




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖北省襄陽市樊城區(qū)太平店鎮(zhèn)重點中學2026屆中考聯考數學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,直角坐標平面內有一點,那么與軸正半軸的夾角的余切值為()A.2 B. C. D.2.下列運算正確的是()A.=2 B.4﹣=1 C.=9 D.=23.如圖,等腰三角形ABC底邊BC的長為4cm,面積為12cm2,腰AB的垂直平分線EF交AB于點E,交AC于點F,若D為BC邊上的中點,M為線段EF上一點,則△BDM的周長最小值為()A.5cm B.6cm C.8cm D.10cm4.下列各式中計算正確的是()A.x3?x3=2x6 B.(xy2)3=xy6 C.(a3)2=a5 D.t10÷t9=t5.甲、乙兩人分別以4m/s和5m/s的速度,同時從100m直線型跑道的起點向同一方向起跑,設乙的奔跑時間為t(s),甲乙兩人的距離為S(m),則S關于t的函數圖象為()A. B. C. D.6.如圖所示,有一條線段是()的中線,該線段是().A.線段GH B.線段AD C.線段AE D.線段AF7.如圖,BC∥DE,若∠A=35°,∠E=60°,則∠C等于()A.60° B.35° C.25° D.20°8.如圖是正方體的表面展開圖,則與“前”字相對的字是()A.認 B.真 C.復 D.習9.如圖,在中,,,,點分別在上,于,則的面積為()A. B. C. D.10.一次函數的圖像不經過的象限是:()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題(共7小題,每小題3分,滿分21分)11.計算的結果為_____.12.在函數y=xx13.分解因式:.14.計算:3﹣1﹣30=_____.15.觀察如圖中的數列排放順序,根據其規(guī)律猜想:第10行第8個數應該是_____.16.如圖,一艘海輪位于燈塔P的北偏東方向60°,距離燈塔為4海里的點A處,如果海輪沿正南方向航行到燈塔的正東位置,海輪航行的距離AB長_____海里.17.從﹣2,﹣1,1,2四個數中,隨機抽取兩個數相乘,積為大于﹣4小于2的概率是__.三、解答題(共7小題,滿分69分)18.(10分)計算:()-1+()0+-2cos30°.19.(5分)列方程或方程組解應用題:為響應市政府“綠色出行”的號召,小張上班由自駕車改為騎公共自行車.已知小張家距上班地點10千米.他用騎公共自行車的方式平均每小時行駛的路程比他用自駕車的方式平均每小時行駛的路程少45千米,他從家出發(fā)到上班地點,騎公共自行車方式所用的時間是自駕車方式所用的時間的4倍.小張用騎公共自行車方式上班平均每小時行駛多少千米?20.(8分)為了了解市民“獲取新聞的最主要途徑”,某市記者開展了一次抽樣調查,根據調査結果繪制了如下尚不完整的統(tǒng)計圖:根據以上信息解答下列問題:這次接受調查的市民總人數是_______人;扇形統(tǒng)計圖中,“電視”所對應的圓心角的度數是_________;請補全條形統(tǒng)計圖;若該市約有80萬人,請你估計其中將“電腦和手機上網”作為“獲取新聞的最主要途徑”的總人數.21.(10分)如圖1,在長方形ABCD中,,,點P從A出發(fā),沿的路線運動,到D停止;點Q從D點出發(fā),沿路線運動,到A點停止.若P、Q兩點同時出發(fā),速度分別為每秒、,a秒時P、Q兩點同時改變速度,分別變?yōu)槊棵搿?P、Q兩點速度改變后一直保持此速度,直到停止),如圖2是的面積和運動時間(秒)的圖象.(1)求出a值;(2)設點P已行的路程為,點Q還剩的路程為,請分別求出改變速度后,和運動時間(秒)的關系式;(3)求P、Q兩點都在BC邊上,x為何值時P,Q兩點相距3cm?22.(10分)如圖,一次函數y=﹣x+4的圖象與反比例函數y=(k為常數,且k≠0)的圖象交于A(1,a),B(3,b)兩點.求反比例函數的表達式在x軸上找一點P,使PA+PB的值最小,求滿足條件的點P的坐標求△PAB的面積.23.(12分)按要求化簡:(a﹣1)÷,并選擇你喜歡的整數a,b代入求值.小聰計算這一題的過程如下:解:原式=(a﹣1)÷…①=(a﹣1)?…②=…③當a=1,b=1時,原式=…④以上過程有兩處關鍵性錯誤,第一次出錯在第_____步(填序號),原因:_____;還有第_____步出錯(填序號),原因:_____.請你寫出此題的正確解答過程.24.(14分)如圖,拋物線y=ax2+2x+c與x軸交于A、B(3,0)兩點,與y軸交于點C(0,3).(1)求該拋物線的解析式;(2)在拋物線的對稱軸上是否存在一點Q,使得以A、C、Q為頂點的三角形為直角三角形?若存在,試求出點Q的坐標;若不存在,請說明理由.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】
作PA⊥x軸于點A,構造直角三角形,根據三角函數的定義求解.【詳解】過P作x軸的垂線,交x軸于點A,
∵P(2,4),
∴OA=2,AP=4,.
∴∴.故選B.【點睛】本題考查的知識點是銳角三角函數的定義,解題關鍵是熟記三角函數的定義.2、A【解析】
根據二次根式的性質對A進行判斷;根據二次根式的加減法對B進行判斷;根據二次根式的除法法則對C進行判斷;根據二次根式的乘法法則對D進行判斷.【詳解】A、原式=2,所以A選項正確;B、原式=4-3=,所以B選項錯誤;C、原式==3,所以C選項錯誤;D、原式=,所以D選項錯誤.故選A.【點睛】本題考查了二次根式的混合運算:先把二次根式化為最簡二次根式,然后進行二次根式的乘除運算,再合并即可.在二次根式的混合運算中,如能結合題目特點,靈活運用二次根式的性質,選擇恰當的解題途徑,往往能事半功倍.3、C【解析】
連接AD,由于△ABC是等腰三角形,點D是BC邊的中點,故AD⊥BC,再根據三角形的面積公式求出AD的長,再根據EF是線段AB的垂直平分線可知,點B關于直線EF的對稱點為點A,故AD的長為BM+MD的最小值,由此即可得出結論.【詳解】如圖,連接AD.∵△ABC是等腰三角形,點D是BC邊的中點,∴AD⊥BC,∴S△ABC=BC?AD=×4×AD=12,解得:AD=6(cm).∵EF是線段AB的垂直平分線,∴點B關于直線EF的對稱點為點A,∴AD的長為BM+MD的最小值,∴△BDM的周長最短=(BM+MD)+BD=AD+BC=6+×4=6+2=8(cm).故選C.【點睛】本題考查的是軸對稱﹣最短路線問題,熟知等腰三角形三線合一的性質是解答此題的關鍵.4、D【解析】試題解析:A、原式計算錯誤,故本選項錯誤;B、原式計算錯誤,故本選項錯誤;C、原式計算錯誤,故本選項錯誤;D、原式計算正確,故本選項正確;故選D.點睛:同底數冪相除,底數不變,指數相減.5、B【解析】
勻速直線運動的路程s與運動時間t成正比,s-t圖象是一條傾斜的直線解答.【詳解】∵甲、乙兩人分別以4m/s和5m/s的速度,∴兩人的相對速度為1m/s,設乙的奔跑時間為t(s),所需時間為20s,兩人距離20s×1m/s=20m,故選B.【點睛】此題考查函數圖象問題,關鍵是根據勻速直線運動的路程s與運動時間t成正比解答.6、B【解析】
根據三角形一邊的中點與此邊所對頂點的連線叫做三角形的中線逐一判斷即可得.【詳解】根據三角形中線的定義知:線段AD是△ABC的中線.故選B.【點睛】本題考查了三角形的中線,解題的關鍵是掌握三角形一邊的中點與此邊所對頂點的連線叫做三角形的中線.7、C【解析】
先根據平行線的性質得出∠CBE=∠E=60°,再根據三角形的外角性質求出∠C的度數即可.【詳解】∵BC∥DE,∴∠CBE=∠E=60°,∵∠A=35°,∠C+∠A=∠CBE,∴∠C=∠CBE﹣∠C=60°﹣35°=25°,故選C.【點睛】本題考查了平行線的性質、三角形外角的性質,熟練掌握三角形外角的性質是解題的關鍵.8、B【解析】分析:由平面圖形的折疊以及正方體的展開圖解題,罪域正方體的平面展開圖中相對的面一定相隔一個小正方形.詳解:由圖形可知,與“前”字相對的字是“真”.故選B.點睛:本題考查了正方體的平面展開圖,注意正方體的空間圖形,從相對面入手分析及解答問題.9、C【解析】
先利用三角函數求出BE=4m,同(1)的方法判斷出∠1=∠3,進而得出△ACQ∽△CEP,得出比例式求出PE,最后用面積的差即可得出結論;【詳解】∵,
∴CQ=4m,BP=5m,
在Rt△ABC中,sinB=,tanB=,
如圖2,過點P作PE⊥BC于E,
在Rt△BPE中,PE=BP?sinB=5m×=3m,tanB=,
∴,
∴BE=4m,CE=BC-BE=8-4m,
同(1)的方法得,∠1=∠3,
∵∠ACQ=∠CEP,
∴△ACQ∽△CEP,
∴,∴,
∴m=,
∴PE=3m=,
∴S△ACP=S△ACB-S△PCB=BC×AC-BC×PE=BC(AC-PE)=×8×(6-)=,故選C.【點睛】本題是相似形綜合題,主要考查了相似三角形的判定和性質,三角形的面積的計算方法,判斷出△ACQ∽△CEP是解題的關鍵.10、C【解析】試題分析:根據一次函數y=kx+b(k≠0,k、b為常數)的圖像與性質可知:當k>0,b>0時,圖像過一二三象限;當k>0,b<0時,圖像過一三四象限;當k<0,b>0時,圖像過一二四象限;當k<0,b<0,圖像過二三四象限.這個一次函數的k=<0與b=1>0,因此不經過第三象限.答案為C考點:一次函數的圖像二、填空題(共7小題,每小題3分,滿分21分)11、﹣2【解析】
根據分式的運算法則即可得解.【詳解】原式===,故答案為:.【點睛】本題主要考查了同分母的分式減法,熟練掌握相關計算法則是解決本題的關鍵.12、x≠-3【解析】求函數自變量的取值范圍,就是求函數解析式有意義的條件,根據分式分母不為0的條件,要使xx+3在實數范圍內有意義,必須13、【解析】分析:要將一個多項式分解因式的一般步驟是首先看各項有沒有公因式,若有公因式,則把它提取出來,之后再觀察是否是完全平方公式或平方差公式,若是就考慮用公式法繼續(xù)分解因式.因此,先提取公因式后繼續(xù)應用平方差公式分解即可:.14、﹣.【解析】
原式利用零指數冪、負整數指數冪法則計算即可求出值.【詳解】原式=﹣1=﹣.故答案是:﹣.【點睛】考查了實數的運算,熟練掌握運算法則是解本題的關鍵.15、1【解析】
由n行有n個數,可得出第10行第8個數為第1個數,結合奇數為正偶數為負,即可求出結論.【詳解】解:第1行1個數,第2行2個數,第3行3個數,…,∴第9行9個數,∴第10行第8個數為第1+2+3+…+9+8=1個數.又∵第2n﹣1個數為2n﹣1,第2n個數為﹣2n,∴第10行第8個數應該是1.故答案為:1.【點睛】本題考查了規(guī)律型中數字的變化類,根據數的變化找出變化規(guī)律是解題的關鍵.16、1【解析】分析:首先由方向角的定義及已知條件得出∠NPA=60°,AP=4海里,∠ABP=90°,再由AB∥NP,根據平行線的性質得出∠A=∠NPA=60°.然后解Rt△ABP,得出AB=AP?cos∠A=1海里.詳解:如圖,由題意可知∠NPA=60°,AP=4海里,∠ABP=90°.∵AB∥NP,∴∠A=∠NPA=60°.在Rt△ABP中,∵∠ABP=90°,∠A=60°,AP=4海里,∴AB=AP?cos∠A=4×cos60°=4×=1海里.故答案為1.點睛:本題考查了解直角三角形的應用-方向角問題,平行線的性質,三角函數的定義,正確理解方向角的定義是解題的關鍵.17、1【解析】
列表得出所有等可能結果,從中找到積為大于-4小于2的結果數,根據概率公式計算可得.【詳解】解:列表如下:-2-112-22-2-4-12-1-21-2-122-4-22由表可知,共有12種等可能結果,其中積為大于-4小于2的有6種結果,∴積為大于-4小于2的概率為612=1故答案為:12【點睛】此題考查的是用列表法或樹狀圖法求概率.列表法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;用到的知識點為:概率=所求情況數與總情況數之比.三、解答題(共7小題,滿分69分)18、4+2.【解析】
原式第一項利用負指數冪法則計算,第二項利用零指數冪法則計算,第三項化為最簡二次根式,最后一項利用特殊角的三角函數值計算即可得到結果.【詳解】原式=3+1+3-2×=4+2.19、15千米.【解析】
首先設小張用騎公共自行車方式上班平均每小時行駛x千米,根據題意可得等量關系:騎公共自行車方式所用的時間=自駕車方式所用的時間×4,根據等量關系,列出方程,再解即可.【詳解】:解:設小張用騎公共自行車方式上班平均每小時行駛x千米,根據題意列方程得:=4×解得:x=15,經檢驗x=15是原方程的解且符合實際意義.答:小張用騎公共自行車方式上班平均每小時行駛15千米.20、(1)1000;(2)54°;(3)見解析;(4)32萬人【解析】
根據“每項人數=總人數×該項所占百分比”,“所占角度=360度×該項所占百分比”來列出式子,即可解出答案.【詳解】解:(1)400÷40%=1000(人)(2)360°×=54°,故答案為:1000人;
54°
;(3)1-10%-9%-26%-40%=15%15%×1000=150(人)(4)80×=52.8(萬人)答:總人數為52.8萬人.【點睛】本題考查獲取圖表信息的能力,能夠根據圖表找到必要條件是解題關鍵.21、(1)6;(2);;(3)10或;【解析】
(1)根據圖象變化確定a秒時,P點位置,利用面積求a;(2)P、Q兩點的函數關系式都是在運動6秒的基礎上得到的,因此注意在總時間內減去6秒;(3)以(2)為基礎可知,兩個點相距3cm分為相遇前相距或相遇后相距,因此由(2)可列方程.【詳解】(1)由圖象可知,當點P在BC上運動時,△APD的面積保持不變,則a秒時,點P在AB上.,∴AP=6,則a=6;(2)由(1)6秒后點P變速,則點P已行的路程為y1=6+2(x﹣6)=2x﹣6,∵Q點路程總長為34cm,第6秒時已經走12cm,故點Q還剩的路程為y2=34﹣12﹣;(3)當P、Q兩點相遇前相距3cm時,﹣(2x﹣6)=3,解得x=10,當P、Q兩點相遇后相距3cm時,(2x﹣6)﹣()=3,解得x=,∴當x=10或時,P、Q兩點相距3cm【點睛】本題是雙動點問題,解答時應注意分析圖象的變化與動點運動位置之間的關系.列函數關系式時,要考慮到時間x的連續(xù)性才能直接列出函數關系式.22、(1)反比例函數的表達式y(tǒng)=,(2)點P坐標(,0),(3)S△PAB=1.1.【解析】(1)把點A(1,a)代入一次函數中可得到A點坐標,再把A點坐標代入反比例解析式中即可得到反比例函數的表達式;(2)作點D關于x軸的對稱點D,連接AD交x軸于點P,此時PA+PB的值最小.由B可知D點坐標,再由待定系數法求出直線AD的解析式,即可得到點P的坐標;(3)由S△PAB=S△ABD﹣S△PBD即可求出△PAB的面積.解:(1)把點A(1,a)代入一次函數y=﹣x+4,得a=﹣1+4,
解得a=3,
∴A(1,3),
點A(1,3)代入反比例函數y=,
得k=3,
∴反比例函數的表達式y(tǒng)=,
(2)把B(3,b)代入y=得,b=1∴點B坐標(3,1);作點B作關于x軸的對稱點D,交x軸于點C,連接AD,交x軸于點P,此時PA+PB的值最小,
∴D(3,﹣1),設直線AD的解析式為y=mx+n,
把A,D兩點代入得,,
解得m=﹣2,n=1,
∴直線AD的解析式為y=﹣2x+1,令y=0,得x=,
∴點P坐標(,0),(3)S△PAB=S△ABD﹣S△PBD=×2×2﹣×2×=2﹣=1.1.點晴:本題是一道一次函數與反比例函數的綜合題,并與幾何圖形結合在一起來求有關于最值方面的問題.此類問題的重點是在于通過待定系數法求出函數圖象的解析式,再通過函數解析式反過來求坐標,為接下來求面積做好鋪墊.23、①,運算順序錯誤;④,a等于1時,原式無意義.【解析】
由于乘法和除法是同級運算,應當按照從左向右的順序計算,①運算順序錯誤;④當a=1時,等于0,原式無意義.【詳解】①運算順序錯誤;故答案為①,運算順序錯誤;④當a=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 期末演練卷(含解析)-數學八年級下冊北師大版
- 光纖在生物識別中的生物識別系統(tǒng)成本效益分析技術考核試卷
- 保險產品銷售路徑優(yōu)化考核試卷
- 濃度問題(含解析)-人教版六年級數學下冊
- 化學反應速率 同步練習-人教版高中化學選擇性必修1
- 2020年成人高考專升本教育理論心理健康綜合應用
- 湖南省邵陽市新邵縣2024-2025學年七年級下學期期末檢測地理試題(含答案)
- 2025至2030年中國裝飾金融市場前景預測及投資規(guī)劃研究報告
- 對伊利股份有限公司財務報表的分析研究 財務會計學專業(yè)
- 2025至2030年中國脫硫石膏行業(yè)市場全景評估及投資前景展望報告
- 2025年成都水務考試題庫
- 2025年云計算測試題庫及答案
- 2025年保密觀原題附答案
- (標準)電站轉讓合同協(xié)議書模板
- 2025年中小學校長選拔筆試試題及參考答案
- 工程網格化安全管理制度
- 航空物流行業(yè)發(fā)展報告
- (高清版)DB3709∕T 041-2025 仁用酸棗栽培技術規(guī)程
- 電子廠生產安全培訓
- 2025至2030全球及中國先進過程控制(APC)軟件行業(yè)項目調研及市場前景預測評估報告
- 商業(yè)視角下的教育數字化轉型與零碳校園構建
評論
0/150
提交評論