(完整版)初一下學期期末壓軸題測試數學試題培優(yōu)試卷_第1頁
(完整版)初一下學期期末壓軸題測試數學試題培優(yōu)試卷_第2頁
(完整版)初一下學期期末壓軸題測試數學試題培優(yōu)試卷_第3頁
(完整版)初一下學期期末壓軸題測試數學試題培優(yōu)試卷_第4頁
(完整版)初一下學期期末壓軸題測試數學試題培優(yōu)試卷_第5頁
已閱讀5頁,還剩44頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

一、解答題1.如圖1,在平面直角坐標系中,,且滿足,過作軸于.(1)求的面積.(2)若過作交軸于,且分別平分,如圖2,求的度數.(3)在軸上存在點使得和的面積相等,請直接寫出點坐標.2.如圖,直線,一副直角三角板中,.(1)若如圖1擺放,當平分時,證明:平分.(2)若如圖2擺放時,則(3)若圖2中固定,將沿著方向平移,邊與直線相交于點,作和的角平分線相交于點(如圖3),求的度數.(4)若圖2中的周長,現(xiàn)將固定,將沿著方向平移至點與重合,平移后的得到,點的對應點分別是,請直接寫出四邊形的周長.(5)若圖2中固定,(如圖4)將繞點順時針旋轉,分鐘轉半圈,旋轉至與直線首次重合的過程中,當線段與的一條邊平行時,請直接寫出旋轉的時間.3.如圖1,點在直線上,點在直線上,點在,之間,且滿足.(1)證明:;(2)如圖2,若,,點在線段上,連接,且,試判斷與的數量關系,并說明理由;(3)如圖3,若(為大于等于的整數),點在線段上,連接,若,則______.4.綜合與實踐背景閱讀:在同一平面內,兩條不重合的直線的位置關系有相交、平行,若兩條不重合的直線只有一個公共點,我們就說這兩條直線相交,若兩條直線不相交,我們就說這兩條直線互相平行兩條直線的位置關系的性質和判定是幾何的重要知識,是初中階段幾何合情推理的基礎.已知:AM∥CN,點B為平面內一點,AB⊥BC于B.問題解決:(1)如圖1,直接寫出∠A和∠C之間的數量關系;(2)如圖2,過點B作BD⊥AM于點D,求證:∠ABD=∠C;(3)如圖3,在(2)問的條件下,點E、F在DM上,連接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,則∠EBC=.5.已知:直線AB∥CD,直線MN分別交AB、CD于點E、F,作射線EG平分∠BEF交CD于G,過點F作FH⊥MN交EG于H.(1)當點H在線段EG上時,如圖1①當∠BEG=時,則∠HFG=.②猜想并證明:∠BEG與∠HFG之間的數量關系.(2)當點H在線段EG的延長線上時,請先在圖2中補全圖形,猜想并證明:∠BEG與∠HFG之間的數量關系.6.已知:ABCD.點E在CD上,點F,H在AB上,點G在AB,CD之間,連接FG,EH,GE,∠GFB=∠CEH.(1)如圖1,求證:GFEH;(2)如圖2,若∠GEH=α,F(xiàn)M平分∠AFG,EM平分∠GEC,試問∠M與α之間有怎樣的數量關系(用含α的式子表示∠M)?請寫出你的猜想,并加以證明.7.閱讀材料:求值:,解答:設,將等式兩邊同時乘2得:,將得:,即.請你類比此方法計算:.其中n為正整數8.規(guī)律探究,觀察下列等式:第1個等式:第2個等式:第3個等式:第4個等式:請回答下列問題:(1)按以上規(guī)律寫出第5個等式:=___________=___________(2)用含n的式子表示第n個等式:=___________=___________(n為正整數)(3)求9.觀察下列各式:;;;……根據上面的等式所反映的規(guī)律,(1)填空:______;______;(2)計算:10.給定一個十進制下的自然數,對于每個數位上的數,求出它除以的余數,再把每一個余數按照原來的數位順序排列,得到一個新的數,定義這個新數為原數的“模二數”,記為.如.對于“模二數”的加法規(guī)定如下:將兩數末位對齊,從右往左依次將相應數位.上的數分別相加,規(guī)定:與相加得;與相加得與相加得,并向左邊一位進.如的“模二數”相加的運算過程如下圖所示.根據以上材料,解決下列問題:(1)的值為______,的值為_(2)如果兩個自然數的和的“模二數”與它們的“模二數”的和相等,則稱這兩個數“模二相加不變”.如,因為,所以,即與滿足“模二相加不變”.①判斷這三個數中哪些與“模二相加不變”,并說明理由;②與“模二相加不變”的兩位數有______個11.閱讀材料:求的值.解:設①,將等式①的兩邊同乘以2,得②,用②-①得,即.即.請仿照此法計算:(1)請直接填寫的值為______;(2)求值;(3)請直接寫出的值.12.三個自然數x、y、z組成一個有序數組,如果滿足,那么我們稱數組為“蹦蹦數組”.例如:數組中,故是“蹦蹦數組”;數組中,故不是“蹦蹦數組”.(1)分別判斷數組和是否為“蹦蹦數組”;(2)s和t均是三位數的自然數,其中s的十位數字是3,個位數字是2,t的百位數字是2,十位數字是5,且.是否存在一個整數b,使得數組為“蹦蹦數組”.若存在,求出b的值;若不存在,請說明理由;(3)有一個三位數的自然數,百位數字是1,十位數字是p,個位數字是q,若數組為“蹦蹦數組”,且該三位數是7的倍數,求這個三位數.13.如圖,在平面直角坐標系中,同時將點A(﹣1,0)、B(3,0)向上平移2個單位長度再向右平移1個單位長度,分別得到A、B的對應點C、D.連接AC,BD(1)求點C、D的坐標,并描出A、B、C、D點,求四邊形ABDC面積;(2)在坐標軸上是否存在點P,連接PA、PC使S△PAC=S四邊形ABCD?若存在,求點P坐標;若不存在,請說明理由.14.已知,定點,分別在直線,上,在平行線,之間有一動點.(1)如圖1所示時,試問,,滿足怎樣的數量關系?并說明理由.(2)除了(1)的結論外,試問,,還可能滿足怎樣的數量關系?請畫圖并證明(3)當滿足,且,分別平分和,①若,則__________°.②猜想與的數量關系.(直接寫出結論)15.如圖,在平面直角坐標系中,點,,將線段AB進行平移,使點A剛好落在x軸的負半軸上,點B剛好落在y軸的負半軸上,A,B的對應點分別為,,連接交y軸于點C,交x軸于點D.(1)線段可以由線段AB經過怎樣的平移得到?并寫出,的坐標;(2)求四邊形的面積;(3)P為y軸上的一動點(不與點C重合),請?zhí)骄颗c的數量關系,給出結論并說明理由.16.某電器超市銷售每臺進價分別為200元、170元的A、B兩種型號的電風扇,下表是近兩周的銷售情況:(進價、售價均保持不變,利潤=銷售收入-進貨成本)(1)求A、B兩種型號的電風扇的銷售單價;(2)若超市準備用不多于5400元的金額再采購這兩種型號的電風扇共30臺,求A種型號的電風扇最多能采購多少臺?(3)在(2)的條件下,超市銷售完這30臺電風扇能否實現(xiàn)利潤為1400元的目標?若能,請給出相應的采購方案;若不能,請說明理由.17.如圖,在平面直角坐標系中,直線與x軸交于點,與y軸交于點,且(1)求;(2)若為直線上一點.①的面積不大于面積的,求P點橫坐標x的取值范圍;②請直接寫出用含x的式子表示y.(3)已知點,若的面積為6,請直接寫出m的值.18.在平面直角坐標系xOy中,對于給定的兩點P,Q,若存在點M,使得△MPQ的面積等于1,即S△MPQ=1,則稱點M為線段PQ的“單位面積點”,解答下列問題:如圖,在平面直角坐標系xOy中,點P的坐標為(1,0).(1)在點A(1,2),B(﹣1,1),C(﹣1,﹣2),D(2,﹣4)中,線段OP的“單位面積點”是;(2)已知點E(0,3),F(xiàn)(0,4),將線段OP沿y軸向上平移t(t>0)個單位長度,使得線段EF上存在線段OP的“單位面積點”,直接寫出t的取值范圍.(3)已知點Q(1,﹣2),H(0,﹣1),點M,N是線段PQ的兩個“單位面積點”,點M在HQ的延長線上,若S△HMN≥S△PQN,求出點N縱坐標的取值范圍.19.(閱讀感悟)一些關于方程組的問題,若求的結果不是每一個未知數的值,而是關于未知數的式子的值,如以下問題:已知實數,滿足①,②,求和的值.本題的常規(guī)思路是將①②兩式聯(lián)立組成方程組,解得,的值再代入欲求值的式子得到答案,常規(guī)思路運算量比較大.其實,仔細觀察兩個方程未知數的系數之間的關系,本題還可以通過適當變形整體求得式子的值,如由①-②可得,由①+②×2可得.這樣的解題思想就是通常所說的“整體思想”.(解決問題)(1)已知二元一次方程組,則,.(2)某班開展安全教育知識競賽需購買獎品,買5支鉛筆、3塊橡皮、2本日記本共需32元,買9支鉛筆、5塊橡皮、3本日記本共需58元,則購買20支鉛筆、20塊橡皮、20本日記本共需多少元?(3)對于實數,,定義新運算:,其中,,是常數,等式右邊是通常的加法和乘法運算.已知,,求的值.20.如圖,學校印刷廠與A,D兩地有公路、鐵路相連,從A地購進一批每噸8000元的白紙,制成每噸10000元的作業(yè)本運到D地批發(fā),已知公路運價1.5元/(t?km),鐵路運價1.2元/(t?km).這兩次運輸支出公路運費4200元,鐵路運費26280元.(1)白紙和作業(yè)本各多少噸?(2)這批作業(yè)本的銷售款比白紙的購進款與運輸費的和多多少元?21.每年的6月5日為世界環(huán)保日,為提倡低碳環(huán)保,某公司決定購買10臺節(jié)省能源的新機器,現(xiàn)有甲、乙兩種型號的機器可選,其中每臺的價格、產量如下表:甲型機器乙型機器價格(萬元/臺)ab產量(噸/月)240180經調查:購買一臺甲型機器比購買一臺乙型機器多12萬元,購買2臺甲型機器比購買3臺乙型機器多6萬元.(1)求a、b的值;(2)若該公司購買新機器的資金不超過216萬元,請問該公司有哪幾種購買方案?(3)在(2)的條件下,若公司要求每月的產量不低于1890噸,請你為該公司設計一種最省錢的購買方案.22.平面直角坐標系中,A(a,0),B(0,b),a,b滿足,將線段AB平移得到CD,A,B的對應點分別為C,D,其中點C在y軸負半軸上.(1)求A,B兩點的坐標;(2)如圖1,連AD交BC于點E,若點E在y軸正半軸上,求的值;(3)如圖2,點F,G分別在CD,BD的延長線上,連結FG,∠BAC的角平分線與∠DFG的角平分線交于點H,求∠G與∠H之間的數量關系.23.新定義,若關于,的二元一次方程組①的解是,關于,的二元一次方程組②的解是,且滿足,,則稱方程組②的解是方程組①的模糊解.關于,的二元一次方程組的解是方程組的模糊解,則的取值范圍是________.24.對a,b定義一種新運算T,規(guī)定:T(a,b)=(a+2b)(ax+by)(其中x,y均為非零實數).例如:T(1,1)=3x+3y.(1)已知T(1,﹣1)=0,T(0,2)=8,求x,y的值;(2)已知關于x,y的方程組,若a≥﹣2,求x+y的取值范圍;(3)在(2)的條件下,已知平面直角坐標系上的點A(x,y)落在坐標軸上,將線段OA沿x軸向右平移2個單位,得線段O′A′,坐標軸上有一點B滿足三角形BOA′的面積為9,請直接寫出點B的坐標.25.如圖,在平面直角坐標系中,已知兩點,且a、b滿足點在射線AO上(不與原點重合).將線段AB平移到DC,點D與點A對應,點C與點B對應,連接BC,直線AD交y軸于點E.請回答下列問題:(1)求A、B兩點的坐標;(2)設三角形ABC面積為,若4<≤7,求m的取值范圍;(3)設,請給出,滿足的數量關系式,并說明理由.26.閱讀材料:關于x,y的二元一次方程ax+by=c有一組整數解,則方程ax+by=c的全部整數解可表示為(t為整數).問題:求方程7x+19y=213的所有正整數解.小明參考閱讀材料,解決該問題如下:解:該方程一組整數解為,則全部整數解可表示為(t為整數).因為解得.因為t為整數,所以t=0或-1.所以該方程的正整數解為和.(1)方程3x-5y=11的全部整數解表示為:(t為整數),則=;(2)請你參考小明的解題方法,求方程2x+3y=24的全部正整數解;(3)方程19x+8y=1908的正整數解有多少組?請直接寫出答案.27.閱讀材料:形如的不等式,我們就稱之為雙連不等式.求解雙連不等式的方法一,轉化為不等式組求解,如;方法二,利用不等式的性質直接求解,雙連不等式的左、中、右同時減去1,得,然后同時除以2,得.解決下列問題:(1)請你寫一個雙連不等式并將它轉化為不等式組;(2)利用不等式的性質解雙連不等式;(3)已知,求的整數值.28.閱讀材料:如果x是一個有理數,我們把不超過x的最大整數記作.例如,,,,那么,,其中.例如,,,.請你解決下列問題:(1)__________,__________;(2)如果,那么x的取值范圍是__________;(3)如果,那么x的值是__________;(4)如果,其中,且,求x的值.29.某超市分別以每盞150元,190元的進價購進A,B兩種品牌的護眼燈,下表是近兩天的銷售情況.銷售日期銷售數量(盞)銷售收入(元)A品牌B品牌第一天21680第二天341670(1)求A,B兩種品牌護眼燈的銷售價;(2)若超市準備用不超過4900元的金額購進這兩種品牌的護眼燈共30盞,求B品牌的護眼燈最多采購多少盞?30.在平面直角坐標系中,已知長方形,點,.(1)如圖,有一動點在第二象限的角平分線上,若,求的度數;(2)若把長方形向上平移,得到長方形.①在運動過程中,求的面積與的面積之間的數量關系;②若,求的面積與的面積之比.【參考答案】***試卷處理標記,請不要刪除一、解答題1.(1)4;(2);(2)或.【分析】(1)根據非負數的性質易得,,然后根據三角形面積公式計算;(2)過作,根據平行線性質得,且,,所以;然后把代入計算即可;(3)分類討論:設,當在軸正半軸上時,過作軸,軸,軸,利用可得到關于的方程,再解方程求出;當在軸負半軸上時,運用同樣方法可計算出.【詳解】解:(1),,,,,,,,的面積;(2)解:軸,,,又∵,∴,過作,如圖①,,,,,分別平分,,即:,,;(3)或.解:①當在軸正半軸上時,如圖②,設,過作軸,軸,軸,,,解得,②當在軸負半軸上時,如圖③,解得,綜上所述:或.【點睛】本題考查了平行線的判定與性質:兩直線平行,內錯角相等.也考查了非負數的性質、坐標與圖形性質以及三角形面積公式.構造矩形求三角形面積是解題關鍵.2.(1)見詳解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s【分析】(1)運用角平分線定義及平行線性質即可證得結論;(2)如圖2,過點E作EK∥MN,利用平行線性質即可求得答案;(3)如圖3,分別過點F、H作FL∥MN,HR∥PQ,運用平行線性質和角平分線定義即可得出答案;(4)根據平移性質可得D′A=DF,DD′=EE′=AF=5cm,再結合DE+EF+DF=35cm,可得出答案;(5)設旋轉時間為t秒,由題意旋轉速度為1分鐘轉半圈,即每秒轉3°,分三種情況:①當BC∥DE時,②當BC∥EF時,③當BC∥DF時,分別求出旋轉角度后,列方程求解即可.【詳解】(1)如圖1,在△DEF中,∠EDF=90°,∠DFE=30°,∠DEF=60°,∵ED平分∠PEF,∴∠PEF=2∠PED=2∠DEF=2×60°=120°,∵PQ∥MN,∴∠MFE=180°?∠PEF=180°?120°=60°,∴∠MFD=∠MFE?∠DFE=60°?30°=30°,∴∠MFD=∠DFE,∴FD平分∠EFM;(2)如圖2,過點E作EK∥MN,∵∠BAC=45°,∴∠KEA=∠BAC=45°,∵PQ∥MN,EK∥MN,∴PQ∥EK,∴∠PDE=∠DEK=∠DEF?∠KEA,又∵∠DEF=60°.∴∠PDE=60°?45°=15°,故答案為:15°;(3)如圖3,分別過點F、H作FL∥MN,HR∥PQ,∴∠LFA=∠BAC=45°,∠RHG=∠QGH,∵FL∥MN,HR∥PQ,PQ∥MN,∴FL∥PQ∥HR,∴∠QGF+∠GFL=180°,∠RHF=∠HFL=∠HFA?∠LFA,∵∠FGQ和∠GFA的角平分線GH、FH相交于點H,∴∠QGH=∠FGQ,∠HFA=∠GFA,∵∠DFE=30°,∴∠GFA=180°?∠DFE=150°,∴∠HFA=∠GFA=75°,∴∠RHF=∠HFL=∠HFA?∠LFA=75°?45°=30°,∴∠GFL=∠GFA?∠LFA=150°?45°=105°,∴∠RHG=∠QGH=∠FGQ=(180°?105°)=37.5°,∴∠GHF=∠RHG+∠RHF=37.5°+30°=67.5°;(4)如圖4,∵將△DEF沿著CA方向平移至點F與A重合,平移后的得到△D′E′A,∴D′A=DF,DD′=EE′=AF=5cm,∵DE+EF+DF=35cm,∴DE+EF+D′A+AF+DD′=35+10=45(cm),即四邊形DEAD′的周長為45cm;(5)設旋轉時間為t秒,由題意旋轉速度為1分鐘轉半圈,即每秒轉3°,分三種情況:BC∥DE時,如圖5,此時AC∥DF,∴∠CAE=∠DFE=30°,∴3t=30,解得:t=10;BC∥EF時,如圖6,∵BC∥EF,∴∠BAE=∠B=45°,∴∠BAM=∠BAE+∠EAM=45°+45°=90°,∴3t=90,解得:t=30;BC∥DF時,如圖7,延長BC交MN于K,延長DF交MN于R,∵∠DRM=∠EAM+∠DFE=45°+30°=75°,∴∠BKA=∠DRM=75°,∵∠ACK=180°?∠ACB=90°,∴∠CAK=90°?∠BKA=15°,∴∠CAE=180°?∠EAM?∠CAK=180°?45°?15°=120°,∴3t=120,解得:t=40,綜上所述,△ABC繞點A順時針旋轉的時間為10s或30s或40s時,線段BC與△DEF的一條邊平行.【點睛】本題主要考查了平行線性質及判定,角平分線定義,平移的性質等,添加輔助線,利用平行線性質是解題關鍵.3.(1)見解析;(2)見解析;(3)n-1【分析】(1)連接AB,根據已知證明∠MAB+∠SBA=180°,即可得證;(2)作CF∥ST,設∠CBT=α,表示出∠CAN,∠ACF,∠BCF,根據AD∥BC,得到∠DAC=120°,求出∠CAE即可得到結論;(3)作CF∥ST,設∠CBT=β,得到∠CBT=∠BCF=β,分別表示出∠CAN和∠CAE,即可得到比值.【詳解】解:(1)如圖,連接,,,,,(2),理由:作,則如圖,設,則.,,,,.即.(3)作,則如圖,設,則.,,,,,故答案為.【點睛】本題主要考查平行線的性質和判定,解題關鍵是角度的靈活轉換,構建數量關系式.4.(1);(2)見解析;(3)105°【分析】(1)通過平行線性質和直角三角形內角關系即可求解.(2)過點B作BG∥DM,根據平行線找角的聯(lián)系即可求解.(3)利用(2)的結論,結合角平分線性質即可求解.【詳解】解:(1)如圖1,設AM與BC交于點O,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠ABC=90°,∴∠A+∠AOB=90°,∠A+∠C=90°,故答案為:∠A+∠C=90°;(2)證明:如圖2,過點B作BG∥DM,∵BD⊥AM,∴DB⊥BG,∴∠DBG=90°,∴∠ABD+∠ABG=90°,∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,∴∠C=∠CBG,∴∠ABD=∠C;(3)如圖3,過點B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)知∠ABD=∠CBG,∴∠ABF=∠GBF,設∠DBE=α,∠ABF=β,則∠ABE=α,∠ABD=2α=∠CBG,∠GBF=∠AFB=β,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°得:2α+β+3α+3α+β=180°,∵AB⊥BC,∴β+β+2α=90°,∴α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.故答案為:105°.【點睛】本題考查平行線性質,畫輔助線,找到角的和差倍分關系是求解本題的關鍵.5.(1)①18°;②2∠BEG+∠HFG=90°,證明見解析;(2)2∠BEG-∠HFG=90°證明見解析部【分析】(1)①證明2∠BEG+∠HFG=90°,可得結論.②利用平行線的性質證明即可.(2)如圖2中,結論:2∠BEG-∠HFG=90°.利用平行線的性質證明即可.【詳解】解:(1)①∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°+∠HFG=180°,∴2∠BEG+∠HFG=90°,∵∠BEG=36°,∴∠HFG=18°.故答案為:18°.②結論:2∠BEG+∠HFG=90°.理由:∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°+∠HFG=180°,∴2∠BEG+∠HFG=90°.(2)如圖2中,結論:2∠BEG-∠HFG=90°.理由:∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°-∠HFG=180°,∴2∠BEG-∠HFG=90°.【點睛】本題考查平行線的性質,角平分線的定義等知識,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.6.(1)見解析;(2),證明見解析.【分析】(1)由平行線的性質得到,等量代換得出,即可根據“同位角相等,兩直線平行”得解;(2)過點作,過點作,根據平行線的性質及角平分線的定義求解即可.【詳解】(1)證明:,,,,;(2)解:,理由如下:如圖2,過點作,過點作,,,,,,同理,,平分,平分,,,,由(1)知,,,,,,.【點睛】此題考查了平行線的判定與性質,熟記平行線的判定與性質及作出合理的輔助線是解題的關鍵.7.(1);(2).【解析】【分析】設,兩邊乘以2后得到關系式,與已知等式相減,變形即可求出所求式子的值;同理即可得到所求式子的值.【詳解】解:設,將等式兩邊同時乘2得:,將下式減去上式得:,即,則;設,兩邊同時乘3得:,得:,即,則.【點睛】本題考查了規(guī)律型:數字的變化類,有理數的混合運算,解題的關鍵是明確題意,運用題目中的解題方法,運用類比的數學思想解答問題.8.(1);;(2);;(3).【分析】(1)觀察前4個等式的分母先得出第5個式子的分母,再依照前4個等式即可得出答案;(2)根據前4個等式歸納類推出一般規(guī)律即可;(3)利用題(2)的結論,先寫出中各數的值,然后通過提取公因式、有理數加減法、乘法運算計算即可.【詳解】(1)觀察前4個等式的分母可知,第5個式子的分母為則第5個式子為:故應填:;;(2)第1個等式的分母為:第2個等式的分母為:第3個等式的分母為:第4個等式的分母為:歸納類推得,第n個等式的分母為:則第n個等式為:(n為正整數)故應填:;;(3)由(2)的結論得:則.【點睛】本題考查了有理數運算的規(guī)律類問題,依據已知等式歸納總結出等式的一般規(guī)律是解題關鍵.9.(1);;(2).【分析】(1)根據已知數據得出規(guī)律,,進而求出即可;(2)利用規(guī)律拆分,再進一步交錯約分得出答案即可.【詳解】解:(1);;(2)===.【點睛】此題主要考查了實數運算中的規(guī)律探索,根據已知運算得出數字之間的變化規(guī)律是解決問題的關鍵.10.(1)1011,1101;(2)①12,65,97,見解析,②38【分析】(1)根據“模二數”的定義計算即可;(2)①根據“模二數”和模二相加不變”的定義,分別計算和12+23,65+23,97+23的值,即可得出答案②設兩位數的十位數字為a,個位數字為b,根據a、b的奇偶性和“模二數”和模二相加不變”的定義進行討論,從而得出與“模二相加不變”的兩位數的個數【詳解】解:(1),故答案為:①,,與滿足“模二相加不變”.,,,與不滿足“模二相加不變”.,,,與滿足“模二相加不變”②當此兩位數小于77時,設兩位數的十位數字為a,個位數字為b,;當a為偶數,b為偶數時,∴∴與滿足“模二相加不變”有12個(28、48、68不符合)當a為偶數,b為奇數時,∴∴與不滿足“模二相加不變”.但27、47、67、29、49、69符合共6個當a為奇數,b為奇數時,∴∴與不滿足“模二相加不變”.但17、37、57、19、39、59也不符合當a為奇數,b為偶數時,∴∴與滿足“模二相加不變”有16個,(18、38、58不符合)當此兩位數大于等于77時,符合共有4個綜上所述共有12+6+16+4=38故答案為:38【點睛】本題考查新定義,數字的變化類,認真觀察、仔細思考,分類討論的數學思想是解決這類問題的方法.能夠理解定義是解題的關鍵.11.(1)15;(2);(3).【分析】(1)先計算乘方,即可求出答案;(2)根據題目中的運算法則進行計算,即可求出答案;(3)根據題目中的運算法則進行計算,即可求出答案;【詳解】解:(1);故答案為:15;(2)設①,把等式①兩邊同時乘以5,得②,由②①,得:,∴,∴;(3)設①,把等式①乘以10,得:②,把①+②,得:,∴,∴,∴.【點睛】本題考查了數字的變化規(guī)律,熟練掌握運算法則,熟練運用有理數乘法,以及運用消項的思想是解題的關鍵.12.(1)(437,307,177)是“蹦蹦數組”,(601,473,346)不是“蹦蹦數組”;(2)存在,數組為(532,395,258);(3)這個三位數是147.【分析】(1)由“蹦蹦數組”的定義進行驗證即可;(2)設s為,t為,則,先后求得n、s的值,根據“蹦蹦數組”的定義即可求解;(3)設這個數為,則,由和都是0到9的正整數,列舉法即可得出這個三位數.【詳解】解:(1)數組(437,307,177)中,437-307=130,307-177=130,∴437-307=307-177,故(437,307,177)是“蹦蹦數組”;數組(601,473,346)中,601-473=128,473-346=127,∴601-473473-346,故(601,473,346)不是“蹦蹦數組”;(2)設s為,t為,則,∵m、n為整數,∴,則t為258,∴s為532,而,則b為532-137=395,驗算:532-395=395-258=137,故數組為(532,395,258);(3)根據題意,設這個數為,則,∴,而和都是0到9的正整數,討論:p12345q13579111123135147159而是7的倍數的三位數只有147,且1-4=4-7=-3,數組(1,4,7)為“蹦蹦數組”,故這個三位數是147.【點睛】本題是一道新定義題目,解決的關鍵是能夠根據定義,通過列舉法找到合適的數,進而求解.13.(1)(0,2),(4,2),見解析,ABDC面積:8;(2)存在,P的坐標為(7,0)或(﹣9,0)或(0,18)或(0,﹣14).【解析】【分析】(1)根據向右平移橫坐標加,向上平移縱坐標加寫出點C、D的坐標即可,再根據平行四邊形的面積公式列式計算即可得解;(2)分點P在x軸和y軸上兩種情況,依據S△PAC=S四邊形ABCD求解可得.【詳解】(1)由題意知點C坐標為(﹣1+1,0+2),即(0,2),點D的坐標為(3+1,0+2),即(4,2),如圖所示,S四邊形ABDC=2×4=8;(2)當P在x軸上時,∵S△PAC=S四邊形ABCD,∴,∵OC=2,∴AP=8,∴點P的坐標為(7,0)或(﹣9,0);當P在y軸上時,∵S△PAC=S四邊形ABCD,∴,∵OA=1,∴CP=16,∴點P的坐標為(0,18)或(0,﹣14);綜上,點P的坐標為(7,0)或(﹣9,0)或(0,18)或(0,﹣14).【點睛】本題考查了坐標與圖形性質,三角形的面積,坐標與圖形變化﹣平移,熟記各性質是解題的關鍵.14.(1)∠AEP+∠PFC=∠EPF;(2)∠AEP+∠EPF+∠PFC=360°;(3)①150°或30;②∠EPF+2∠EQF=360°或∠EPF=2∠EQF【分析】(1)由于點是平行線,之間有一動點,因此需要對點的位置進行分類討論:如圖1,當點在的左側時,,,滿足數量關系為:;(2)當點在的右側時,,,滿足數量關系為:;(3)①若當點在的左側時,;當點在的右側時,可求得;②結合①可得,由,得出;可得,由,得出.【詳解】解:(1)如圖1,過點作,,,,,,;(2)如圖2,當點在的右側時,,,滿足數量關系為:;過點作,,,,,,;(3)①如圖3,若當點在的左側時,,,,分別平分和,,,;如圖4,當點在的右側時,,,;故答案為:或30;②由①可知:,;,.綜合以上可得與的數量關系為:或.【點睛】本題主要考查了平行線的性質,平行公理和及推論等知識點,作輔助線后能求出各個角的度數,是解此題的關鍵.15.(1)向左平移4個單位,再向下平移6個單位,,;(2)24;(3)見解析【分析】(1)利用平移變換的性質解決問題即可.(2)利用分割法確定四邊形的面積即可.(3)分兩種情形:點在點的上方,點在點的下方,分別求解即可.【詳解】解:(1)點,,又將線段進行平移,使點剛好落在軸的負半軸上,點剛好落在軸的負半軸上,線段是由線段向左平移4個單位,再向下平移6個單位得到,,.(2).(3)連接.,,的中點坐標為在軸上,.,軸,同法可證,,,,同法可證,,,,當點在點的下方時,,,,,當點在點的上方時,.【點睛】本題考查坐標與圖形變化—平移,解題的關鍵是理解題意,學會有分割法求四邊形的面積,學會用分類討論的思想解決問題,屬于中考??碱}型.16.(1)A、B兩種型號電風扇的銷售單價分別為250元、210元;(2)超市最多采購A種型號電風扇10臺時,采購金額不多于5400元;(3)超市不能實現(xiàn)利潤1400元的目標;【分析】(1)根據第一周和第二周的銷售量和銷售收入,可列寫2個等式方程,再求解二元一次方程組即可;(2)利用不多于5400元這個量,列寫不等式,得到A型電風扇a臺的一個取值范圍,從而得出a的最大值;(3)將B型電風扇用(30-a)表示出來,列寫A、B兩型電風扇利潤為1400的等式方程,可求得a的值,最后在判斷求解的值是否滿足(2)中a的取值范圍即可【詳解】解:(1)設A、B兩種型號電風扇的銷售單價分別為x元、y元,依題意得:,解得:,答:A、B兩種型號電風扇的銷售單價分別為250元、210元.(2)設采購A種型號電風扇a臺,則采購B種型號電風扇(30-a)臺.依題意得:200a+170(30-a)≤5400,解得:a≤10.答:超市最多采購A種型號電風扇10臺時,采購金額不多于5400元;(3)依題意有:(250-200)a+(210-170)(30-a)=1400,解得:a=20,∵a≤10,∴在(2)的條件下超市不能實現(xiàn)利潤1400元的目標.【點睛】本題是二元一次方程和一元一次不等式應用題的綜合考查,解題關鍵是依據題意,找出等量關系式(不等關系式),然后按照題目要求相應求解17.(1)4;(2)①或;②;(3)或.【分析】(1)先根據偶次方和絕對值的非負性求出的值,從而可得點的坐標和的長,再利用直角三角形的面積公式即可得;(2)①分和兩種情況,先分別求出和的面積,再根據已知條件建立不等式,解不等式即可得;②分和兩種情況,利用、和的面積關系建立等式,化簡即可得;(3)過點作軸的平行線,交直線于點,從而可得,再分、和三種情況,分別利用三角形的面積公式建立方程,解方程即可得.【詳解】解:(1)由題意得:,解得,,,軸軸,;(2)①的面積不大于面積的,的面積小于的面積,則分以下兩種情況:如圖,當時,則,,因此有,解得,此時的取值范圍為;如圖,當時,則,,因此有,解得,此時的取值范圍為,綜上,點橫坐標的取值范圍為或;②當時,則,,由(2)①可知,,則,即;如圖,當時,則,,,,,解得,綜上,;(3)過點作軸的平行線,交直線于點,由(2)②可知,,則,由題意,分以下三種情況:①如圖,當時,則,,解得,不符題設,舍去;②如圖,當時,則,,解得或(不符題設,舍去);③如圖,當時,則,,解得,符合題設,綜上,的值為或.【點睛】本題考查了偶次方和絕對值的非負性、坐標與圖形等知識點,較難的是題(3),正確分三種情況討論是解題關鍵.18.(1),;(2)或;(3)見解析【分析】(1)分別根據三角形的面積計算△OPA,△DPB,△DPC,△OPD的面積即可;(2)分線段OP在線段EF下方和線段OP在線段EF上方分別求解;(3)畫出圖形,根據S△PQN=1,得到S△HMN≥,分當xN=0時,當xN=2時,分別結合S△HMN≥,得到不等式,求出N點縱坐標的范圍.【詳解】解:(1)S△OPA=,則點A是線段OP的“單位面積點”,S△OPB=,則點B不是線段OP的“單位面積點”,S△OPC=,則點C是線段OP的“單位面積點”,S△OPD=,則點D不是線段OP的“單位面積點”,(2)設點G是線段OP的“單位面積點”,則S△OPG=1,∵點E的坐標為(0,3),點F的坐標為(0,4),且點G在線段EF上,∴點G的橫坐標為0,∵S△OPG=1,線段OP為y軸向上平移t(t>0)個單位長度,當為單位面積點時,當為單位面積點時,綜上所述:1≤t≤2或5≤t≤6;(3)∵M,N是線段PQ的兩個單位面積點,∴S△PQM=1,S△PQN=1,∵P(1,0),Q(1,-2),∴PQ=2,∴M,N的橫坐標為0或2,∵點M在HQ的延長線上,∴點M的橫坐標為xM=2,∵S△HMN≥S△PQN,∴S△HMN≥,當xN=0時,S△HMN=,則,∴或;當xN=2時,S△HMN=,則,∴或.【點睛】本題主要考查三角形的面積公式,并且能夠理解單位面積點的定義,解題關鍵是找到單位面積點的軌跡進行求解.19.(1)-4,4;(2)購買20支鉛筆、20塊橡皮、20本日記本共需120元;(3)1【分析】(1)由①-②得2x-2y=-8,則x-y=-4,再由①+②得4x+4y=16,則x+y=4;(2)設1支鉛筆x元,1塊橡皮y元,1本日記本z元,由題意:買5支鉛筆、3塊橡皮、2本日記本共需32元,買9支鉛筆、5塊橡皮、3本日記本共需58元,列出方程組,再由整體思想”求出x+y+z=6,即可求解;(3)由定義新運算:x※y=ax+by+c得1※4=a+4b+c=16①,1※5=a+5b+c=21②,求出a+b+c=1,即可求解.【詳解】解:(1),①-②得:2x-2y=-8,∴x-y=-4,①+②得:4x+4y=16,∴x+y=4,故答案為:-4,4;(2)設1支鉛筆x元,1塊橡皮y元,1本日記本z元,由題意得:,①×2-②得:x+y+z=6,∴20x+20y+20z=20(x+y+z)=20×6=120,即購買20支鉛筆、20塊橡皮、20本日記本共需120元;(3)∵x※y=ax+by+c,∴1※4=a+4b+c=16①,1※5=a+5b+c=21②,②-①得:b=5,∴a+c=16-4b=-4,∴a+b+c=1,∴1※1=a+b+c=1.【點睛】本題考查了二元一次方程組的應用、整體思想以及新運算等知識;熟練掌握整體思想和新運算,找準等量關系,列出方程組是解題的關鍵.20.(1)白紙有100噸,作業(yè)本有90噸;(2)69520元【分析】(1)設白紙有噸,作業(yè)本有噸,根據共支出公路運費4200元,鐵路運費26280元.列出二元一次方程組,解之即可;(2)由銷售款(白紙的購進款與運輸費的和),進行計算即可.【詳解】解:(1)設白紙有噸,作業(yè)本有噸,由題意,得,整理得:,解得.答:白紙有100噸,作業(yè)本有90噸;(2)(元).答:這批作業(yè)本的銷售款比白紙的購進款與運輸費的和多69520元.【點睛】本題考查了二元一次方程組的應用,解題的關鍵是找準等量關系,正確列出二元一次方程組.21.(1);(2)有4種方案:3臺甲種機器,7臺乙種機器;2臺甲種機器,8臺乙種機器;1臺甲種機器,9臺乙種機器;10臺乙種機器.(3)最省錢的方案是購買2臺甲種機器,8臺乙種機器.【分析】(1)根據購買一臺甲型機器比購買一臺乙型機器多12萬元,購買2臺甲型機器比購買3臺乙型機器多6萬元這一條件建立一元二次方程組求解即可,(2)設買了x臺甲種機器,根據該公司購買新機器的資金不超過216萬元,建立一次不等式求解即可,(3)將兩種機器生產的產量相加,使總產量不低于1890噸,求出x的取值范圍,再分別求出對應的成本即可解題.【詳解】(1)解:由題意得,解得,;(2)解:設買了x臺甲種機器由題意得:30+18(10-x)≤216解得:x≤3∵x為非負整數∴x=0、1、2、3∴有4種方案:3臺甲種機器,7臺乙種機器;2臺甲種機器,8臺乙種機器;1臺甲種機器,9臺乙種機器;10臺乙種機器.(3)解:由題意得:240+180(10-x)≥1890解得:x≥1.5∴1.5≤x≤3∴整數x=2或3當x=2時購買費用=30×2+18×8=204(元)當x=3時購買費用=30×3+18×7=216(元)∴最省錢的方案是購買2臺甲種機器,8臺乙種機器.【點睛】本題考查了利潤的實際應用,二元一次方程租的實際應用,一元一次不等式的實際應用,難度較大,認真審題,找到等量關系和不等關系并建立方程組和不等式組是解題關鍵.22.(1);(2);(3)與之間的數量關系為.【分析】(1)根據非負數的性質和解二元一次方程組求解即可;(2)設,先根據平移的性質可得,過D作軸于P,再根據三角形ADP的面積得出,從而可得,然后根據線段的和差可得,由此即可得出答案;(3)設AH與CD交于點Q,過H,G分別作DF的平行線MN,KJ,設,由平行線的性質可得,由此即可得出結論.【詳解】(1)∵,且∴解得:則;(2)設∵將線段AB平移得到CD,∴由平移的性質得如圖1,過D作軸于P∴∵∴即解得∴∴;(3)與之間的數量關系為,求解過程如下:如圖2,設AH與CD交于點Q,過H,G分別作DF的平行線MN,KJ∵HD平分,HF平分∴設∵AB平移得到CD∴∴,∴∵∴∴∵∴∴∴.【點睛】本題屬于一道較難的綜合題,考查了解二元一次方程組、平移的性質、平行線的性質等知識點,較難的是題(3),通過作兩條輔助線,構造平行線,從而利用平行線的性質是解題關鍵.23.【分析】根據已知條件,先求出兩個方程組的解,再根據“模糊解”的定義列出不等式組,解得m的取值范圍便可.【詳解】解:解方程組得:,解方程組得:,∵關于,的二元一次方程組的解是方程組的模糊解,因此有:且,化簡得:,即解得:,故答案為.【點睛】本題主要考查了新定義,二元一次方程組的解,解絕對值不等式,考查了學生的閱讀理解能力、知識的遷移能力以及計算能力,難度適中.正確理解“模糊解”的定義是解題的關鍵.24.(1)x=1,y=1;(2);(3)或或或或或【分析】(1)根據新運算定義建立方程組,解方程組即可得出答案;(2)應用新運算定義建立方程組,解關于、的方程組可得,進而得出,再運用不等式性質即可得出答案;(3)根據題意得,由平移可得,根據點落在坐標軸上,且,分類討論即可.【詳解】解:(1)根據新運算的定義可得:,解得:;(2)由題意得:,解得:,,,,,;(3)由(2)知,,,將線段沿軸向右平移2個單位,得線段,,點落在坐標軸上,且,或,或;①當時,,若點在軸上,,,或;若點在軸上,,,或;②當時,;點只能在軸上,,,或;綜上所述,點的坐標為或或或或或.【點睛】本題考查了新運算定義,解二元一次方程組,不等式性質,平移變換的性質,理解并應用新運算定義是解題關鍵.25.(1);(2);(3)當點C在x軸的正半軸上時,;當點C在點A和點O之間時,,理由見解析.【分析】(1)由非負性可得,解方程組可求解a,b的值,即可求解;(2)由平移的性質可得AC=m-(-3)=m+3,OB=2,由三角形的面積公式可求m的取值范圍;(3)由平移的性質可得AD∥BC.分兩種情況:當點C在x軸的正半軸上時;當點C在點A和點O之間時.由平行線的性質可求解.【詳解】解:(1)由題意可知解得所以(2)三角形的面積為由得4<≤7所以;(3)作OF//BC,當點C在x軸的正半軸上時,如圖1,當點C在點A和點O之間時,如圖2,.【點睛】本題是幾何變換綜合題,考查了非負性,二元一次方程組的解法,一元一次不等式組的解法,平移的性質等知識,靈活運用這些性質進行推理計算是本題的關鍵,要注意分類討論.26.(1)-1;(2)t=-2,-1,0,1;(3)13組【分析】(1)把x=2代入方程3x-5y=11得,求得y的值,即可求得θ的值;(2)參考小明的解題方法求解即可;(3)參考小明的解題方法求解后,即可得到結論.【詳解】解:(1)把x=2代入方程3x-5y=11得,6-6y=11,解得y=-1,∵方程3x-5y=11的全部整數解表示為:(t為整數),則θ=-1,故答案為-1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論