市4月招聘城鎮(zhèn)公益性崗位考前自測(cè)高頻考點(diǎn)模擬試題附答案詳解(模擬題)
- 2025廣東佛山市商務(wù)局招考專業(yè)技術(shù)雇員1人模擬試卷附答案詳解
- 2025年南通醋酸纖維有限公司招聘(36人)模擬試卷完整參考答案詳解
- 2025屆春季雅礱江公司校園招聘正式啟動(dòng)模擬試卷及答案詳解(名校卷)
- 2025江蘇連云港灌江農(nóng)業(yè)發(fā)展集團(tuán)有限公司招聘擬聘(第二批)模擬試卷及一套參考答案詳解
- 2025廣西柳州市城中區(qū)人民法院招錄3人(二)考前自測(cè)高頻考點(diǎn)模擬試題及答案詳解(奪冠系列)
- 2025北京市海淀區(qū)第二實(shí)驗(yàn)小學(xué)教育集團(tuán)招聘模擬試卷及一套參考答案詳解
- 2025江蘇蘇州市相城招商(集團(tuán))有限公司人員招聘模擬試卷及答案詳解(典優(yōu))
- 2025貴州貴陽學(xué)院高層次人才引進(jìn)15人模擬試卷及完整答案詳解一套
- 2025年河北雄安新區(qū)雄縣事業(yè)單位公開招聘工作人員89名模擬試卷及答案詳解(各地真題)
- 檢驗(yàn)科內(nèi)部審核報(bào)告
- 2023新版養(yǎng)老機(jī)構(gòu)等級(jí)評(píng)定解讀
- 無人機(jī)的分類
- 國家義務(wù)教育質(zhì)量監(jiān)測(cè)模擬測(cè)試(四年級(jí))心理健康
- 【課件】2024屆九省聯(lián)考英語閱讀理解評(píng)析課件
- 油氣儲(chǔ)運(yùn)安全技術(shù)
- 心理疾病的心理治療方法和康復(fù)訓(xùn)練
- 風(fēng)濕性疾病的疫苗接種與預(yù)防措施
- 電動(dòng)起重機(jī)司機(jī)裝卸司機(jī)
- DLT817-2014 立式水輪發(fā)電機(jī)檢修技術(shù)規(guī)程
- 蘇教版小學(xué)英語單詞匯總-譯林版- - 1~6年級(jí)
評(píng)論
0/150
提交評(píng)論