




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
山東省滕州市中考數(shù)學真題分類(勾股定理)匯編專項測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計14分)1、如圖,桌上有一個圓柱形玻璃杯(無蓋)高6厘米,底面周長16厘米,在杯口內(nèi)壁離杯口1.5厘米的A處有一滴蜜糖,在玻璃杯的外壁,A的相對方向有一小蟲P,小蟲離杯底的垂直距離為1.5厘米,小蟲爬到蜜糖處的最短距離是(
)A.厘米 B.10厘米 C.厘米 D.8厘米2、如圖,長方形紙片ABCD中,AB=3cm,AD=9cm,將此長方形紙片折疊,使點D與點B重合,點C落在點H的位置,折痕為EF,則△ABE的面積為(
)A.6cm2 B.8cm2 C.10cm2 D.12cm23、如圖,△ABC中,,以其三邊分別向外側作正方形,然后將整個圖形放置于如圖所示的長方形中,若要求圖中兩個陰影部分面積之和,則只需知道(
)A.以BC為邊的正方形面積 B.以AC為邊的正方形面積C.以AB為邊的正方形面積 D.△ABC的面積4、一個直角三角形的兩條直角邊邊長分別為6和8,則斜邊上的高為(
)A.4.5 B.4.6 C.4.8 D.55、如圖,把長方形紙條ABCD沿EF,GH同時折疊,B,C兩點恰好落在AD邊的P點處,若∠FPH=90°,PF=8,PH=6,則長方形ABCD的邊BC的長為()A.20 B.22 C.24 D.306、《九章算術》中的“折竹抵地”問題:今有竹高一丈,末折抵地,去根六尺.問折高者幾何?意思是:一根竹子,原高一丈(一丈=10尺),一陣風將竹子折斷,其竹梢恰好抵地,抵地處離竹子底部6尺遠,問折斷處離地面的高度是多少?設折斷處離地面的高度為尺,則可列方程為(
)A. B.C. D.7、我國古代數(shù)學名著《算法統(tǒng)宗》有一道“蕩秋千”的問題:“平地秋千未起,踏板一尺離地.送行二步與人齊,5尺人高曾記,仕女家人爭蹴.良工高士素好奇,算出索長有幾?”此問題可理解為:“如圖,有一架秋千,當它靜止時,踏板離地距離的長為尺,將它向前水平推送尺時,即尺,秋千踏板離地的距離和身高尺的人一樣高,秋千的繩索始終拉得很直,試問繩索有多長?”,設秋千的繩索長為尺,根據(jù)題意可列方程為(
)A. B.C. D.第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計16分)1、如圖,某農(nóng)舍的大門是一個木制的長方形柵欄,它的高為2m,寬為1.5m,現(xiàn)需要在相對的頂點間用一塊木板加固,則木板的長為________.2、如圖,圓柱形無蓋玻璃容器,高18cm,底面周長為60cm,在外側距下底1cm的點C處有一蜘蛛,與蜘蛛相對的圓柱形容器的上口外側距開口1cm的F處有一蒼蠅,則急于捕獲蒼蠅充饑的蜘蛛所走的最短路線的長度為__________cm(容器壁厚度忽略不計).3、在Rt△ABC中,∠C=90°,AC=9,AB=15,則點C到AB的距離是_______.4、如圖,△ABC中,∠C=90°,AD平分∠BAC,AB=5,AC=3,則BD的長是__.5、《九章算術》是我國古代數(shù)學名著,書中有下列問題:“今有垣高一丈,倚木于垣,上與垣齊.引木卻行一尺,其木至地,問木長幾何?”其意思為:今有墻高1丈,倚木桿于墻,使木之上端與墻平齊,牽引木桿下端退行1尺,則木桿(從墻上)滑落至地上.問木桿是多長?(1丈=10尺)設木桿長為x尺根據(jù)題意,可列方程為______.6、圖,在菱形ABCD中,,是銳角,于點E,M是AB的中點,連接MD,若,則的值為______.7、如圖,已知,那么數(shù)軸上點所表示的數(shù)是________.8、如圖,已知中,,,動點M滿足,將線段繞點C順時針旋轉(zhuǎn)得到線段,連接,則的最小值為_________.三、解答題(7小題,每小題10分,共計70分)1、在△ABC中,,AB=5cm,AC=3cm,動點P從點B出發(fā),沿射線BC以1cm/s的速度移動,設運動的時間為t秒,當△ABP為直角三角形時,求t的值.2、如圖,已知等腰△ABC的底邊BC=10cm,D是腰AC上一點,且CD=6cm,BD=8cm.(1)判斷△BCD的形狀,并說明理由;(2)求△ABC的周長.3、我國古代的數(shù)學名著《九章算術》中記載“今有竹高一丈八,末折抵地,去本6尺.問:折者高幾何?”譯文:一根竹子,原高一丈八,蟲傷有病,一陣風將竹子折斷,其竹梢恰好著地,著地處離原竹子根部6尺遠.問:折處離地還有多高的竹子?(1丈=10尺)4、湖的兩岸有A,B兩棵景觀樹,數(shù)學興趣小組設計實驗測量兩棵景觀樹之間的距離,他們在與AB垂直的BC方向上取點C,測得米,米.求:(1)兩棵景觀樹之間的距離;(2)點B到直線AC的距離.5、如圖是“弦圖”的示意圖,“弦圖”最早是由三國時期的數(shù)學家趙爽在為《周髀算經(jīng)》作注時給出的,它標志著中國古代的數(shù)學成就.它由4個全等的直角三角形與一個小正方形組成,恰好拼成一個大正方形,每個直角三角形的兩條直角邊分別為a、b,斜邊為c.請你運用此圖形證明勾股定理:a2+b2=c2.6、我方偵查員小王在距離東西向公路400米處偵查,發(fā)現(xiàn)一輛敵方汽車在公路上疾駛.他趕緊拿出紅外線測距儀,測得汽車與他相距400米,10秒后,汽車與他相距500米,你能幫小王計算敵方汽車的速度嗎?7、如圖,某商家想在商場大樓上懸掛一塊廣告牌,廣告牌高.根據(jù)商場規(guī)定廣告牌最高點不得高于地面20m,經(jīng)測量,測角儀支架高,在F處測得廣告牌底部點B的仰角為30°,在E處測得標語牌頂部點A的仰角為45°,,請計算說明,商家這樣放廣告牌是否符合規(guī)定?(圖中點A,B,C,D,E,F(xiàn),G,H在同一平面內(nèi))-參考答案-一、單選題1、B【解析】【分析】把圓柱沿著點A所在母線展開,把圓柱上最短距離轉(zhuǎn)化為將軍飲馬河型最短問題求解即可.【詳解】把圓柱沿著點A所在母線展開,如圖所示,作點A的對稱點B,連接PB,則PB為所求,根據(jù)題意,得PC=8,BC=6,根據(jù)勾股定理,得PB=10,故選B.【考點】本題考查了圓柱上的最短問題,利用圓柱展開,把問題轉(zhuǎn)化為將軍飲馬河問題,靈活使用勾股定理是解題的關鍵.2、A【解析】【分析】根據(jù)折疊的條件可得:,在中,利用勾股定理就可以求解.【詳解】將此長方形折疊,使點與點重合,,,根據(jù)勾股定理得:,解得:..故選:A.【考點】本題考查了利用勾股定理解直角三角形,掌握直角三角形兩直角邊的平方和等于斜邊的平方是解題的關鍵.3、D【解析】【分析】如圖所示,過點C作CN⊥AB于N,延長AB、BA分別交正方形兩邊于H、E,證明△ADE≌△CAN得到,AE=CN同理可證△BGH≌△CBN,得到,BH=CN,則,即可推出由此即可得到答案.【詳解】解:如圖所示,過點C作CN⊥AB于N,延長AB、BA分別交正方形兩邊于H、E,∴∠CNA=∠DEA=∠DAC=90°,∴∠DAE+∠EDA=∠DAE+∠CAN=90°,∴∠ADE=∠CAN,又∵AD=CA,∴△ADE≌△CAN(AAS),∴,AE=CN同理可證△BGH≌△CBN,∴,BH=CN∴,∴,∴只需要知道△ABC的面積的面積即可求出陰影部分的面積,故選D【考點】本題主要考查了全等三角形的性質(zhì)與判定,解題的關鍵在于能夠正確作出輔助線,構造全等三角形.4、C【解析】【分析】根據(jù)勾股定理求出斜邊的長,再根據(jù)面積法求出斜邊的高.【詳解】解:設斜邊長為c,高為h.由勾股定理可得:c2=62+82,則c=10,直角三角形面積S=×6×8=×c×h,可得h=4.8,故選:C.【考點】本題考查了勾股定理,利用勾股定理求直角三角形的邊長和利用面積法求直角三角形的高是解決此類題的關鍵.5、C【解析】【詳解】由折疊得:在Rt中,∠FPH=90°,PF=8,PH=6,則故BC=BF+FH+HC=6+8+10=24.故選C.6、D【解析】【分析】先畫出三角形,根據(jù)勾股定理和題目設好的未知數(shù)列出方程.【詳解】解:如圖,根據(jù)題意,,,設折斷處離地面的高度是x尺,即,根據(jù)勾股定理,,即.故選:D.【考點】本題考查勾股定理的方程思想,解題的關鍵是根據(jù)題意利用勾股定理列出方程.7、C【解析】【分析】根據(jù)勾股定理列方程即可得出結論.【詳解】解:由題意知:OC=x-(5-1),P'C=10,OP'=x,在Rt△OCP'中,由勾股定理得:[x-(5-1)]2+102=x2.即.故選:C.【考點】本題主要考查了勾股定理的應用,讀懂題意是解題的關鍵.二、填空題1、2.5m【解析】【詳解】設木棒的長為xm,根據(jù)勾股定理可得:x2=22+1.52,解得x=2.5.故木棒的長為2.5m.故答案為2.5m.2、34【解析】【分析】首先展開圓柱的側面,即是矩形,接下來根據(jù)兩點之間線段最短,可知CF的長即為所求;然后結合已知條件求出DF與CD的長,再利用勾股定理進行計算即可.【詳解】如圖為圓柱形玻璃容器的側面展開圖,線段CF是蜘蛛由C到F的最短路程.根據(jù)題意,可知DF=18-1-1=16(cm),CD(cm),∴(cm),即蜘蛛所走的最短路線的長度是34cm.故答案為34.【考點】此題是有關最短路徑的問題,關鍵在于把立體圖形展開成平面圖形,找出最短路徑;3、【解析】【分析】首先根據(jù)勾股定理求出直角邊BC的長,再根據(jù)三角形的面積為定值即可求出則點C到AB的距離【詳解】在Rt△ABC中,∠C=90°,則有AC2+BC2=AB2∵AC=9,BC=12,∴AB=在Rt△ABC中,∠C=90°,則有AC2+BC2=AB2,∵AC=9,AB=15,∴BC==12,∵S△ABC=AC?BC=AB?h,∴h==故答案為【考點】本題考查了勾股定理,熟知在任何一個直角三角形中,兩條直角邊長的平方之和一定等于斜邊長的平方是解題的關鍵4、2.5【解析】【分析】首先先過點D作AB的垂直線段DE,根據(jù)勾股定理把BC求出,然后根據(jù)角平分線的性質(zhì)定理得出DE=DC,再根據(jù)ABC的面積等于ACD的面積加上ABD的面積,把CD求出,最后BD的長度即可求出.【詳解】過點D作DEAB于E,在ABC中,C=,AB=5,AC=3,∴,∵AD平分BAC,∴DE=DC,∵,即,解得CD=1.5,∴BD=4-CD=4-1.5=2.5,故答案為:2.5.【考點】本題考查了勾股定理和角平分線的性質(zhì)定理,正確作出輔助線,根據(jù)面積相等把CD求出是解題的關鍵.5、102+(x-1)2=x2【解析】【分析】當木桿的上端與墻頭平齊時,木桿與墻、地面構成直角三角形,設木桿長為x尺,則木桿底端離墻有(x-1)尺,根據(jù)勾股定理可列出方程.【詳解】解:如圖,設木桿AB長為x尺,則木桿底端B離墻的距離即BC的長有(x-1)尺,在Rt△ABC中,∵AC2+BC2=AB2,∴102+(x-1)2=x2,故答案為:102+(x-1)2=x2.【考點】此題考查了勾股定理的應用,解題的關鍵是由實際問題抽象出直角三角形,從而運用勾股定理解題.6、【解析】【分析】延長DM交CB的延長線于點首先證明,設,利用勾股定理構建方程求出x即可解決問題.【詳解】延長DM交CB的延長線于點H,四邊形ABCD是菱形,,,,,,≌,,,,設,,,,,,或舍棄,,故答案為.【考點】本題考查了菱形的性質(zhì)、勾股定理、線段的垂直平分線的性質(zhì)、全等三角形的判定和性質(zhì)等知識,正確添加輔助線,構造全等三角形解決問題是解決本題的關鍵.7、【解析】【分析】首先根據(jù)勾股定理得:OB=.即OA=.又點A在數(shù)軸的負半軸上,則點A對應的數(shù)是-.【詳解】解:由圖可知,OC=2,作BC⊥OC,垂足為C,取BC=1,故,∵A在x的負半軸上,∴數(shù)軸上點A所表示的數(shù)是-.故答案為:-.【考點】此題主要考查了實數(shù)與數(shù)軸,勾股富士蝗應用,熟練運用勾股定理,同時注意根據(jù)點的位置以確定數(shù)的符號.8、##【解析】【分析】證明△AMC≌△BNC,可得,再根據(jù)三角形三邊關系得出當點N落在線段AB上時,最小,求出最小值即可.【詳解】解:∵線段繞點C順時針旋轉(zhuǎn)得到線段,∴,,∵,,∴,∴△AMC≌△BNC,∴,∵∴的最小值為;故答案為:.【考點】本題考查了全等三角形的判定與性質(zhì),勾股定理,解題關鍵是證明三角形全等,得出,根據(jù)三角形三邊關系取得最小值.三、解答題1、當△ABP為直角三角形時,t=4或.【解析】【分析】當△ABP為直角三角形時,分兩種情況:①當∠APB為直角時,②當∠BAP為直角時,分別求出此時t的值即可.【詳解】在Rt△ABC中,由勾股定理得:,∴BC=4cm,由題意得:BP=tcm.,①當∠APB為直角時,如圖①,點P與點C重合,BP=BC=4cm,∴t=4;②當∠BAP為直角時,如圖②,BP=tcm.CP=(t-4)cm,AC=3cm,在Rt△ACP中,,在Rt△BAP中,,即,解得,答:當△ABP為直角三角形時,t=4或.【考點】本題考查了勾股定理以及直角三角形的知識,解答本題的關鍵是掌握勾股定理的應用,以及分類討論,否則會出現(xiàn)漏解.2、(1)△BDC為直角三角形,理由見解析;(2)△ABC的周長為=cm.【解析】【分析】(1)由BC=10cm,CD=8cm,BD=6cm,知道BC2=BD2+CD2,所以△BDC為直角三角形;(2)由此可求出AC的長,周長即可求出.(1)解:△BDC為直角三角形,理由如下,∵BC=10cm,CD=8cm,BD=6cm,而102=62+82,∴BC2=BD2+CD2.∴△BDC為直角三角形;(2)解:設AB=xcm,∵等腰△ABC,∴AB=AC=x,則AD=x-6,∵AB2=AD2+BD2,即x2=(x-6)2+82,∴x=,∴△ABC的周長=2AB+BC=(cm).【考點】本題考查了勾股定理的逆定理,關鍵是根據(jù)等腰三角形的性質(zhì)、勾股定理以及逆定理的應用解答.3、尺【解析】【分析】設原處還有尺高的竹子,由題意得到折后竹子豎直高度+斜倒部分的長度=18尺,再運用勾股定理列方程即可求解.【詳解】解:設折處離地還有尺高的竹子,如圖,在中,AC=x尺,則AB=一丈八-AC=(18-x)尺由勾股定理得,所以,解得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年高考作文素材積累:名句+文段+角度+話題+人物
- 益生菌飯前吃還是飯后吃好
- 2025年新高二物理暑假專項復習:水平面、豎直面和斜面內(nèi)的圓周運動
- 江蘇省高考數(shù)學二輪復習 專題七 應用題 第2講 解三角形、幾何中的應用題課件-人教版高三全冊數(shù)學課件
- 2026年中考英語復習:任務型閱讀(填表)專項練習題(含答案解析)
- 司馬遷《史記》課件
- 2026新高考物理一輪復習專練:曲線運動運動的合成與分解(試卷+答案解析)
- 2025統(tǒng)編版初升高語文專項提升:文言斷句(解析版)
- 導學案1-等比數(shù)列
- 2026年中考英語專項復習:完形填空 專項練習題匯編(含答案解析)
- 測繪生產(chǎn)安全生產(chǎn)管理制度
- 2024年河北省滄縣事業(yè)單位公開招聘工作人員考試題含答案
- 2025年邵東市招聘社區(qū)工作者模擬試卷附答案詳解ab卷
- 2025至2030嬰兒膳食管理的FSMP行業(yè)產(chǎn)業(yè)運行態(tài)勢及投資規(guī)劃深度研究報告
- 2025年保育員考試試卷以及參考答案
- 商務郵件寫作培訓
- 醫(yī)藥公司團建活動方案
- 橋下渣土處置方案(3篇)
- 2025年 杭州市余杭區(qū)衛(wèi)生健康系統(tǒng)招聘醫(yī)學類專業(yè)畢業(yè)生筆試考試試卷附答案
- 種植基地防疫管理制度
- 關于醫(yī)院“十五五”發(fā)展規(guī)劃(2026-2030)
評論
0/150
提交評論