2025年兆瓦充電系統(tǒng)MCS2.0白皮書_第1頁
2025年兆瓦充電系統(tǒng)MCS2.0白皮書_第2頁
2025年兆瓦充電系統(tǒng)MCS2.0白皮書_第3頁
2025年兆瓦充電系統(tǒng)MCS2.0白皮書_第4頁
2025年兆瓦充電系統(tǒng)MCS2.0白皮書_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

CharINWhitePaperMegawattChargingSystem(MCS)

RecommendationsandSpecificationforMCSrelatedstandardsbodiesandsolutionsuppliers

Version2.0

2025-05-08

ChargingInterfaceInitiative(CharIN)e.V.

c/oCharINAcademyGmbHEUREF-Campus10-11

10829Berlin

Contact

Phone+49302888388-0

Fax +49302888388-19

Mail coordination@charin.globalWebwww.charin.global

RecommendationsandrequirementsforMCSrelatedstandardsbodiesandsolutionsuppliers,Version2.0,2025-04-11

PAGE

10

Contents

Introduction 4

MCSImportancetoBatteryElectricCommercialVehicleIndustry 4

MCSConsiderationsforPubliccharging 4

Provisionsforautomation 4

Requirements 5

Communication 5

ChargingCommunication-PhysicalLayer 5

High-LevelCommunicationApplicationProtocol 8

Electrical 9

Electromagneticcompatibility 9

Isolation&Safety 9

HVTouchSafety 9

Maximumsocket/pintemperatures 10

Contacttemperaturedifferencecomparedtoambient 10

Permissiblesurfacetemperatures 11

Shortcircuitprotection 11

BusVoltageRange 11

MaximumCurrent 12

MinimumCurrent 12

ThermalManagementSystemstoSupportHighCurrents 12

PEPinSize 13

PEWireSize 13

Insulationrequirements 13

Touchcurrentprotection 14

Auxiliarylowvoltagesupply 14

Hardware 15

CouplerRetention 15

EVSE/PortLocationRecommendations 15

Torquerequirement 16

Insertion/ExtractionForce 16

Droptestrequirement 16

Adapters 16

MatingDurability 17

AutomatedConnection 17

IngressProtection 17

Temperaturerestrictedunlock 17

ThermalBoundaryConditions 17

Cable17

Ergonomics 18

Conclusion 19

Reference 20

Introduction

Thisdocumentgivesanoverviewofseveraltechnicalandnon-technicalaspectsoftheMegawattChargingSystem(MCS),asdiscussedwithintheCharINSubgroupsince2018.Asadescriptivesummary,itprovidestheachievementsinpreparinggeneraldesignaspectsofanMCS.ForfurtherdevelopmentthisdocumentalsoprovidesrecommendedMCSspecificationsforadoptionbyStandardsDevelopmentOrganizations(SDOs).

MCSImportancetoBatteryElectricCommercialVehicleIndustry

Therearetwokeytechnologiestobroadacceptanceofbatteryelectriccommercialvehicles:increasedrangeanddecreasedchargetimes.Chargingtime,whichcanbequantifiedasdistancepertimeunitcharged,shouldbeconsideredacrossthefleet,andshouldalsoconsiderlostchargingtimeduetodelayedchargingorevenchargingequipmentissues.MCSoffersthechargeratenecessarytorealizewidespreadadoptionofbatteryelectrificationinthecommercialvehiclemarketbyincreasingdrivingrangegainedperminutespentcharging.MCSalsooffersimprovedrobustnessofcommunication,whichwillreducedowntimerelatedtofailedchargingevents.

Commercialvehiclesdutycyclesarespecifictotheirapplications.TheincreasedchargerateofferedbyMCSwillallowthevehiclestodrivemoredistanceperdaybyutilizingthemandatedbreak-timefromthehours-of-serviceregulations.Theseregulationsstatethatdriversmusttakeabreakonoccasionduring

theirdrivecycle;theexactamountvariesbylocation,butit’swellunderstoodthatreducingchargingtimestofitintonormalbreaksinthedutycycleisanenablerforimprovedelectrificationforcommercialvehicles.ThisisjustonespecificexampleofhowtheMCSchargeratecanenablethemarket.

MCSConsiderationsforPubliccharging

AccessibilityhastobeconsideredwheninstallingMCSchargersinpublicinfrastructure.MCSisanenablingtechnologytocommercialvehicleelectrification.ItiscriticalthatMCSchargersareaccessiblebylargecommercialvehiclesrequiringdrivethroughcapabilities.PleasehavealookintotheWhitepaper“ChargingSiteRecommendations”ofCharINforfurtherinformation.

Provisionsforautomation

WhilethepredominateimplementationofMCScharginginfrastructureisexpectedtobehuman-operatedchargingconnectors,provisionforautomatedcouplingispossible.

Requirements

ThischaptersummarizesimportantrequirementsdefinedfortheMegawattChargingSystemwithregardstosafety,communicationandhardwareaspects.Thesetechnicalrequirementswerediscussedbynumerousexpertsfromdifferentindustriesandshouldensureasafeandreliablechargingsystem.

Communication

CommunicationtopologyisanimportantpartoftheMCSspecification.FollowingtheOSImodelforcommunication,oneimportantpartoftheworkdoneintheMCSgroupisdefiningaphysicalcommunicationlayer.Chargingsystemsdeployedthroughouttheworldpresentlyusephysicallayerswithdifferenttechnologies,eachwiththeirownprosandcons.CharINmembershavesuccessfullyimplementedimprovementstotheCCSarchitectureformanyyears,whichusespowerline

communication(PLC)withtheHomePlugGreenPHYcommunicationprotocol.This“singleended”PLCusedforCCSsupportedawidevarietyofusecaseswiththebenefitofnotneedingdedicatedconnectionpinsforcommunicationbetweenEVandEVSE.

ChargingCommunication-PhysicalLayer

MCSisdesignedfora6-foldhighercurrentandupto10-foldhigherpowercomparedtoCCS.Therefore,thesingle-endedimplementationoftoday’sPLCwasconsiderednotrobustenoughfortheexpectedincreaseinelectro-magneticinterference(EMI)emissionscomparedwithCCS.

Afterassessingdifferentphysicallayers(includingCAN,Ethernet,PLC),CharINrecommendsadaptingEthernet–specifically10Base-T1S(IEEE802.3),usingthededicatedchargingcommunicationpinsoftheMCSconnector.EthernetnativelysupportstheTCP/IPcommunicationstackaswellasIPV6.Thissolutionassureshighsignalstabilityandimmunitytoelectromagneticdisturbances.

PLCA

ThePhysicalLayerCollisionAvoidance(PLCA)isapartoftheReconciliationSublayer(RS)whichactsasawrapperbetweenthePHYandtheMAClayer,thereforethistechnologyisusedinthe10BASE-T1Stopreventcollisionsofthedataonthephysicallayer.TheISO15118-10recommendsusinghalf-duplexmultidropmodeofcommunicationduetothemajoradvantageonthesame.Theinformationbetweenthenodesissharedviaroundrobinfashion,givingeachnodeanopportunitytotransmitsitsdataoverthebusline.BEACON,COMMIT,DATAandSILENCEarethePLCAvariables.

Figure1PLCAMessagestructure

Source:Source:Physical-LayerCollisionAvoidancein10BASE-T1SAutomotiveEthernet”.Informationavailable:TestHappens-TeledyneLeCroyBlog:Physical-LayerCollisionAvoidancein10Base-T1SAutomotiveEthernet

Themessagestructureisdescribedasfollows:

BEACON:TheBEACONissignaledbythePHYwithnodeID=0,alsoknownasPLCAcoordinatortoindicatethestartofnewPLCAcycle.

COMMIT:TheCOMMITrequestisgeneratedbythePLCAControlstatemachine.Uponthereceptionofthisrequest,CRS(CarrierSense)signalisassertedbyPHY.

SILENCE:OnceaPLCAcoordinatorsendsaBEACONsignaltostartanewPLCAcycle,eachnodeinthenetworkisgrantedatransmitopportunityinaroundrobinfashion.

AdvantagesofPLCAin10BASE-T1SEthernetoverPLCCommunication

ReducedCollisions:ThePLCAworksontheprincipleofCSMA/CA(CarrierSenseMultipleAccess/CollisionAvoidance)comparedtoPLCcommunicationwhichworksontheCSMA/CD(CarrierSenseMultipleAccess/CollisionDetection),wherethelaterbasicallyonlydetectsthecollisioninsteadofavoidingitandduetowhichoncollisionthepacketsaredroppedresultinginslowmodeofcommunicationastheinformationneedstoberetransmitted.

ImprovedThroughput:Duetonocollisions,thenetworkcanhandlemoredatatraffic,leadingtoimprovedoverallefficiencyofthecommunicationcomparedtoPLC.

EnhancedReliability:WiththePLCA,dataaretransmittedinaroundrobinfashion,withoutanycollisionsaseverynodegetsitsequalopportunitytimetotransmittheinformation.AspertheIEEE802.3normandexplicitlymentionedintheISO15118-10itsmandatorytoconfigureitas32-bittimesoneachnode,thereforemakingitareliablemodeofcommunication.

Figure2ComparisonofCSMA/CDandPLCAintermsofthroughputandaccesslatencySource:OnSemi–NCN26010SinglePairEthernet10BASE-T1SProductOverview

Abbreviations:

CSMA/CD:CarrierSenseMultipleAccess/CollisionDetection

PLCA:PhysicalLayerCollisionAvoidance

NodeConfiguration

Figure3SinglePairEthernetwithMultidropmodeofcommunicationSource:ISO15118-10

NodeID=0(EVSE),configuredastheBEACONasthechargingstationcontrollerwouldinitiatethecommunicationoverthebus

NodeID=1(EV),configuredasthevehiclecontrollerwouldthenrespondbacktoanyinformationsentfromtheEVSE.

NodeID=2(Connector),NodeID=3(Inlet)andNodeID=4(Adaptor),theseareoptionalnodeandifrequiredcouldbeusedintheimplementation.

NodeID=5to7arereservedforanyfuturechangesorimplementations.

High-LevelCommunicationApplicationProtocol

ISO15118isthewell-establishedstandardwithmanysubgroupsworkingondifferentimplementationdetails.ISO15118-2manyhasbeeninusethroughoutthechargingindustryformanyyearsbuthadsomelimitationsaswellasdifferentimplementationsduetoinconsistentinterpretationandimplementationofthestandard.Inaddition,otherDINandSAEprotocolsforcommunicationhavealsobeenusedinthechargingindustryformanyyears,butthoseearlierprotocolsalsohaveevenmorelimitationsandlooseinterpretations.

Asaresultofthesignificantlymorecomplexusecasesthatneedsupporting,suchassecurehandlingofpaymentsystemswith“plugandcharge”,flexiblechargemanagementoperationswithfleetsandlargesites,vehicletogridexportpowerneeds,etc.necessitatinganimprovedcommunicationprotocolultimatelyleadingtothedevelopmentofISO15118-20.Thisprotocolhasbeenpublishedandisavailableforusesinceearly2022.

BecauseofthesignificantnumberofimprovementsofferedbyISO15118-20comparedtopreviousprotocols,ISO15118-20representsthemostcompleteandrobustcommunicationprotocolavailableglobally.Asaresult,CharINrecommendsthatMCSusesISO15118-20exclusively,withnoother(older)protocolssupported,toensuretheabsolutehighestlevelofuserexperienceandsecuritytoequipmentusingMCS

1.

WhileISO15118-20mandatesstrongsecuritymeasures,includingtheuseofTLS1.3forencryptedcommunication,itisworthnotingthatcertaindeploymentscenarios—suchasprivateordepot-basedchargingwheretheinfrastructureisunderstrictoperationalcontrol—maynotrequirethesamelevelofnetworksecurityaspubliccharging.Inthesecontrolledenvironments,avoidingtheimplementationofTLS1.3couldsimplifysystemintegration,reducecosts,andacceleratedeployment,providedthatriskassessmentsconfirmadequateprotectionthroughphysicalsecurityandnetworkisolation.Nonetheless,suchexceptionsshouldbeconsideredcarefullyandonacase-by-casebasis,withaclearunderstandingofthepotentialtrade-offsinsecurityandinteroperability.

1ISO15118-20:2022/DAM1:2024,AnnexKfortheMCSservice

Electrical

Electromagneticcompatibility

EMCrobustnessisatthecoreofchargingcommunicationperformance.ThestandardIEC61851-21-2definesthenecessaryrequirements.CharINmembershavefundedstudiesbyindependentlabs/researchorganizationsintotherobustnessoftheMCSsetupusingsinglepairEthernet.Thesetestswereperformedwithdirectlyinjectednoiseprofiles(bulkcurrentinjection(BCI)couplingtests)tosimulatecouplingofnoisefromthetractionvoltagelinesandadjacentcommunicationlines,tosimulatecommonusecases/industryscenarios.Thefailureconditionsforthesetestsweredefinedasthelossofjustonedatapacket,oralatencytimeof>60ms,whichisverystringent.Theresultsofthesestudiesindicatedthatshieldedtwistedpair(STP)isnotnecessary,andthatunshieldedtwistedpair(UTP)isadequatefortheanticipatednoiselevelsatfullpower.

TheseresultsformthebasesoftherecommendationofEthernetinfurthersections.

Isolation&Safety

MCSisdesignedasachargingsystemthatisgalvanicallyisolatedfromthegrid.Allstate-of-the-artelectricalsafetyrequirementsfromISO5474,IEC60664andIEC61851serieswereconsidered.Furtherkeyrequirementsforthesystemdesignare:

LimitationoftransientvoltagesbetweenHV+orHV-toPEto2.5kVbytheEVSE

LimitationoftheYcapacitancesonEVSEandEVsidedependingonthemaximumoperatingvoltage(seechapter

XV

)

HVTouchSafety

InthissectionHVisconsideredas>60Vand<1500VDC.

Highvoltage(HV)touchsafetyisameasureintendedtopreventlivingobjectsfromcontactingconductivepathsthatmayhaveahighvoltageand/orhightemperature.GloballymanygovernmentalbodiesrequireIPXXBforhighvoltageconnectionsthatareoutsideofapassengercompartment.IPXXBisdefinedbyIEC60529andisintendedtopreventadefined“finger”fromcontactinganyhazardsurface.

MCSneverintendstohaveanyhighvoltageexposurewhentheconnectorandinletarenotmated.BasedupontheexperiencewiththeCCSstandardsdevelopmentandthelessonslearnedtowardbroaderadoptionoftheCCSinterfaceinregionswithotherguidelinesrelatedtotouch-safetyprotections,theMCSdesignfollowedtheselearningsandisconstructedtoprovideIPXXBleveloftouchsafety.

Maximumsocket/pintemperatures

Werecommendthatthemaximumtemperaturelimitofthepin/socketcontactsforMCSissetto100°Cduetothefollowingreasons:

Adequatetestingresultsdemonstratethatevenat100°Ccontacttemperature,thepermissiblesurfacetemperaturesdefinedinIEC62196andUL2278aremaintained.(ReferenceVI.)

Increasedagingislessofaconcernwithmaterialsandsurfacetreatmentsavailablenow.

Thecurrentstandardsnecessitatetheuseofcompositematerialswithtemperatureratingsexceeding105°C.TheexistinglimitsofIEC62196andUL2278arebaseduponformermateriallimitstherebynecessitatingamaximumtemperaturelimitof90°C.100°Cwasagreedasacompromisetoprovidedesignmarginbelowthematerialslimitsof105°C

Today,commonlyusedcompositeplasticscanbefoundinhigh-temperaturegradeswithrelativelyhigherworkingtemperatures.Thesegradesofplasticsarenotprohibitivelyexpensiveandwouldallowforacontacttemperatureincreasetowhileremainingwithinworkingtemperaturelimits.

TemperaturesensingisrequiredfortheHVDCcontactsonboththeinletandtheconnector.ThesensorbehaviorshallfollowtherequirementsspecifiedinIECTS63379whenpublished.

Thetypeofsensorshallremainatthediscretionoftheinletandconnectormanufacturers,respectively.

Contacttemperaturedifferencecomparedtoambient

Werecommendthattheretobenospecificrequirementformaximumtemperaturedifferencebetweensocket/pintemperatureandambienttemperatureforMCS.

Existingstandardsspecifyadualrequirement:

Amaximumsocket/pintemperature(e.g.,90°C)and

Amaximumtemperaturedeltabetweenambientandsocket/pintemperature(e.g.,50°C).

CharINdoesnotrecommendtrackingdualrequirementslikethis.Rather,thefocusisonlimitingmaximumabsolutetemperature,thereforeonlyasinglemaximumtemperatureshouldbereferencedandnoreferencetoambienttemperatureisneeded.

Toclarifyanexample,usecase:Ifavehicleischargingin–10°Cambientairconditions,ifadeltatemperatureof50°Cwasconsidered,thiswouldrequirethatmaximumpin/sockettemperaturesremainbelow40°C(duetothe50°Cdeltarequirement).Havingpintemperaturesabove40°Cwouldnotcauseissues,particularlyrelatedtosafety;therefore,weshouldnotlimitthechargingpowerasaresultofthislowambienttemperature.

Permissiblesurfacetemperatures

CharINrecommendsinlinewithexistingstandards:

Themaximumpermissibletemperatureofthosepartsoftheaccessoryandcableassemblythatcanbegraspedduringnormaloperationcarryingtheratedcurrentshallnotexceed:

50°Cformetalparts,

60°Cfornon-metalparts.

Forpartswhichmaybetouchedbutnotgrasped,thepermissibletemperaturesare:60°Cformetalparts,

85°Cfornon-metalparts.

Shortcircuitprotection

Basedontheprospectiveshortcircuitcurrentsfrommultiplebatterypacks,asavailableatthevehicleinlet,theshortcircuitcurrentshouldbelimitedbythevehicletoapeakcurrentof70kAand12MA2sbetweentheDC+andDC-terminals.TheEVsupplyequipmentshalllimitthepeakcurrentto30kAand1MA2satthevehicleconnector.Incaseoftwoindependentfaults(oneinthevehicleandoneintheEVsupplyequipment)ashortcircuitcurrentmayflowthroughtheprotectiveconductor.Basedontheaddedimpedanceofthechargingcable,thepeakcurrentwillbelimitedto55kA,and11MA2s.TheEVandEVSE,includingthelockedcoupler,shallbedesignedtowithstandthesecurrents.TheinductanceoftheEVSEoutputcircuitandofthevehicleshallbelimitedincoordinationwiththeshortcircuitprotectivedevices.

ProvisionallytheinductanceoftheEVSEoutputcircuitis100μHandfortheEVitisforeseentobebetween30-50μH.

BusVoltageRange

Theoperatingvoltagerangeforachargingsystem(whichincludestheEVSEandEV)mustbeestablishedwhileconsideringaverycomplexamountofinformation.ThiscomplicatedselectionconsidersmetricssuchasavailabilityofpowerelectronicsequipmentforbothEVandEVSE,coverageofvehicleapplications,operatingefficiencyacrossthefleetusage,maximumpoweravailable,addressinghighvoltagesafety,andbalancingthechallengeofsimplifyingpowerelectronicsarchitectureswhilemeetingtheneedsoftheusecasesandoptimizingvaluefordevelopingandmanufacturingEVSEandEV.

TheindustryhasexperiencewithCCSdevelopmentinthepastwithoperatingrangesbetweenapproximately200-920VDC.Wideroperatingranges(aslowas50VDCandashighas1000VDC)aredocumentedaspossiblebutaren’timplementedintypicalinstallations.ThisisausefulreferencewhenconsideringpastandpresentstateoftheartcomparedtofutureexpectationsforMCS.

WhenconsideringthevoltagelevelsthatMCSmustsupport,CharINconsidersthemostimportantfactorstobesupportingasmanyvehiclesaspossible(wideroperatingvoltagerangeisbetter)whilebalancingthatwiththetotaloperatingrange(wideroperatingvoltagerangeincreasescomplexity).Alternativeswereconsidered,suchasreducedoperatingperformancewithhigher/lowervoltagesneeded

duetouniqueoperatingmodesorbatterycellchemistries.ButthosealternativesarenotrecommendedbyCharIN.

Withthoseconsiderations,CharINrecommendsthatMCSshoulduseaminimumvoltageof400VDCandamaximumoperationalvoltageof1250VDC.

ItisimportanttonotethatCharINrecommendsthatallMCSEVSEssupportthefulloperatingrangeof400-1250VDC.Pastexperienceofthee-Mobilitymarketshasshownthattheoperatingvoltagerangecompatibilityisamusttoavoidincompatibilitybetweenvehiclesandinfrastructure.Therefore,EVSEmanufacturersarestronglyadvisedagainstsupportingdevelopmentofMCSEVSEthatcan’tsupportthefullrangeof400-1250volts.

Note:TheConnectorisdesignedfor1500VDC.Systemvoltagewith1500VDCisunderconsiderationwithIEC61851-23-3.

MaximumCurrent

ThemaximumcontinuousratingforMCShasbeentestedupto3000ADC.Considerationsforshort-term,duty-cycleratingsweredeferredforfutureMCSdevelopmentandtesting.Highercurrentsshouldbecarefullyexaminedandvalidatedagainstsafetyrequirements.

Note:Activecoolingisrecommendedforhighercurrents,forcablesaswellasconnectorsandinlets.

MinimumCurrent

TheminimumcurrentsupportedbyMCSshallbedeterminedbythemaximumallowablepermissibleerroraccordingtoIEC61851-23-3asdefinedinCC6.2.BecauseMCSusesISO15118-20,the0AmodeaccordingtoCC.5.5.2shallbesupported.

ThermalManagementSystemstoSupportHighCurrents

Thefollowingtworequirementsclearlydefinethedivisionofresponsibilitywithregardtothermalsystemsduringcharging

Thevehicleisresponsibleforcomplyingwithtemperaturerequirementsforthevehicle.

TheEVSEisresponsibleforcomplyingwithtemperaturerequirementsfortheEVSE(includingcable/connector).

Eachmanufacturerisempoweredtochoosethethermalmanagementsystemoftheirchoice,solongastheymeetthetemperaturerequirements(limits)forMCS.

CharINproposesthatthechargingcurrentandvoltagelimitsoftheEVSEshallbecommunicatedtotheEVandtheEVcontrolshowmuchcurrentisrequestedduringchargingperISO15118-20.

Toensurethatcustomerexpectationsaremetatawidevarietyofoperatingconditions,theEVSEshouldbedesignedinawaysuchthatpowerratingsareprovidedatambienttemperaturesupto40°C.

PEPinSize

8mmdiameterisusedintheMCSconnectordesignforthePEpin.

PEWireSize

ThepotentialequalizationwireincludedintheMCSconnectorfollowstheindustrystandardthatisalreadywellestablishedinhighvoltageconnection,allowingasafepathforhighvoltageshortcircuitcurrentsthroughtheconnectorassemblyfordefinedconditions.

Thecableshallbecapableofwithstandingashortcircuitcurrentof11MA2s,whichtypicallyresultsinaminimumcrosssectionof25mm2.

Insulationrequirements

TheelectricalinsulationrequirementsfortheMCSchargingsystemarederivedfromtheexistingStandardswithappropriateamendmentstoaddresstheincreasedMCSchargingpowerlevels.TherelevantStandardsincludeISO5474forEVs;IEC61851-1andIEC61851-23-3(underdevelopment)forEVSEs;andIECTS63379(underdevelopment)forthechargingconnectorandvehicleinlet.

Touchcurrentprotection

Limitingthetouchenergyasanadditionalprotectionprovisionisanestablishedrequirementinthepublishedstagesofthe2ndeditionofIEC61851-23.DuetothehigherpowerlevelsprovidedbyMCS,higherYcapacitanceswillbeneededinthesystem.TherearevariousconceptstoallowfortheneededYcapacitancesbystillstayingbelowthecriticallimits.

CharINproposestheselimits:

Table1CharINproposedY-capacitancelimits

Vdc+toVdc-

Cysystem(μF)

CyEVtotal(μF)

CyEVperDCline(μF)

1078<Vdc≤1250

ln(0,5???????+75

0,5? 758 )

?0,007

0,5?????????????????

0,25?????????????????

Vdc≤1078

30

15

7,5

thec1limitoffigure22(DC)ofIEC604791(moreconservativethanc1infigure20(AC))

withahumanbodyresistanceof575?

Seeclause8.105.1ofIEC61851-23-3(indevelopment)

Auxiliarylowvoltagesupply

Whenconsideringusecases,CharINreviewedthepossibletechnicalsolutionsofimplementinganauxiliarylowvoltagesupplyinthesystem.ThiswouldbeconsideredashelpfulforusecaseswheretheEVSEorEVdonothavelowvoltageavailableforbasiccommunicationsinordertosupportchargingorexportpowerfeatures(suchasvehicle-to-grid(V2G)incaseofapoweroutage).Afterreviewingthetechnicalconceptsandchallengesassociatedwithdifferentoptions,theconclusionisthatalowvoltageauxiliarysupplyintegratedwiththeMCSconnectorisnotrecommendedasarequirementbutshouldbeconsideredasanoptionalfeaturethatshallnotimpactthefunctionofthecommunicationschemeutilizingthesamecircuit(s).WhenthereisnoauxiliarylowvoltagesupplyintegratedwithMCS,ifanEVSEneedsanabilitytocommunicateforsupportingVehicle-to-gridoperations,theEVSEshouldbesuppliedwithanuninterruptablepowersupply(UPS)orsimilar.Incaseavehiclehasalowvoltagebatteryproblemsuchthatitcan’tbegincharging,itisrecommendedtofollowtheindustrystandardofusing“jumper”cablesora“jumpbox”totemporarilyprovidelowvoltagepowertothatvehicleuntilitcanbegincharging.

Hardware

CouplerRetention

TherearemanylessonslearnedfromthedifferentimplementationsofCCSretainingmeansandlatches,whichincludedbothmechanicalandelectricalinterlockmechanisms,controlledbyindividualusersandalsobyelectronicdevices.TherecommendedMCSretentionisbasedonthoselessonslearned.

TheMCSinterfaceshallincludeanelectricallyactivated/actuatedlocktoensurethattheconnectorremainsengagedwiththeinletduringallnormaloperationandalsoincaseofshortcircuit.ThiselectricallyactivatedretainingmeansshallprovidefeedbacktotheEVandshallbecontrolledindependentlyofbuttonsorswitchesusedforeithernormaluserrequestedshutdownsoremergencyshutdowns.TheretainingmeansshallbeintegratedintotheinletsideoftheMCScoupleronatleastonelocation,andupto3locations,asincludedintheMCSconnectordimensionproposals.Thelockshallhaveapinorslotdesignthatoperatesconsistentlyinallexpectedoperatingconditions,especiallyconsideringtemperatureandweathervariationsforchargingoperationsinextremeenvironments,andwithexpectedtolerancesandwear.

EVSE/PortLocationRecommendations

CharINexpectsthatMCSwillbeusedonmanydifferentvehicleswithmanydifferentusecasesandconfigurations.CharINrecommendsthatfortrucks,theinletlocationshouldbeontheleftsideofthevehicle,behindthemost-forwardaxle.Thisconsistentlocationsupportsbestpracticesfromexperienceswithearlydevelopmentandlessonslearnedfrompreviouschargingexperiences.

AsurveyamongthevehiclemanufacturerswithintheMCSSubgroupresultedininletpositionsbetween2mand4,8m,measuredfromthefrontofthevehicle.

Figure4OutcomeanalysisMCSinletpositionfortrucks

ThefuturereadinessofMCSiscloselylinkedtotheintegrationofautomatedElectricVehicleSupplyEquipment(aEVSE)technology.Astheindustrymovestowardautomatedsolutions,itbecomes

increasinglyimportanttodefinethedatumplaneanddatumaxisfortheinletatanearlystageofdevelopment.Thesestandardizedreferencepointsenableprecisepositioningandalignmentforautomateddockingandundocking,aswellasintegrationwithAutomatedVehicleDockingSystems(AVDS)asspecifiedinISO12768-1.

ByadoptingstandardizedinletpositioningandaccommodatingaEVSEintegrationfromtheoutset,MCStechnologycanbettersupportautonomoustruckingandlong-haulapplications,whereautomatedchargingsolutionswillplayavitalrole.HarmonizingMCSdesignwithemergingautomationtechnologiesensuresfuturereadinessand

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論