2025年人教版八年級(jí)數(shù)學(xué)下冊(cè)期末復(fù)習(xí):一次函數(shù)(解析版)_第1頁(yè)
2025年人教版八年級(jí)數(shù)學(xué)下冊(cè)期末復(fù)習(xí):一次函數(shù)(解析版)_第2頁(yè)
2025年人教版八年級(jí)數(shù)學(xué)下冊(cè)期末復(fù)習(xí):一次函數(shù)(解析版)_第3頁(yè)
2025年人教版八年級(jí)數(shù)學(xué)下冊(cè)期末復(fù)習(xí):一次函數(shù)(解析版)_第4頁(yè)
2025年人教版八年級(jí)數(shù)學(xué)下冊(cè)期末復(fù)習(xí):一次函數(shù)(解析版)_第5頁(yè)
已閱讀5頁(yè),還剩57頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

專題05一次函數(shù)

【知識(shí)回顧】

【思維導(dǎo)圖】

【知識(shí)清單】

【自變量的取值范圍考慮因素】

(1)關(guān)系式為整式時(shí),函數(shù)定義域?yàn)槿w實(shí)數(shù);

(2)關(guān)系式含有分式時(shí),分式的分母不等于零;

(3)關(guān)系式含有二次根式時(shí),被開(kāi)放方數(shù)大于等于零;

(4)關(guān)系式中含有指數(shù)為零的式子時(shí),底數(shù)不等于零;

(5)實(shí)際問(wèn)題中,函數(shù)定義域還要和實(shí)際情況相符合,使之有意義。

【一次函數(shù)的圖像與性質(zhì)】

正比例函數(shù)一次函數(shù)

概念一般地,形如y=kx(k是常數(shù),kWO)的一般地,形如y=kx+b(k,b是常數(shù),kWO),那么y叫

函數(shù)叫做正比例函數(shù),其中k叫做比例做x的一次函數(shù).當(dāng)b=0時(shí),是y二kx,所以說(shuō)正比例函

系數(shù)數(shù)是一種特殊的一次函數(shù).

自變量X為全體實(shí)數(shù)(實(shí)際問(wèn)題根據(jù)實(shí)際情況判斷)

范圍

圖象一條直線

必過(guò)點(diǎn)(0,0)、(1,k)b

(0,b)和0)

k

走向k〉0時(shí),直線經(jīng)過(guò)一、三象限;k>0,b>0,直線經(jīng)過(guò)第一、二、三象限

k〈0時(shí),直線經(jīng)過(guò)二、四象限k>0,b<0直線經(jīng)過(guò)第一、三、四象限

k<0,b>0直線經(jīng)過(guò)第一、二、四象限

k<0,b<0直線經(jīng)過(guò)第二、三、四象限

增減性k>0,y隨x的增大而增大;(從左向右上升)

k<0,y隨x的增大而減小。(從左向右下降)

傾斜度|k|越大,越接近y軸;1k1越小,越接近x軸

圖像的

b>0時(shí),將直線y=kx的圖象向上平移”個(gè)單位,得到y(tǒng)=kx+b;

平移

b<0時(shí),將直線y=kx的圖象向下平移”個(gè)單位,得至Uy=kx+b.

平移口訣:左加右減,上加下減

【函數(shù)解析式的確定】

用待定系數(shù)法確定函數(shù)解析式的一般步驟:

(1)根據(jù)已知條件寫出含有待定系數(shù)的函數(shù)關(guān)系式;

(2)將x、y的幾對(duì)值或圖象上的幾個(gè)點(diǎn)的坐標(biāo)代入上述函數(shù)關(guān)系式中得到以待定系數(shù)為未知數(shù)的方

程;

(3)解方程得出未知系數(shù)的值;

(4)將求出的待定系數(shù)代回所求的函數(shù)關(guān)系式中得出所求函數(shù)的解析式.

二、【考點(diǎn)類型】

考點(diǎn)1:函數(shù)的定義

典例1:(22-23八年級(jí)下?吉林長(zhǎng)春?階段練習(xí))下列關(guān)系式中y不是x的函數(shù)的是()

A.y2=xB.y=xC.y=x2D.y=-x

【答案】A

【分析】根據(jù)函數(shù)的定義,在一個(gè)變化的過(guò)程中,有兩個(gè)變量y與%,若%每取一個(gè)值,y都有唯一的

一個(gè)值與它相對(duì)應(yīng),貝Uy是"的函數(shù),逐項(xiàng)進(jìn)行判斷即可.

【詳解】解:選項(xiàng)B、C、D中,每一個(gè)X值都有一個(gè)y值與它對(duì)應(yīng),

選項(xiàng)B、C、D中y是x的函數(shù),

選項(xiàng)A中,給%一個(gè)正值,y有兩個(gè)值與之對(duì)應(yīng),

選項(xiàng)A中y不是%的函數(shù),

故選:A.

【點(diǎn)睛】本題考查了函數(shù)的定義,解此類題的關(guān)鍵是掌握,在一個(gè)變化的過(guò)程中,有兩個(gè)變量y與x,

若x每取一個(gè)值,y都有唯一的一個(gè)值與它相對(duì)應(yīng),貝的是x的函數(shù).

【變式1](22-23八年級(jí)下?陜西西安?期中)下列圖形中,不能表示y是x函數(shù)的是()

【答案】D

【分析】根據(jù)函數(shù)的定義可知,滿足對(duì)于x的每一個(gè)取值,y都有唯一確定的值與之對(duì)應(yīng)關(guān)系,據(jù)此

即可確定答案.

【詳解】A、對(duì)于自變量x的每一個(gè)確定的值,y都有唯一確定的值與之對(duì)應(yīng),所以能表示y是x的函數(shù),

不符合題意;

B、對(duì)于自變量x的每一個(gè)確定的值,y都有唯一確定的值與之對(duì)應(yīng),所以能表示y是x的函數(shù),不符合

題意;

C、對(duì)于自變量x的每一個(gè)確定的值,y都有唯一確定的值與之對(duì)應(yīng),所以能表示y是x的函數(shù),不符合

題意;

D、對(duì)于自變量x的每一個(gè)確定的值,y都有兩個(gè)值與之對(duì)應(yīng),不能表示y是x的函數(shù),符合題意.

故選:D.

【點(diǎn)睛】本題考查了函數(shù)的定義.函數(shù)的定義:在一個(gè)變化過(guò)程中,有兩個(gè)變量x,y,對(duì)于x的每一

個(gè)取值,y都有唯一確定的值與之對(duì)應(yīng),則y是%的函數(shù),x叫自變量.

【變式2](22-23八年級(jí)下?福建福州?期中)下列圖象中,能表示y是x的函數(shù)的是

【答案】B

【分析】對(duì)于自變量的每一個(gè)確定的值,函數(shù)值有且只有一個(gè)值與之對(duì)應(yīng),根據(jù)函數(shù)的概念即可求出

答案.

【詳解】解:根據(jù)函數(shù)的意義可知:對(duì)于自變量x的任何值,y都有唯一的值與之相對(duì)應(yīng),

其中A,C,D選項(xiàng)中的圖,對(duì)于自變量尤的某個(gè)值,y有兩個(gè)值與自變量x的值對(duì)應(yīng),不符合函數(shù)定

義,不符合題意;

所以能表示y是x的函數(shù)是B選項(xiàng)的圖.

故選:B.

【點(diǎn)睛】本題主要考查了函數(shù)的概念.函數(shù)的意義反映在圖象上簡(jiǎn)單的判斷方法是:作垂直x軸的直

線在左右平移的過(guò)程中與函數(shù)圖象只會(huì)有一個(gè)交點(diǎn).

【變式3](22-23八年級(jí)下?北京石景山?期末)如圖,用一根長(zhǎng)40cm的鐵絲圍成一個(gè)矩形,小石發(fā)

現(xiàn)矩形的鄰邊a,6及面積S是三個(gè)變量,下面有三個(gè)說(shuō)法:①6是a的函數(shù)②S是a的函數(shù)③a

是S的函數(shù).其中所有正確的結(jié)論的序號(hào)是()

---------------\D

b

A.①②B.①③C.②③D.①②③

【答案】A

【分析】根據(jù)題意可得b+a=20,從而可得b=20-a,即可判斷①:再利用矩形的面積可得S=ab,

從而可得S=-a2+20a,即可判斷②;根據(jù)-a?+20a=S,然后利用配方法可得(a-10)2=100-S,

從而可得a=10±V100-S,即可判斷③.

【詳解】解:由題意得:

2(a+Z))=40,

???b+Q=20,

???6=20—a,

???b是。的函數(shù),

故①正確;

vS=ab,

???S=a(20—a)

=-Q2+20a,

??.S是。的函數(shù),

故②正確;

—a2+20a=S,

?,.Q?-20a=-Sf

a?-20a+100=100—S,

(a-10)2=100-S,

???a-10=±“00-S,

??.a=10±“00-S,

??.a不是S的函數(shù),

故③不正確;

所以,所有正確的結(jié)論的序號(hào)是:①②,

故選:A.

【點(diǎn)睛】本題考查了函數(shù)的概念,常量與變量,熟練掌握配方法是解題的關(guān)鍵.

考點(diǎn)2:自變量的取值范圍

典例2:(23-24九年級(jí)下.廣東江門?階段練習(xí))函數(shù)y=W中,自變量x的取值范圍是()

A.%>2B.%>2且%豐3C.%>2D.%3

【答案】B

【分析】本題考查函數(shù)自變量的取值范圍,根據(jù)二次根式被開(kāi)方數(shù)非負(fù),以及分式分母不為零,建立

不等式求解,即可解題.

【詳解】解:由題意得,%-220且%-340,

解得x>2且x*3,

故選:B.

1

【變式1](23-24九年級(jí)下?四川綿陽(yáng)?階段練習(xí))函數(shù)y=-V^TT自變量x的取值范圍在數(shù)軸

上表示為()

r1

n「I>

>O2O

2C

-1

0廠A

D2

【答案】A

【分析】本題考查了求函數(shù)自變量取值范圍,二次根式有意義的條件及分式有意義的條件、一元一次

不等式組的解集在數(shù)軸上的表示.利用二次根式有意義的條件及分式有意義的條件即可求得X>1,

把解集在數(shù)軸上表示出來(lái)即可求解.

【詳解】解:由題意得:

(2-x>0

1%+1>0>

解得:-1Wx<2,

把-1<%<2在數(shù)軸上表示為:

1_<!>~>

-102

故選:A.

【變式2](22-23八年級(jí)下.寧夏固原.期末)若函數(shù)y=高有意義,則自變量》的取值范圍在數(shù)軸

上表示正確的是()

'i'

IO

X

B-2

—1

1

1o2

-2X

D

【分析】根據(jù)被開(kāi)方數(shù)大于等于。以及分式有意義的條件,進(jìn)行計(jì)算即可得出x的取值范圍,然后在數(shù)

軸上表示即可.

【詳解】解:根據(jù)題意可知2-x20且V2—x*0,

2—x>0,

解得:x<2,

在數(shù)軸上表示如下:

-2-1012

故選:B.

【點(diǎn)睛】本題考查了函數(shù)自變量的范圍及在數(shù)軸上表示不等式的解集,解題的關(guān)鍵是從三個(gè)方面考慮:

(1)當(dāng)函數(shù)表達(dá)式是整式時(shí),自變量可取全體實(shí)數(shù);(2)當(dāng)函數(shù)表達(dá)式是分式時(shí),考慮分式的分母

不能為0;(3)當(dāng)函數(shù)表達(dá)式是二次根式時(shí),被開(kāi)方數(shù)非負(fù).

【變式3(2023?黑龍江綏化?二模)在函數(shù)丫=熹+(%—3)。中,自變量x的取值范圍是()

A.%>-3B.%>-3C.x43D.%>一3且x牛3

【答案】D

【分析】根據(jù)二次根式的被開(kāi)方數(shù)的非負(fù)性、分式的分母不能為0、0的。次方?jīng)]有意義即可得.

【詳解】由二次根式的被開(kāi)方數(shù)的非負(fù)性、分式的分母不能為0、0的0次方?jīng)]有意義得:仔十^?

1%—3W0

%>—3

為H3

即自變量X的取值范圍是x>一3且%羊3

故選:D.

【點(diǎn)睛】本題考查了二次根式的被開(kāi)方數(shù)的非負(fù)性、分式的分母不能為0、零指數(shù)幕的定義,掌握各

性質(zhì)和定義是解題關(guān)鍵.

考點(diǎn)3:函數(shù)圖像的識(shí)別

典例3:(22-23七年級(jí)下?四川成都?期末)如圖是兩圓柱形連通容器,向甲容器勻速注水,下面可以

近似的刻畫甲容器的水面高度場(chǎng)(cm)隨時(shí)間t(min)的變化情況的圖形是()

【答案】C

【分析】此題考查了用圖象描述實(shí)際問(wèn)題中變化情況的能力,根據(jù)三個(gè)階段甲容器的水面高度隨時(shí)

間的增長(zhǎng)速度確定出此題正確的結(jié)果.

【詳解】解:剛開(kāi)始時(shí)注水都在甲容器,水面高度增長(zhǎng)速度不變;

當(dāng)甲容器中水位到達(dá)連通部分后注水開(kāi)始流向乙容器,此時(shí)甲容器的水面高度不變;

當(dāng)乙容器水位也到達(dá)連通部分后,甲、聯(lián)通部分和乙三個(gè)容器水面一起升高,但升高速度較慢;

當(dāng)水面超過(guò)聯(lián)通部分,甲、乙兩容器中水位同時(shí)上升,此時(shí)水面高度上升比三個(gè)容器一起上升的快,

但速度比只有甲容器時(shí)慢,

選項(xiàng)C中圖象符合該變化過(guò)程.

故選:C.

【變式1](2023?北京石景山?一模)勻速地向如圖所示的一個(gè)空瓶里注水,最后把空瓶注滿,在這

個(gè)注水過(guò)程中,水面高度力與注水時(shí)間t之間函數(shù)關(guān)系的大致圖象是()

【答案】A

【分析】本題考查函數(shù)的圖象,能根據(jù)瓶子的形狀判斷出水面上升的高度與注水時(shí)間的關(guān)系是解題的

關(guān)鍵.

根據(jù)空瓶的形狀,對(duì)水面高度和注水時(shí)間的關(guān)系依次進(jìn)行判斷即可解決問(wèn)題.

【詳解】解:由題知,

因?yàn)閯蛩俚叵蚩掌坷镒⑺?,且空瓶的下半部分是直立圓錐的一部分,

所以在剛開(kāi)始注水的時(shí)候,水面隨著注水時(shí)間的增加,高度逐漸升高,且單位時(shí)間內(nèi)升高的高度越來(lái)

越高.

因?yàn)槠孔拥纳习氩糠质菆A柱,

所以水面隨著注水時(shí)間的增加,高度逐漸升高,且單位時(shí)間內(nèi)升高的高度相同,即勻速上升.

故選:A.

【變式2](2023?黑龍江綏化?模擬預(yù)測(cè))一段筆直的公路4C長(zhǎng)20千米,途中有一處休息點(diǎn)B,4B長(zhǎng)

15千米,甲以15千米/時(shí)的速度勻速跑至點(diǎn)B,原地休息半小時(shí)后,再以10千米/小時(shí)的速度勻速跑

至終點(diǎn)C;乙以12千米/時(shí)的速度勻速跑至終點(diǎn)C,下列選項(xiàng)中,能正確反映甲、乙兩人出發(fā)后2小時(shí)

內(nèi)運(yùn)動(dòng)路程y(千米)與時(shí)間x(小時(shí))函數(shù)關(guān)系的圖象是()

【答案】A

【分析】分別求出甲乙兩人到達(dá)C地的時(shí)間,再結(jié)合已知條件即可解決問(wèn)題.

【詳解】解;由題意得:甲跑到B地所花費(fèi)的時(shí)間為:15+15=lh,甲在B地休息的時(shí)間為0.5h,甲

從B地跑到C地花費(fèi)的時(shí)間為:(20-15)+10=0.5h,總共花費(fèi)時(shí)間為l+0.5+0.5=2h,

乙跑到C地所花費(fèi)的時(shí)間為:20+12=|h<2h,

由此可知正確的圖象是A,

故選:A.

【點(diǎn)睛】本題考查函數(shù)圖象,路程、速度、時(shí)間之間的關(guān)系,解題的關(guān)鍵是理解題意求出兩人到達(dá)C地

的時(shí)間,屬于中考??碱}型.

【變式3](22-23八年級(jí)下?江蘇鎮(zhèn)江?期末)周末,小麗同學(xué)做了以下幾件事情:

第一件:小麗去文具店購(gòu)買黑色水筆,支付費(fèi)用與購(gòu)買黑色水筆支數(shù)的關(guān)系:

第二件:小麗去奶奶家吃飯,飯后,和奶奶聊一會(huì)天,然后再按原速度原路返回,小麗離家的距離與

時(shí)間的關(guān)系;

第三件:小麗和奶奶聊天時(shí),了解到:奶奶用的手機(jī)是含有月租費(fèi)的計(jì)費(fèi)方式,奶奶每月支付的話費(fèi)

與通話時(shí)間的關(guān)系.

用下面的函數(shù)圖像刻畫上述事情,排序正確的是()

y.

A.(1)(2)(3)B.(2)(1)(3)C.(1)(3)(2)D.(2)

(3)(1)

【答案】C

【分析】小麗去文具店購(gòu)買黑色水筆,支付費(fèi)用與購(gòu)買黑色水筆支數(shù)成正比例關(guān)系;小麗去奶奶家吃

飯,小麗離家的距離從0開(kāi)始變大,到達(dá)奶奶家吃飯的時(shí)候與家的距離不變,返回時(shí)與家的距離變小

直至變?yōu)?;奶奶用的手機(jī)是含有月租費(fèi)的計(jì)費(fèi)方式,奶奶每月支付的話費(fèi)與通話時(shí)間成一次函數(shù)的

關(guān)系,據(jù)此即可得到答案.

【詳解】解:,??小麗去文具店購(gòu)買黑色水筆,支付費(fèi)用與購(gòu)買黑色水筆支數(shù)成正比例關(guān)系,

???該變化對(duì)應(yīng)圖象(1),

???小麗去奶奶家吃飯,飯后,和奶奶聊一會(huì)天,然后再按原速度原路返回,

二該變化對(duì)應(yīng)圖象(3),

???奶奶用的手機(jī)是含有月租費(fèi)的計(jì)費(fèi)方式,奶奶每月支付的話費(fèi)與通話時(shí)間成一次函數(shù)關(guān)系,

???該變化對(duì)應(yīng)圖象(2),

故選:C.

【點(diǎn)睛】本題考查了函數(shù)的圖象,解題的關(guān)鍵是了解兩個(gè)變量之間的關(guān)系,解決此類題目還應(yīng)有一定

的生活經(jīng)驗(yàn).

考點(diǎn)4:由函數(shù)圖像獲取信息

典例4:(2023?河南周口?模擬預(yù)測(cè))根據(jù)研究,人體內(nèi)血乳酸濃度升高是運(yùn)動(dòng)后感覺(jué)疲勞的重要原

因,運(yùn)動(dòng)員未運(yùn)動(dòng)時(shí),體內(nèi)血乳酸濃度通常在40mg/L以下;如果血乳酸濃度降到50mg/L以下,運(yùn)動(dòng)

員就基本消除了疲勞,體育科研工作者根據(jù)實(shí)驗(yàn)數(shù)據(jù),繪制了一幅圖象,它反映了運(yùn)動(dòng)員進(jìn)行高強(qiáng)度

運(yùn)動(dòng)后,體內(nèi)血乳酸濃度隨時(shí)間變化而變化,下列敘述錯(cuò)誤的是()

圖中實(shí)線衣示采用慢跑活動(dòng)力式放松

時(shí)向乳酸濃懂的變化情況:

本線衰示采用靜坐方式休息時(shí)血乳程

濃度的變化情況。

A.體內(nèi)血乳酸濃度和時(shí)間是變量

B.當(dāng)t=20min時(shí),兩種方式下的血乳酸濃度均超過(guò)150mg/L

C.采用靜坐方式放松時(shí),運(yùn)動(dòng)員大約30min后就能基本消除疲勞

D.運(yùn)動(dòng)員進(jìn)行完劇烈運(yùn)動(dòng),為了更快達(dá)到消除疲勞的效果,應(yīng)該采用慢跑活動(dòng)方式來(lái)放松

【答案】C

【分析】本題考查了函數(shù)的圖象,根據(jù)函數(shù)圖象橫縱坐標(biāo)表示的意義判斷即可求解,理解函數(shù)圖象橫

縱坐標(biāo)表示的意義是解題的關(guān)鍵.

【詳解】解:由題意可知,

A、體內(nèi)血乳酸濃度和時(shí)間t均是變量,該說(shuō)法正確,故選項(xiàng)A不合題意;

B、當(dāng)t=20min時(shí),兩種方式下的血乳酸濃度均超過(guò)150mg/L,該說(shuō)法正確,故選項(xiàng)B不合題意;

C、采用靜坐方式放松時(shí),運(yùn)動(dòng)員大約70min后就能基本消除疲勞,原說(shuō)法錯(cuò)誤,故選項(xiàng)C符合題意;

D、運(yùn)動(dòng)員進(jìn)行完劇烈運(yùn)動(dòng),為了更快達(dá)到消除疲勞的效果,應(yīng)該采用慢跑活動(dòng)方式來(lái)放松,該說(shuō)法

正確,故選項(xiàng)D不合題意;

故選:C.

【變式1】(23-24七年級(jí)下?河南?期中)如圖1,四邊形4BCD是長(zhǎng)方形,點(diǎn)P從邊AD上點(diǎn)E出發(fā),

沿直線運(yùn)動(dòng)到長(zhǎng)方形內(nèi)部一點(diǎn)處,再?gòu)脑擖c(diǎn)沿直線運(yùn)動(dòng)到頂點(diǎn)8,最后沿2C運(yùn)動(dòng)到點(diǎn)C,設(shè)點(diǎn)P運(yùn)

動(dòng)的路程為的面積為》圖2是y關(guān)于x變化的函數(shù)圖象.根據(jù)圖象下列判斷不正確的是()

C.當(dāng)x=3時(shí),△APE的面積為6

D.當(dāng)3W久W8時(shí),4P長(zhǎng)度的最小值為1

【答案】D

【分析】本題主要考查了動(dòng)點(diǎn)問(wèn)題的函數(shù)圖象,三角形面積的相關(guān)計(jì)算,垂線段最短,在解題時(shí)根據(jù)

函數(shù)的圖象求出有關(guān)的線段的長(zhǎng)度,分析各個(gè)選項(xiàng)即可得到答案.

【詳解】解:由題意知,當(dāng)尸與8重合時(shí),%=8,SACDP最大,

當(dāng)點(diǎn)尸在上運(yùn)動(dòng),SACDP逐漸減小,直至尸與C重合時(shí),貝卜=16,

二8C=16-8=8,SACDP的最大值=-CD=24,

???CD=AB=6,A正確;

由函數(shù)圖象可知,當(dāng)0WxW3時(shí),△CDP的面積始終為12,

設(shè)ACDP邊CD的高為力,

此時(shí)SACDP=~CD-h,

SACDP~]CD-DE—12,

???DE=4,

.?.點(diǎn)E是4D的中點(diǎn),B正確;

???點(diǎn)E是的中點(diǎn),EF=3,

???AE=4,

.?.當(dāng)x=3時(shí),ShAEP=^AE-EF=6,C正確;

點(diǎn)尸從4。的中點(diǎn)出發(fā),作GF1AB,連接4F,

則BF=8—EF=5,GF=AE=4,

-SAABF=\AB-GF=\BF-AH,

:.AH=y,

???當(dāng)3WxW8時(shí),AP長(zhǎng)度的最小值為孩,

???D錯(cuò)誤.

故選:D.

【變式2](23-24八年級(jí)下.上海閔行?期中)已知:如圖,甲、乙兩個(gè)工程隊(duì)合作修一條長(zhǎng)為3000

米的公路,假設(shè)甲、乙兩個(gè)工程隊(duì)的工作效率是一定的.甲隊(duì)單獨(dú)做了20天后,乙隊(duì)加入合作完成

剩下的全部工程.完成的工程量y(米)與工程時(shí)間無(wú)(天)的關(guān)系如圖所示.下列結(jié)論中錯(cuò)誤的是

八米)

3000b..................7

O2030“天)

A.完成該工程一共用了30天B.乙工程隊(duì)在該工程中一共工作了10天

C.甲工程隊(duì)每天修路50米D.乙工程隊(duì)每天修路200米

【答案】D

【分析】本題考查了函數(shù)圖象獲取信息以及一元一次方程的工程問(wèn)題,正確掌握相關(guān)性質(zhì)內(nèi)容是解題

的關(guān)鍵.根據(jù)甲隊(duì)單獨(dú)做了20天,完成1000米,得出甲工程隊(duì)每天修路50米,因?yàn)榧?、乙兩個(gè)工

程隊(duì)的工作效率是一定的,則列式3000—1000=10x(x+50),得出乙工程隊(duì)每天修路150米,結(jié)

合圖象性質(zhì),即可作答.

【詳解】解:從圖象可知,工程時(shí)間久=30,所對(duì)應(yīng)的是y=3000

完成該工程一共用了30天,故A是正確的;

V30-20=10(天)

,乙工程隊(duì)在該工程中一共工作了10天,故B是正確的;

:甲隊(duì)單獨(dú)做了20天,完成1000米,

/.10004-20=50

即甲工程隊(duì)每天修路50米;故C是正確的;

設(shè)乙工程隊(duì)每天修路x米,

則3000-1000=10x(x+50)

解得%=150

,乙工程隊(duì)每天修路150米,故D是錯(cuò)誤的

故選:D

【變式3](23-24八年級(jí)下.重慶.階段練習(xí))甲、乙兩工程隊(duì)分別同時(shí)鋪設(shè)兩條600米長(zhǎng)的管道,所

鋪設(shè)管道長(zhǎng)度y(米)與鋪設(shè)時(shí)間工(天)之間的關(guān)系如圖所示,則下列說(shuō)法錯(cuò)誤的是()

A.甲隊(duì)每天鋪設(shè)管道100米;

B.從第三天開(kāi)始,乙隊(duì)每天鋪設(shè)管道50米;

C.甲隊(duì)比乙隊(duì)提前3天完成任務(wù);

D.當(dāng)無(wú)=2或6時(shí),甲乙兩隊(duì)所鋪設(shè)管道長(zhǎng)度相差100米.

【答案】C

【分析】本題考查了函數(shù)圖像,從函數(shù)圖像獲取信息是解題的關(guān)鍵;由圖像知,甲隊(duì)6天鋪設(shè)了600

米,則可求得甲隊(duì)每天鋪設(shè)管道的長(zhǎng)度,從而判斷選項(xiàng)A;由圖像知,乙從第三天開(kāi)始到第六天,4

天共鋪設(shè)了200米,則可求得每天鋪設(shè)管道的長(zhǎng)度,從而判斷選項(xiàng)B;根據(jù)乙從第三天開(kāi)始鋪設(shè)的速

度可計(jì)算出完成管道鋪設(shè)的時(shí)間,與甲完成的時(shí)間比較即可判斷選項(xiàng)C;根據(jù)前面選項(xiàng)A與B的計(jì)

算,即可對(duì)選項(xiàng)D作出判斷,最后確定答案.

【詳解】解:由圖像知,甲隊(duì)6天鋪設(shè)了600米,則甲隊(duì)每天鋪設(shè)管道的長(zhǎng)度為600+6=100(米),

故選項(xiàng)A正確;

由圖像知,乙從第二天后到第六天,4天共鋪設(shè)了200米,則每天鋪設(shè)管道的長(zhǎng)度為(500-300)+(6-

2)=50(米),故選項(xiàng)B正確;

..?乙從第三天開(kāi)始鋪設(shè)的速度為每天50米,

,乙完成剩下管道鋪設(shè)的時(shí)間為:(600-300)+50=6(天),完成整個(gè)管道鋪設(shè)的時(shí)間為2+6=8

(天),

甲比乙提前完成的時(shí)間為8-6=2(天),故選項(xiàng)C錯(cuò)誤;

當(dāng)x=2時(shí),甲乙兩隊(duì)所鋪設(shè)管道長(zhǎng)度相差(100-50)x2=100(米);

當(dāng)x=6時(shí),甲乙兩隊(duì)所鋪設(shè)管道長(zhǎng)度相差600-500=100(米),

故選項(xiàng)D正確,

故選:C.

考點(diǎn)5:動(dòng)點(diǎn)問(wèn)題的函數(shù)圖像

典例5:(23-24八年級(jí)下?河南關(guān)B州?期中)如圖1,在AABC中,NB=60。動(dòng)點(diǎn)尸從點(diǎn)A出發(fā)沿折線

AB-BC勻速運(yùn)動(dòng)至點(diǎn)C后停止.設(shè)點(diǎn)P的運(yùn)動(dòng)路程為龍,線段力P的長(zhǎng)度為“圖2是y與龍的函數(shù)

關(guān)系的大致圖象,點(diǎn)M為曲線DE的最低點(diǎn),貝UBC邊的長(zhǎng)為()

圖1圖2

A.2V3B.2C.3V3D.3

【答案】C

【分析】作4。1BC,當(dāng)動(dòng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)。時(shí),線段4P的長(zhǎng)度最短,此時(shí)2B+BD=3H,當(dāng)動(dòng)點(diǎn)P

運(yùn)動(dòng)到點(diǎn)C時(shí),運(yùn)動(dòng)結(jié)束,此時(shí)4。=何,根據(jù)勾股定理求解即可.

【詳解】解:作力D1BC,垂足為D,

當(dāng)動(dòng)點(diǎn)尸運(yùn)動(dòng)到點(diǎn)。時(shí),線段2P的長(zhǎng)度最短,此時(shí)點(diǎn)尸運(yùn)動(dòng)的路程為3g,即4B+BD=3g,

當(dāng)動(dòng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)c時(shí),運(yùn)動(dòng)結(jié)束,線段4P的長(zhǎng)度就是47的長(zhǎng)度,此時(shí)ac=&T,

,JZ.ABC=60°,

J.ABAD=30°,

:.AB=2BD,

:.AB+BD=3BD=3后

:.BD=V3,AB=2V3,

:.AD=7AB2-BD2=3,

在RtAACD中,AC=VH,

:.CD=<AC2-AD2=2V3,

:.BC=BD+CD=3V3,

故選:C.

【點(diǎn)睛】本題考查了動(dòng)點(diǎn)問(wèn)題的函數(shù)圖象,勾股定理,垂線段最短,含30度角的直角三角形的特征.讀

懂函數(shù)圖象是解題的關(guān)鍵.

【變式1](2024?甘肅天水.一模)如圖:菱形4BCD的對(duì)角線力C上有一動(dòng)點(diǎn)P,BP的長(zhǎng)y關(guān)于點(diǎn)P運(yùn)

動(dòng)的路程x的函數(shù)圖像如圖,則該菱形的面積為()

【答案】D

【分析】本題考查了函數(shù)圖象,菱形的性質(zhì),點(diǎn)到直線的距離,連接BD,根據(jù)函數(shù)圖象知當(dāng)BP14C

時(shí),BP=6,\AC=8,即可得到BD=12,根據(jù)菱形的面積公式即可求解.

【詳解】解:連接交B0于點(diǎn)。,

由函數(shù)圖象知當(dāng)BP,AC時(shí),BP最短,

此時(shí)BP=6,即8。=6,4。=8,

BD=12,AC=16,

該菱形的面積為:\AC-BD=96,

故選:D.

【變式2】(23-24八年級(jí)下?湖南郴州?階段練習(xí))如圖①,在四邊形4BCD中,BC||AD,〃=90。,

點(diǎn)尸從點(diǎn)A出發(fā),沿4-8-C一。運(yùn)動(dòng)到點(diǎn)。.圖②是點(diǎn)尸運(yùn)動(dòng)時(shí),△PAD的面積S與點(diǎn)P運(yùn)動(dòng)的

路程龍之間的關(guān)系圖象,則。的值為()

圖①圖②

7

A.-B.4C.5D.6

2

【答案】D

【分析】本題考查動(dòng)點(diǎn)問(wèn)題的函數(shù)圖象,矩形的性質(zhì)和判定,勾股定理,解題的關(guān)鍵是明確題意,能

從函數(shù)圖象中找到我們需要的信息,利用數(shù)形結(jié)合的思想解答.

過(guò)點(diǎn)C作CE14。于點(diǎn)E,首先根據(jù)八4DP的面積是g得到4。=7,然后得到四邊形48CE是矩形,

設(shè)BC=尤,則DE=7-x,CD=8-x,根據(jù)勾股定理求解即可.

【詳解】如圖,過(guò)點(diǎn)C作CE140于點(diǎn)E,

由圖象可知,點(diǎn)P從A到3運(yùn)動(dòng)的路程是3,

當(dāng)點(diǎn)尸與點(diǎn)8重合時(shí),AADP的面積是

.ADAB_AD3_21

"2一2一2,

解得AD=7,

又BC||AD,4力=90°,CELAD,

???乙B=90°,/.CEA=90°,

???四邊形4BCE是矩形,

CE=AB=3,BC=AE,

設(shè)BC=x,則DE=7-x,CD=8-x,

在RtADCE中,DE2+CE2=CD2,

即(7—£)2+32=(8-x)2,

解得x=3,

???a=3+3=6.

故選:D.

【變式3](2023?江蘇蘇州?模擬預(yù)測(cè))圖1是一座立交橋的示意圖(道路寬度忽略不計(jì)),A為入口,

F,G為出口,其中直行道為ZB,CG,EF,且ZB=CG=EF,彎道為以點(diǎn)。為圓心的一段弧,且

CS,北所對(duì)的圓心角均為90。.甲、乙兩車由A口同時(shí)駛?cè)肓⒔粯?,均?0m/s的速度行駛,從不同

出口駛出,其間兩車到點(diǎn)。的距離y(m)與時(shí)間式(s)的對(duì)應(yīng)關(guān)系如圖2所示,結(jié)合題目信息,下列說(shuō)

法錯(cuò)誤的是()

A.甲車在立交橋上共行駛8s;B.從F口出比從G口出多行駛40m;

C.甲車從G口出,乙車從尸口出;D.立交橋總長(zhǎng)為160m

【答案】D

【分析】本題主要考查了動(dòng)點(diǎn)問(wèn)題的函數(shù)圖象,由圖象可知,兩車通過(guò)品,CD,"弧時(shí)每段所用時(shí)

間均為5-3=2s,通過(guò)直行道力B,CG,EF時(shí),每段用時(shí)為3s,據(jù)此逐一判斷即可.

【詳解】解:由圖象可知,兩車通過(guò)此,⑶,處弧時(shí)每段所用時(shí)間均為5-3=2s,通過(guò)直行道

AB,CG,EF時(shí),每段用時(shí)為3s.

因此,甲車所用時(shí)間為3+2+3=8s,故A正確,不符合題意;

根據(jù)兩車運(yùn)行路線,從尸口駛出比從G口多走弧長(zhǎng)6,051之和,用時(shí)為4s,則多走4X10=40m,

故B正確,不符合題意;

根據(jù)兩車運(yùn)行時(shí)間,可知甲先駛出,應(yīng)從G口駛出,乙車從F口出,故C正確,不符合題意;

根據(jù)題意立交橋總長(zhǎng)為(3x2+3x3)x10=150m,故D錯(cuò)誤,符合題意;

故選:D.

考點(diǎn)6:一次函數(shù)、正比例函數(shù)定義

典例6:(2023八年級(jí)下?全國(guó)?專題練習(xí))下列各關(guān)系中,符合正比例關(guān)系的是()

A.正方形的周長(zhǎng)C和它的一邊長(zhǎng)a

B.距離s一定時(shí),速度v和時(shí)間t

C.長(zhǎng)40米的繩子減去x米,還剩y米,x和y

D.正方體的體積V和棱長(zhǎng)相

【答案】A

【分析】根據(jù)正比例函數(shù)定義即可得答案.

【詳解】A.根據(jù)正方形的周長(zhǎng)公式可得C=4a,這是一個(gè)正比例函數(shù);

B.根據(jù)速度=路程+時(shí)間可得這是一個(gè)反比例函數(shù);

C.根據(jù)剩下的長(zhǎng)度=總長(zhǎng)-減去的長(zhǎng)度可得y=40-x,這是一個(gè)一次函數(shù);

D.根據(jù)正方體的體積公式,可得了=巾3,是一個(gè)三次函數(shù),不是正比例函數(shù).

故選:A.

【點(diǎn)睛】本題考查正比例函數(shù)定義和表達(dá)式,掌握其概念是解題關(guān)鍵.

【變式1](22-23八年級(jí)上?江蘇揚(yáng)州?期末)規(guī)定:[k,0是一次函數(shù)y=kx+b(k、b為實(shí)數(shù),kA

0)的“特征數(shù)".若“特征數(shù)”是[4,m-4]的一次函數(shù)是正比例函數(shù),則點(diǎn)(2+ni,2-m)所在的

象限是()

A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限

【答案】D

【分析】根據(jù)正比例函數(shù)的定義求出,〃的值,然后求出點(diǎn)的坐標(biāo)即可判斷.

【詳解】解:由題意得:

:“特征數(shù)''是[4,m-4]的一次函數(shù)是正比例函數(shù),

m-4=0,

2+m=6,2-m=-2,

???點(diǎn)(6,-2)在第四象限,

故選:D.

【點(diǎn)睛】本題考查了正比例函數(shù)的定義,熟練掌握正比例函數(shù)的定義是解題的關(guān)鍵.

【變式2](23-24八年級(jí)上?江蘇連云港?階段練習(xí))下列函數(shù):①y=-%;②y=2x+11;③丫=-%2+

(%+1)(%-2);④y=(中,關(guān)于x的一次函數(shù)的有()

A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)

【答案】B

【分析】本題主要考杳一次函數(shù)的定義,掌握一次函數(shù)的定義(y=kx+6的定義條件是:k、b為常

數(shù),k70,自變量次數(shù)為1)是解題的關(guān)鍵.

根據(jù)一次函數(shù)的定義條件進(jìn)行逐一分析即可.

【詳解】解:一次函數(shù)有:①y=-x;②y=2x+11;③y=-x2+(%+1)(%-2)=-%-2;?y=[

不是一次函數(shù);

綜上所述,正確的有3個(gè),

故選:B.

【變式3](22-23八年級(jí)上?湖北宜昌?期中)如果y=(根-2)萬(wàn)―-3+2是一次函數(shù),那么機(jī)的值是

()

A.2B.-2C.±2D.±V2

【答案】B

【分析】根據(jù)一次函數(shù)定義:①含有一個(gè)未知數(shù);②未知數(shù)最高次數(shù)為1次;③整式方程,并且注意,

一次項(xiàng)系數(shù)不能為0,列式求解即可得到答案.

【詳解】解:-(m-2)x7n2-3+2是一次函數(shù),

/.m2—3=1,且m—2K0,解得m=-2,

故選:B.

【點(diǎn)睛】本題考查根據(jù)一次函數(shù)定義求參數(shù),掌握一次函數(shù)定義:①含有一個(gè)未知數(shù);②未知數(shù)最高

次數(shù)為1次;③整式方程,并且注意,一次項(xiàng)系數(shù)不能為0,準(zhǔn)確列式是解決問(wèn)題的關(guān)鍵.

考點(diǎn)7:判斷一次函數(shù)圖像

典例7:(22-23八年級(jí)上?江蘇鹽城?期末)下列圖象中,可以表示一次函數(shù)y=依-b與正比例函數(shù)

y=kbx(k,b為常數(shù),且kb70)的圖象不可能的是()

【答案】A

【分析】本題考查正比例函數(shù)的圖象、一次函數(shù)的圖象,根據(jù)正比例函數(shù)的性質(zhì)和一次函數(shù)的圖象,

可以得到協(xié)的正負(fù)和晨b的正負(fù),然后即可判斷哪個(gè)選項(xiàng)符合題意.

【詳解】A、由一次函數(shù)的圖象可知k<0,b<0,由正比例函數(shù)的圖象可知kb<0,故選項(xiàng)A不可

能,符合題意;

B、由一次函數(shù)的圖象可知k>0,b<0,由正比例函數(shù)的圖象可知協(xié)<0,故選項(xiàng)B可能,不符合

題意;

C、由一次函數(shù)的圖象可知k<0,b<0,由正比例函數(shù)的圖象可知協(xié)>0,故選項(xiàng)C可能,不符合

題意;

D、由一次函數(shù)的圖象可知k>0,b>0,由正比例函數(shù)的圖象可知協(xié)>0,故選項(xiàng)D可能,不符合

題意;

故選:A.

【變式1](2024九年級(jí)下?廣東?專題練習(xí))關(guān)于x的正比例函數(shù)y=依與一次函數(shù)y=kx+x—k的

大致圖象不可能是()

A.B.

【答案】D

【分析】本題考查了正比例函數(shù)的圖象及一次函數(shù)的圖象,根據(jù)正比例函數(shù)與一次函數(shù)的圖象性質(zhì)作

答,解題的關(guān)鍵是熟練掌握正比例函數(shù)的圖象及一次函數(shù)的圖象

的性質(zhì).

【詳解】解:令kx+x-k=kx時(shí),x=k,

當(dāng)k>。時(shí),正比例函數(shù)y=fcr圖象經(jīng)過(guò)一、三象限,一次函數(shù)y-kx+x—k-(k+l)x-k的圖象

經(jīng)過(guò)一、三、四象限,兩直線的交點(diǎn)在第一象限;

當(dāng)一1<k<0時(shí),正比例函數(shù)y=kx圖象經(jīng)過(guò)二、四象限,一次函數(shù)y=kx+x—k=(k+l)x-k的

圖象經(jīng)過(guò)一、二、三象限,兩直線的交點(diǎn)在第二象限;

當(dāng)k<—1時(shí),正比例函數(shù)y=kx圖象經(jīng)過(guò)二、四象限,一次函數(shù)丫=fcr+x—k=(k+l)x—k的圖

象經(jīng)過(guò)一、二、四象限,兩直線的交點(diǎn)在第二象限;

故選:D.

【變式2](2024八年級(jí).全國(guó).競(jìng)賽)在同一坐標(biāo)系內(nèi),直線匕:丫=依和/2:y=(k-3)x+k的位置

可能是().

【答案】c

【分析】本題考查一次函數(shù)圖象的判斷,熟練掌握一次函數(shù)圖象與系數(shù)的關(guān)系是解題詞的關(guān)鍵.

銜求得兩一次函數(shù)圖象的交點(diǎn),根據(jù)交點(diǎn)可排除A,D選項(xiàng),再根據(jù)當(dāng)k>0時(shí),C選項(xiàng)符合題意,

當(dāng)k<0時(shí),排除B選項(xiàng).

【詳解】解:聯(lián)立兩函數(shù)解析式得:f_1=

(y—一^5JX-T-K

(k

X=-

解得:3

Qi"

與%的交點(diǎn)坐標(biāo)為竹,?),

??,k手0,

>0,

3

???交點(diǎn)必在x軸上方,故可排除A,D選項(xiàng).

當(dāng)k>0時(shí),C選項(xiàng)符合題意,

當(dāng)k<0,%與y軸的交點(diǎn)應(yīng)在y軸下方,故又可排除B選項(xiàng).

故選:C.

【變式3](22-23八年級(jí)下?福建福州?期末)已知函數(shù)丫=kx+b的圖象如圖所示,函數(shù)y=bx+k的

圖象大致是()

【答案】C

【分析】根據(jù)一次函數(shù)y=kx+b的圖象可知k>0,b<0,然后根據(jù)一次函數(shù)是性質(zhì)即可判斷.

【詳解】解:由一次函數(shù)y=k尤+b的圖象可知k>0,b<0,

?1?一次函數(shù)y=+k的圖象經(jīng)過(guò)一、二、四象限,

故選:C.

【點(diǎn)睛】本題考查一次函數(shù)的圖象,解題的關(guān)鍵是通過(guò)圖像知道k和b的取值范圍以及熟知一次函數(shù)

的圖像性質(zhì).

考點(diǎn)8:一次函數(shù)圖像性質(zhì)一一增減性

典例8:(23-24八年級(jí)上?貴州貴陽(yáng)?期末)下列函數(shù)中,y的值隨無(wú)增大而增大的是()

1

A.y=-2x+1B.y=--xC.y=2x+1D.y=—x+2

【答案】c

【分析】本題主要考查了一次函數(shù)的增減性.熟練掌握一次函數(shù)丫=/?+〃卜片0)中,當(dāng)k>0時(shí),y

隨x的增大而增大.當(dāng)k<0時(shí),y隨x的增大而減小,是解決問(wèn)題的關(guān)鍵.

根據(jù)一次函數(shù)自變量的系數(shù)的正負(fù),判定一次函數(shù)的增減性,進(jìn)行解答即可.

【詳解】A.y=-2x+1,

V-2<0,

的值隨x增大而減小,

???此選項(xiàng)不符合題意;

1

B.y=--x,

V--<0,

3

y的值隨x增大而減小,

,此選項(xiàng)不符合題意;

C.y=2%+1,

V2>0,

.'.y的值隨x增大而增大,

此選項(xiàng)不符合題意;

D.y=—X+2,

V-1<0,

的值隨x增大而減小,

此選項(xiàng)不符合題意.

故選:C.

【變式11(23-24八年級(jí)上?浙江寧波?期末)若一次函數(shù)y=(4—3k)x-2的圖象經(jīng)過(guò)點(diǎn)4(右,月)和

點(diǎn)B(久2,%),當(dāng)%1>久2時(shí),、1<丫2,則々的取值范圍是()

2244

A.k<-B.k>-C.k<-D.k>-

4433

【答案】D

【分析】本題考查了一次函數(shù)的圖象與性質(zhì),一次項(xiàng)的系數(shù)決定函數(shù)的增減性質(zhì),掌握此性質(zhì)是解題

的關(guān)鍵.

根據(jù)一次函數(shù)的性質(zhì)可確定一次項(xiàng)系數(shù)的符號(hào),從而可確定m的取值范圍.

【詳解】解:當(dāng)久1>%2時(shí),%<丫2,則y隨X的增大而減小,

:.4-3k<0,

解得:

故選:D.

【變式2](23-24八年級(jí)上?浙江?期末)已知(%,月),(%2,%),(孫,丫3)為直線y=2x—1上的三

個(gè)點(diǎn),且%I<%2<%3,則以下判斷正確的是()

A.若%i%3<。,則y/z>oB.若%2的<。,則y,2>o

C.若%1%2>0,則y2y3>0D.若久2%3<°,則>0

【答案】B

【分析】本題考查了一次函數(shù)的性質(zhì),先求出此直線交y軸于(0,-1),交x軸于0),畫出圖象,

結(jié)合一次函數(shù)的增減性,逐項(xiàng)判斷即可得出答案,熟練掌握一次函數(shù)的圖象與性質(zhì),采用數(shù)形結(jié)合的

思想是解此題的關(guān)鍵.

【詳解】解:當(dāng)%=0時(shí),y=-1,則此直線交y軸于(0,-1),

當(dāng)y=0時(shí),2%—1=0,解得:x=|,則此直線交久軸于G,0),

畫出一次函數(shù)y=2x-1的圖象如圖所示:

若%I%<°,且%1<%2<%3,

?,?V0,%3>0,

此時(shí)丫1<0,但為的正負(fù)無(wú)法判斷,故A選項(xiàng)錯(cuò)誤,不符合題意;

右X2刀3<°,且X1<%2<%3,

*'?比1<%2<0,Xg>0,

此時(shí)乃<0,y2<0,故yi>2>。,故B選項(xiàng)正確,符合題意;

若%1刀2>°,且<x2<x3,

xr<x2<0或0<久1<久2,

當(dāng)X1<%2<0時(shí),%<、2<0,此時(shí)丫3的正負(fù)無(wú)法判斷,故C選項(xiàng)錯(cuò)誤,不符合題意;

右X2“3<。,且X1<%2<%3,

X1<%2<。,丫3>0,此時(shí)y1<0,但丫3的正負(fù)無(wú)法判斷,故D選項(xiàng)錯(cuò)誤,不符合題意;

故選:B.

【變式3](23-24七年級(jí)上.山東泰安?期末)一次函數(shù)y=—x+3的圖像過(guò)點(diǎn)Oi,%),(/+1,%),

01+2/3),則()

A.y3<y2<yiB.y!<y2<y3

c.y2<yi<y3D.為<%<y2

【答案】A

【分析】根據(jù)一次函數(shù)的增減性求解即可.

本題考查了一次函數(shù)的圖像與性質(zhì),對(duì)于一次函數(shù)y=kx+b"為常數(shù),k羊0),當(dāng)々>。時(shí),y隨

x的增大而增大;當(dāng)k<0時(shí),y隨x的增大而減小.

【詳解】-3<0,

隨尤增大而減小,

???<%]+1<+2,

?*yi>Y2>為,

即為<%<%,

故選:A.

考點(diǎn)9:一次函數(shù)圖像性質(zhì)一一與k、b關(guān)系

典例9:(2023?云南?模擬預(yù)測(cè))一次函數(shù)y=7x+b(b>0)的圖象一定不經(jīng).()

A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限

【答案】D

【分析】本題主要考查了一次函數(shù)的圖象和性質(zhì),尤其是圖象的位置與人b的關(guān)系.根據(jù)y=7%+

6(620)確定鼠b的符號(hào),然后根據(jù)一次函數(shù)的圖象和性質(zhì)即可確定其所過(guò)象限,即可解題.

【詳解】解:,??一■次函數(shù)解析式為y=7x+b(b20),7>0,b>0,

二一次函數(shù)圖象可能經(jīng)過(guò)一、二、三象限,

.,.一次函數(shù)y=7x+b(b>0)的圖象一定不孥.第四象限,

故選:D.

【變式1】(23-24八年級(jí)下?四川攀枝花?期中)一次函數(shù)y=(m+l)x+5的圖像不經(jīng)過(guò)第四象限,

則m的取值范圍是()

A.m>—1B.m<—1C.m=—1D.m<1

【答案】A

【分析】本題考查一次函數(shù)圖象與系數(shù)的關(guān)系:①k>0,b>Ooy=kx+b的圖象在一、二、三象

限;@k>0,b<0Qy=kx+b的圖象在一、三、四象限;@k<0,6>0=y=kx+b的圖象

在一、二、四象限;@k<0,b<0oy=/?+b的圖象在二、三、四象限.

【詳解】解:=(m+1)%+5的圖象不經(jīng)過(guò)第四象限,

m+1>0,

解得:m>-1,

故選:A.

【變式2】(23-24九年級(jí)下?甘肅定西?階段練習(xí))直線y=(2小一l)x+n經(jīng)過(guò)第一、三、四象限,則

點(diǎn)P(-ni,n)所在象限為()

A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限

【答案】C

【分析】此題考查了各象限點(diǎn)的特征,根據(jù)直線y=(2巾-l)x+n經(jīng)過(guò)第一、三、四象限得到機(jī)、?

的取值范圍,即可得到答案.

【詳解】解:???直線y=(26一1次+71經(jīng)過(guò)第一、三、四象限,

'.2m—1>0,n<0,

1

m>-,n<0

2,

?'?一THV—<0,71V0

2

.?.點(diǎn)P(-小,切所在象限為第三象限,

故答案為:C

【變式3](22-23八年級(jí)下?新疆烏魯木齊?期末)已知一次函數(shù)y=kx+b的圖象如圖所示,則匕6的

取值范圍是()

A.k>0,b>0B.k>0,b<0

C./c<0,b>0D.fc<0,b<0

【答案】D

【分析】本題考查的是一次函數(shù)的圖象與系數(shù)的關(guān)系,根據(jù)一次函數(shù)的圖象與系數(shù)的關(guān)系進(jìn)行解答即

可,熟練掌握一次函數(shù)的圖象與系數(shù)的關(guān)系是解題的關(guān)鍵.

【詳解】解:???一次函數(shù)y=kx+b的圖象經(jīng)過(guò)二、三、四象限,

.'.k<0,b<0,

故選:D.

考點(diǎn)10:一次函數(shù)圖像性質(zhì)一一平移問(wèn)題

典例10:(2024?湖南長(zhǎng)沙?模擬預(yù)測(cè))直線y=依沿y軸向下平移2個(gè)單位后與x軸的交點(diǎn)坐標(biāo)是(-2,0),

以下各點(diǎn)在直線y=質(zhì)上的是()

A.(-3,0)B.(0,-3)C.(-2,2)D.(2,2)

【答案】C

【分析】本題考查一次函數(shù)的圖像與幾何變換,一次函數(shù)圖像上點(diǎn)的坐標(biāo)特征,待定系數(shù)法求一次函

數(shù)的解析式,根據(jù)“上加下減”的原則求解即可.熟知函數(shù)圖像上點(diǎn)的坐標(biāo)滿足解析式是解題的關(guān)鍵.

【詳解】解:直線y=依沿y軸向下平移2個(gè)單位后與x軸的交點(diǎn)坐標(biāo)是(-2,0),

將x

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論