七年級(jí)數(shù)學(xué)下冊(cè)期末幾何壓軸題考試題及答案(二)培優(yōu)試題_第1頁
七年級(jí)數(shù)學(xué)下冊(cè)期末幾何壓軸題考試題及答案(二)培優(yōu)試題_第2頁
七年級(jí)數(shù)學(xué)下冊(cè)期末幾何壓軸題考試題及答案(二)培優(yōu)試題_第3頁
七年級(jí)數(shù)學(xué)下冊(cè)期末幾何壓軸題考試題及答案(二)培優(yōu)試題_第4頁
七年級(jí)數(shù)學(xué)下冊(cè)期末幾何壓軸題考試題及答案(二)培優(yōu)試題_第5頁
已閱讀5頁,還剩38頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

一、解答題1.對(duì)于平面直角坐標(biāo)系xOy中的圖形G和圖形G上的任意點(diǎn)P(x,y),給出如下定義:將點(diǎn)P(x,y)平移到P'(x+t,y﹣t)稱為將點(diǎn)P進(jìn)行“t型平移”,點(diǎn)P'稱為將點(diǎn)P進(jìn)行“t型平移”的對(duì)應(yīng)點(diǎn);將圖形G上的所有點(diǎn)進(jìn)行“t型平移”稱為將圖形G進(jìn)行“t型平移”.例如,將點(diǎn)P(x,y)平移到P'(x+1,y﹣1)稱為將點(diǎn)P進(jìn)行“l(fā)型平移”,將點(diǎn)P(x,y)平移到P'(x﹣1,y+1)稱為將點(diǎn)P進(jìn)行“﹣l型平移”.已知點(diǎn)A(2,1)和點(diǎn)B(4,1).(1)將點(diǎn)A(2,1)進(jìn)行“l(fā)型平移”后的對(duì)應(yīng)點(diǎn)A'的坐標(biāo)為.(2)①將線段AB進(jìn)行“﹣l型平移”后得到線段A'B',點(diǎn)P1(1.5,2),P2(2,3),P3(3,0)中,在線段A′B′上的點(diǎn)是.②若線段AB進(jìn)行“t型平移”后與坐標(biāo)軸有公共點(diǎn),則t的取值范圍是.(3)已知點(diǎn)C(6,1),D(8,﹣1),點(diǎn)M是線段CD上的一個(gè)動(dòng)點(diǎn),將點(diǎn)B進(jìn)行“t型平移”后得到的對(duì)應(yīng)點(diǎn)為B',當(dāng)t的取值范圍是時(shí),B'M的最小值保持不變.2.已知直線,點(diǎn)P為直線、所確定的平面內(nèi)的一點(diǎn).(1)如圖1,直接寫出、、之間的數(shù)量關(guān)系;(2)如圖2,寫出、、之間的數(shù)量關(guān)系,并證明;(3)如圖3,點(diǎn)E在射線上,過點(diǎn)E作,作,點(diǎn)G在直線上,作的平分線交于點(diǎn)H,若,,求的度數(shù).3.問題情境:如圖1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC的度數(shù).小明的思路是:過P作PE∥AB,通過平行線性質(zhì),可得∠APC=∠APE+∠CPE=50°+60°=110°.問題解決:(1)如圖2,AB∥CD,直線l分別與AB、CD交于點(diǎn)M、N,點(diǎn)P在直線I上運(yùn)動(dòng),當(dāng)點(diǎn)P在線段MN上運(yùn)動(dòng)時(shí)(不與點(diǎn)M、N重合),∠PAB=α,∠PCD=β,判斷∠APC、α、β之間的數(shù)量關(guān)系并說明理由;(2)在(1)的條件下,如果點(diǎn)P在線段MN或NM的延長線上運(yùn)動(dòng)時(shí).請(qǐng)直接寫出∠APC、α、B之間的數(shù)量關(guān)系;(3)如圖3,AB∥CD,點(diǎn)P是AB、CD之間的一點(diǎn)(點(diǎn)P在點(diǎn)A、C右側(cè)),連接PA、PC,∠BAP和∠DCP的平分線交于點(diǎn)Q.若∠APC=116°,請(qǐng)結(jié)合(2)中的規(guī)律,求∠AQC的度數(shù).4.已知:如圖(1)直線AB、CD被直線MN所截,∠1=∠2.(1)求證:AB//CD;(2)如圖(2),點(diǎn)E在AB,CD之間的直線MN上,P、Q分別在直線AB、CD上,連接PE、EQ,PF平分∠BPE,QF平分∠EQD,則∠PEQ和∠PFQ之間有什么數(shù)量關(guān)系,請(qǐng)直接寫出你的結(jié)論;(3)如圖(3),在(2)的條件下,過P點(diǎn)作PH//EQ交CD于點(diǎn)H,連接PQ,若PQ平分∠EPH,∠QPF:∠EQF=1:5,求∠PHQ的度數(shù).5.(1)(問題)如圖1,若,,.求的度數(shù);(2)(問題遷移)如圖2,,點(diǎn)在的上方,問,,之間有何數(shù)量關(guān)系?請(qǐng)說明理由;(3)(聯(lián)想拓展)如圖3所示,在(2)的條件下,已知,的平分線和的平分線交于點(diǎn),用含有的式子表示的度數(shù).6.如圖,直線AB∥直線CD,線段EF∥CD,連接BF、CF.(1)求證:∠ABF+∠DCF=∠BFC;(2)連接BE、CE、BC,若BE平分∠ABC,BE⊥CE,求證:CE平分∠BCD;(3)在(2)的條件下,G為EF上一點(diǎn),連接BG,若∠BFC=∠BCF,∠FBG=2∠ECF,∠CBG=70°,求∠FBE的度數(shù).7.據(jù)說,我國著名數(shù)學(xué)家華羅庚在一次訪問途中,看到飛機(jī)鄰座的乘客閱讀的雜志上有一道智力題:一個(gè)數(shù)32768,它是一個(gè)正數(shù)的立方,希望求它的立方根,華羅庚不假思索給出了答案,鄰座乘客非常驚奇,很想得知其中的奧秘,你知道華羅庚是怎樣準(zhǔn)確計(jì)算出的嗎?請(qǐng)按照下面的問題試一試:(1)由,因?yàn)椋?qǐng)確定是______位數(shù);(2)由32768的個(gè)位上的數(shù)是8,請(qǐng)確定的個(gè)位上的數(shù)是________,劃去32768后面的三位數(shù)768得到32,因?yàn)?,?qǐng)確定的十位上的數(shù)是_____________(3)已知13824和分別是兩個(gè)數(shù)的立方,仿照上面的計(jì)算過程,請(qǐng)計(jì)算:=____;8.若一個(gè)四位數(shù)t的前兩位數(shù)字相同且各位數(shù)字均不為0,則稱這個(gè)數(shù)為“前介數(shù)”;若把這個(gè)數(shù)的個(gè)位數(shù)字放到前三位數(shù)字組成的數(shù)的前面組成一個(gè)新的四位數(shù),則稱這個(gè)新的四位數(shù)為“中介數(shù)”;記一個(gè)“前介數(shù)”t與它的“中介數(shù)”的差為P(t).例如,5536前兩位數(shù)字相同,所以5536為“前介數(shù)”;則6553就為它的“中介數(shù)”,P(5536)=5536﹣6553=-1017.(1)P(2215)=,P(6655)=.(2)求證:任意一個(gè)“前介數(shù)”t,P(t)一定能被9整除.(3)若一個(gè)千位數(shù)字為2的“前介數(shù)”t能被6整除,它的“中介數(shù)”能被2整除,請(qǐng)求出滿足條件的P(t)的最大值.9.我們知道,任意一個(gè)正整數(shù)都可以進(jìn)行這樣的分解:(,是正整數(shù),且),在的所有這種分解中,如果,兩因數(shù)之差的絕對(duì)值最小,我們就稱是的最佳分解,并規(guī)定:.例如:可分解成,或,因?yàn)?,所以是的最佳分解,所以?)填空:;;(2)一個(gè)兩位正整數(shù)(,,,為正整數(shù)),交換其個(gè)位上的數(shù)字與十位上的數(shù)字得到的新數(shù)減去原數(shù)所得的差為,求出所有的兩位正整數(shù);并求的最大值;(3)填空:①;②;10.a(chǎn)是不為1的有理數(shù),我們把稱為a的差倒數(shù).如:2的差倒數(shù)是,現(xiàn)已知a1=,a2是a1的差倒數(shù),a3是a2的差倒數(shù),a4是a3的差倒數(shù),…(1)求a2,a3,a4的值;(2)根據(jù)(1)的計(jì)算結(jié)果,請(qǐng)猜想并寫出a2016?a2017?a2018的值;(3)計(jì)算:a33+a66+a99+…+a9999的值.11.閱讀材料:求值:,解答:設(shè),將等式兩邊同時(shí)乘2得:,將得:,即.請(qǐng)你類比此方法計(jì)算:.其中n為正整數(shù)12.如果有一列數(shù),從這列數(shù)的第2個(gè)數(shù)開始,每一個(gè)數(shù)與它的前一個(gè)數(shù)的比等于同一個(gè)非零的常數(shù),這樣的一列數(shù)就叫做等比數(shù)列(GeometricSequences).這個(gè)常數(shù)叫做等比數(shù)列的公比,通常用字母q表示(q≠0).(1)觀察一個(gè)等比列數(shù)1,,…,它的公比q=;如果an(n為正整數(shù))表示這個(gè)等比數(shù)列的第n項(xiàng),那么a18=,an=;(2)如果欲求1+2+4+8+16+…+230的值,可以按照如下步驟進(jìn)行:令S=1+2+4+8+16+…+230…①等式兩邊同時(shí)乘以2,得2S=2+4+8+16++32+…+231…②由②﹣①式,得2S﹣S=231﹣1即(2﹣1)S=231﹣1所以請(qǐng)根據(jù)以上的解答過程,求3+32+33+…+323的值;(3)用由特殊到一般的方法探索:若數(shù)列a1,a2,a3,…,an,從第二項(xiàng)開始每一項(xiàng)與前一項(xiàng)之比的常數(shù)為q,請(qǐng)用含a1,q,n的代數(shù)式表示an;如果這個(gè)常數(shù)q≠1,請(qǐng)用含a1,q,n的代數(shù)式表示a1+a2+a3+…+an.13.如圖1在平面直角坐標(biāo)系中,大正方形OABC的邊長為m厘米,小正方形ODEF的邊長為n厘米,且|m﹣4|+=0.(1)求點(diǎn)B、點(diǎn)D的坐標(biāo).(2)起始狀態(tài)如圖1所示,將大正方形固定不動(dòng),小正方形以1厘米/秒的速度沿x軸向右平移,如圖2.設(shè)平移的時(shí)間為t秒,在平移過程中兩個(gè)正方形重疊部分的面積為S平方厘米.①當(dāng)t=1.5時(shí),S=平方厘米;②在2≤t≤4這段時(shí)間內(nèi),小正方形的一條對(duì)角線掃過的圖形的面積為平方厘米;③在小正方形平移過程中,若S=2,則小正方形平移的時(shí)間t為秒.(3)將大正方形固定不動(dòng),小正方形從圖1中起始狀態(tài)沿x軸向右平移,在平移過程中,連接AD,過D點(diǎn)作DM⊥AD交直線BC于M,∠DAx的角平分線所在直線和∠CMD的角平分線所在直線交于N(不考慮N點(diǎn)與A點(diǎn)重合的情形),求∠ANM的大小并說明理由.14.已知點(diǎn)C在射線OA上.(1)如圖①,CDOE,若∠AOB=90°,∠OCD=120°,求∠BOE的度數(shù);(2)在①中,將射線OE沿射線OB平移得O′E'(如圖②),若∠AOB=α,探究∠OCD與∠BO′E′的關(guān)系(用含α的代數(shù)式表示)(3)在②中,過點(diǎn)O′作OB的垂線,與∠OCD的平分線交于點(diǎn)P(如圖③),若∠CPO′=90°,探究∠AOB與∠BO′E′的關(guān)系.15.如圖1,點(diǎn)是第二象限內(nèi)一點(diǎn),軸于,且是軸正半軸上一點(diǎn),是x軸負(fù)半軸上一點(diǎn),且.(1)(),()(2)如圖2,設(shè)為線段上一動(dòng)點(diǎn),當(dāng)時(shí),的角平分線與的角平分線的反向延長線交于點(diǎn),求的度數(shù):(注:三角形三個(gè)內(nèi)角的和為)(3)如圖3,當(dāng)點(diǎn)在線段上運(yùn)動(dòng)時(shí),作交于的平分線交于,當(dāng)點(diǎn)在運(yùn)動(dòng)的過程中,的大小是否變化?若不變,求出其值;若變化,請(qǐng)說明理由.16.某水果店到水果批發(fā)市場采購蘋果,師傅看中了甲、乙兩家某種品質(zhì)一樣的蘋果,零售價(jià)都為8元/千克,批發(fā)價(jià)各不相同,甲家規(guī)定:批發(fā)數(shù)量不超過100千克,全部按零價(jià)的九折優(yōu)惠;批發(fā)數(shù)量超過100千克全部按零售價(jià)的八五折優(yōu)惠,乙家的規(guī)定如下表:數(shù)量范圍(千克)不超過50的部分50以上但不超過150的部分150以上的部分價(jià)格(元)零售價(jià)的95%零售價(jià)的85%零售價(jià)的75%(1)如果師傅要批發(fā)240千克蘋果選擇哪家批發(fā)更優(yōu)惠?(2)設(shè)批發(fā)x千克蘋果(),問師傅應(yīng)怎樣選擇兩家批發(fā)商所花費(fèi)用更少?17.如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn),其中滿足,D為直線AB與軸的交點(diǎn),C為線段AB上一點(diǎn),其縱坐標(biāo)為.(1)求的值;(2)當(dāng)為何值時(shí),和面積的相等;(3)若點(diǎn)C坐標(biāo)為(-2,1),點(diǎn)M(m,-3)在第三象限內(nèi),滿足,求m的取值范圍.(注:表示的面積)18.在平面直角坐標(biāo)系中,點(diǎn),的坐標(biāo)分別為,,現(xiàn)將線段先向上平移3個(gè)單位,再向右平移1個(gè)單位,得到線段,連接,.(1)如圖1,求點(diǎn),的坐標(biāo)及四邊形的面積;圖1(2)如圖1,在軸上是否存在點(diǎn),連接,,使?若存在這樣的點(diǎn),求出點(diǎn)的坐標(biāo);若不存在,試說明理由;(3)如圖2,在直線上是否存在點(diǎn),連接,使?若存在這樣的點(diǎn),直接寫出點(diǎn)的坐標(biāo);若不存在,試說明理由.圖2(4)在坐標(biāo)平面內(nèi)是否存在點(diǎn),使?若存在這樣的點(diǎn),直接寫出點(diǎn)的坐標(biāo)的規(guī)律;若不存在,請(qǐng)說明理由.19.題目:滿足方程組的x與y的值的和是2,求k的值.按照常規(guī)方法,順著題目思路解關(guān)于x,y的二元一次方程組,分別求出xy的值(含有字母k),再由x+y=2,構(gòu)造關(guān)于k的方程求解,從而得出k值.(1)某數(shù)學(xué)興趣小組對(duì)本題的解法又進(jìn)行了探究利用整體思想,對(duì)于方程組中每個(gè)方程變形得到“x+y”這個(gè)整體,或者對(duì)方程組的兩個(gè)方程進(jìn)行加減變形得到“x+y”整體值,從而求出k值請(qǐng)你運(yùn)用這種整體思想的方法,完成題目的解答過程.(2)小勇同學(xué)的解答是:觀察方程①,令3x=k,5y=1解得y=,3x+y=2,∴x=∴k=3×=把x=,y=代入方程②得k=﹣所以k的值為或﹣.請(qǐng)?jiān)\斷分析并評(píng)價(jià)“小勇同學(xué)的解答”.20.某校規(guī)劃在一塊長AD為18m、寬AB為13m的長方形場地ABCD上,設(shè)計(jì)分別與AD,AB平行的橫向通道和縱向通道,其余部分鋪上草皮,如圖所示,若設(shè)計(jì)三條通道,一條橫向,兩條縱向,且它們的寬度相等,其余六塊草坪相同,其中一塊草坪兩邊之比AM∶AN=8∶9,問通道的寬是多少?21.每年的6月5日為世界環(huán)保日,為提倡低碳環(huán)保,某公司決定購買10臺(tái)節(jié)省能源的新機(jī)器,現(xiàn)有甲、乙兩種型號(hào)的機(jī)器可選,其中每臺(tái)的價(jià)格、產(chǎn)量如下表:甲型機(jī)器乙型機(jī)器價(jià)格(萬元/臺(tái))ab產(chǎn)量(噸/月)240180經(jīng)調(diào)查:購買一臺(tái)甲型機(jī)器比購買一臺(tái)乙型機(jī)器多12萬元,購買2臺(tái)甲型機(jī)器比購買3臺(tái)乙型機(jī)器多6萬元.(1)求a、b的值;(2)若該公司購買新機(jī)器的資金不超過216萬元,請(qǐng)問該公司有哪幾種購買方案?(3)在(2)的條件下,若公司要求每月的產(chǎn)量不低于1890噸,請(qǐng)你為該公司設(shè)計(jì)一種最省錢的購買方案.22.某公園的門票價(jià)格如下表所示:某中學(xué)七年級(jí)(1)、(2)兩個(gè)班計(jì)劃去游覽該公園,其中(I)班的人數(shù)較少,不足50人;(2)班人數(shù)略多,有50多人.如果兩個(gè)班都以班為單位分別購票,則一共應(yīng)付1172元,如果兩個(gè)班聯(lián)合起來,作為一個(gè)團(tuán)體購票,則需付1078元.(1)列方程求出兩個(gè)班各有多少學(xué)生;(2)如果兩個(gè)班聯(lián)合起來買票,是否可以買單價(jià)為9元的票?你有什么省錢的方法來幫他們買票呢?請(qǐng)給出最省錢的方案.23.如圖①,在平面直角坐標(biāo)系中,點(diǎn)A在x軸上,直線OC上所有的點(diǎn)坐標(biāo),都是二元一次方程的解,直線AC上所有的點(diǎn)坐標(biāo),都是二元一次方程的解,過C作x軸的平行線,交y軸與點(diǎn)B.(1)求點(diǎn)A、B、C的坐標(biāo);(2)如圖②,點(diǎn)M、N分別為線段BC,OA上的兩個(gè)動(dòng)點(diǎn),點(diǎn)M從點(diǎn)C以每秒1個(gè)單位長度的速度向左運(yùn)動(dòng),同時(shí)點(diǎn)N從點(diǎn)O以每秒1.5個(gè)單位長度的速度向右運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,且0<t<4,試比較四邊形MNAC的面積與四邊形MNOB的面積的大?。?4.某治污公司決定購買10臺(tái)污水處理設(shè)備.現(xiàn)有甲、乙兩種型號(hào)的設(shè)備可供選擇,其中每臺(tái)的價(jià)格與月處理污水量如下表:甲型乙型價(jià)格(萬元/臺(tái))xy處理污水量(噸/月)300260經(jīng)調(diào)查:購買一臺(tái)甲型設(shè)備比購買一臺(tái)乙型設(shè)備多2萬元,購買3臺(tái)甲型設(shè)備比購買4臺(tái)乙型設(shè)備少2萬元.(1)求x,y的值;(2)如果治污公司購買污水處理設(shè)備的資金不超過91萬元,求該治污公司有哪幾種購買方案;(3)在(2)的條件下,如果月處理污水量不低于2750噸,為了節(jié)約資金,請(qǐng)為該公司設(shè)計(jì)一種最省錢的購買方案.25.對(duì)x,y定義一種新運(yùn)算T,規(guī)定:T(x,y)=ax+2by﹣1(其中a、b均為非零常數(shù)),這里等式右邊是通常的四則運(yùn)算,例如:T(0,1)=a?0+2b?1﹣1=2b﹣1.(1)已知T(1,﹣1)=﹣2,T(4,2)=3.①求a,b的值;②若關(guān)于m的不等式組恰好有2個(gè)整數(shù)解,求實(shí)數(shù)p的取值范圍;(2)若T(x,y)=T(y,x)對(duì)任意實(shí)數(shù)x,y都成立(這里T(x,y)和T(y,x)均有意義),則a,b應(yīng)滿足怎樣的關(guān)系式?26.某小區(qū)準(zhǔn)備新建個(gè)停車位,以解決小區(qū)停車難的問題.已知新建個(gè)地上停車位和個(gè)地下停車位共需萬元:新建個(gè)地上停車位和個(gè)地下停車位共需萬元,(1)該小區(qū)新建個(gè)地上停車位和個(gè)地下停車位各需多少萬元?(2)若該小區(qū)新建車位的投資金額超過萬元而不超過萬元,問共有幾種建造方案?(3)對(duì)(2)中的幾種建造方案中,哪種方案的投資最少?并求出最少投資金額.27.對(duì)、定義了一種新運(yùn)算T,規(guī)定(其中,均為非零常數(shù)),這里等式右邊是通常的四則運(yùn)算,例如:,已知,.(1)求,的值;(2)求.(3)若關(guān)于的不等式組恰好有4個(gè)整數(shù)解,求的取值范圍.28.閱讀材料:如果x是一個(gè)有理數(shù),我們把不超過x的最大整數(shù)記作.例如,,,,那么,,其中.例如,,,.請(qǐng)你解決下列問題:(1)__________,__________;(2)如果,那么x的取值范圍是__________;(3)如果,那么x的值是__________;(4)如果,其中,且,求x的值.29.如圖1,在平面直角坐標(biāo)系中,點(diǎn)A為x軸負(fù)半軸上一點(diǎn),點(diǎn)B為x軸正半軸上一點(diǎn),,,其中a、b滿足關(guān)系式:.______,______,的面積為______;如圖2,石于點(diǎn)C,點(diǎn)P是線段OC上一點(diǎn),連接BP,延長BP交AC于點(diǎn)當(dāng)時(shí),求證:BP平分;提示:三角形三個(gè)內(nèi)角和等于如圖3,若,點(diǎn)E是點(diǎn)A與點(diǎn)B之間上一點(diǎn)連接CE,且CB平分問與有什么數(shù)量關(guān)系?請(qǐng)寫出它們之間的數(shù)量關(guān)系并請(qǐng)說明理由.30.我區(qū)防汛指揮部在一河道的危險(xiǎn)地帶兩岸各安置一探照燈,便于夜間查看江水及兩岸河堤的情況.如圖1,燈光射線自順時(shí)針旋轉(zhuǎn)至便立即逆時(shí)針旋轉(zhuǎn)至,如此循環(huán)燈光射線自順時(shí)針旋轉(zhuǎn)至便立即逆時(shí)針旋轉(zhuǎn)至,如此循環(huán).兩燈交叉照射且不間斷巡視.若燈轉(zhuǎn)動(dòng)的速度是度/秒,燈轉(zhuǎn)動(dòng)的速度是度/秒,且,滿足.若這一帶江水兩岸河堤相互平行,即,且.根據(jù)相關(guān)信息,解答下列問題.(1)__________,__________.(2)若燈的光射線先轉(zhuǎn)動(dòng)24秒,燈的光射線才開始轉(zhuǎn)動(dòng),在燈的光射線到達(dá)之前,燈轉(zhuǎn)動(dòng)幾秒,兩燈的光射線互相平行?(3)如圖2,若兩燈同時(shí)開始轉(zhuǎn)動(dòng)照射,在燈的光射線到達(dá)之前,若兩燈射出的光射線交于點(diǎn),過點(diǎn)作交于點(diǎn),則在轉(zhuǎn)動(dòng)的過程中,與間的數(shù)量關(guān)系是否發(fā)生變化?若不變,請(qǐng)求出這兩角間的數(shù)量關(guān)系;若改變,請(qǐng)求出各角的取值范圍.【參考答案】***試卷處理標(biāo)記,請(qǐng)不要?jiǎng)h除一、解答題1.(1)(3,0);(2)①P1;②或;(3)【分析】(1)根據(jù)“l(fā)型平移”的定義解決問題即可.(2)①畫出線段A1B1即可判斷.②根據(jù)定義求出t最大值,最小值即可判斷.(3)如圖2中,觀察圖象可知,當(dāng)B′在線段B′B″上時(shí),B'M的最小值保持不變,最小值為.【詳解】(1)將點(diǎn)A(2,1)進(jìn)行“l(fā)型平移”后的對(duì)應(yīng)點(diǎn)A'的坐標(biāo)為(3,0),故答案為:(3,0);(2)①如圖1中,觀察圖象可知,將線段AB進(jìn)行“﹣l型平移”后得到線段A'B',點(diǎn)P1(1.5,2),P2(2,3),P3(3,0)中,在線段A′B′上的點(diǎn)是P1,故答案為:P1;②若線段AB進(jìn)行“t型平移”后與坐標(biāo)軸有公共點(diǎn),則t的取值范圍是﹣4≤t≤﹣2或t=1.故答案為:﹣4≤t≤﹣2或t=1.(3)如圖2中,觀察圖象可知,當(dāng)B′在線段B′B″上時(shí),B'M的最小值保持不變,最小值為,此時(shí)1≤t≤3.故答案為:1≤t≤3.【點(diǎn)睛】本題屬于幾何變換綜合題,考查了平移變換,“t型平移”的定義等知識(shí),解題的關(guān)鍵理解題意,靈活運(yùn)用所學(xué)知識(shí)解決問題,學(xué)會(huì)利用圖象法解決問題,屬于中考創(chuàng)新題型.2.(1)∠A+∠C+∠APC=360°;(2)見解析;(3)55°【分析】(1)首先過點(diǎn)P作PQ∥AB,則易得AB∥PQ∥CD,然后由兩直線平行,同旁內(nèi)角互補(bǔ),即可證得∠A+∠C+∠APC=360°;(2)作PQ∥AB,易得AB∥PQ∥CD,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等,即可證得∠APC=∠A+∠C;(3)由(2)知,∠APC=∠PAB-∠PCD,先證∠BEF=∠PQB=110°、∠PEG=∠FEG,∠GEH=∠BEG,根據(jù)∠PEH=∠PEG-∠GEH可得答案.【詳解】解:(1)∠A+∠C+∠APC=360°如圖1所示,過點(diǎn)P作PQ∥AB,∴∠A+∠APQ=180°,∵AB∥CD,∴PQ∥CD,∴∠C+∠CPQ=180°,∴∠A+∠APQ+∠C+∠CPQ=360°,即∠A+∠C+∠APC=360°;(2)∠APC=∠A+∠C,如圖2,作PQ∥AB,∴∠A=∠APQ,∵AB∥CD,∴PQ∥CD,∴∠C=∠CPQ,∵∠APC=∠APQ-∠CPQ,∴∠APC=∠A-∠C;(3)由(2)知,∠APC=∠PAB-∠PCD,∵∠APC=30°,∠PAB=140°,∴∠PCD=110°,∵AB∥CD,∴∠PQB=∠PCD=110°,∵EF∥BC,∴∠BEF=∠PQB=110°,∵EF∥BC,∴∠BEF=∠PQB=110°,∵∠PEG=∠PEF,∴∠PEG=∠FEG,∵EH平分∠BEG,∴∠GEH=∠BEG,∴∠PEH=∠PEG-∠GEH=∠FEG-∠BEG=∠BEF=55°.【點(diǎn)睛】此題考查了平行線的性質(zhì)以及角平分線的定義.此題難度適中,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想的應(yīng)用.3.(1)∠APC=α+β,理由見解析;(2)∠APC=α-β或∠APC=β-α;(3)58°【分析】(1)過點(diǎn)P作PE∥AB,根據(jù)平行線的判定與性質(zhì)即可求解;(2)分點(diǎn)P在線段MN或NM的延長線上運(yùn)動(dòng)兩種情況,根據(jù)平行線的判定與性質(zhì)及角的和差即可求解;(3)過點(diǎn)P,Q分別作PE∥AB,QF∥AB,根據(jù)平行線的判定與性質(zhì)及角的和差即可求解.【詳解】解:(1)如圖2,過點(diǎn)P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠APE=α,∠CPE=β,∴∠APC=∠APE+∠CPE=α+β.(2)如圖,在(1)的條件下,如果點(diǎn)P在線段MN的延長線上運(yùn)動(dòng)時(shí),∵AB∥CD,∠PAB=α,∴∠1=∠PAB=α,∵∠1=∠APC+∠PCD,∠PCD=β,∴α=∠APC+β,∴∠APC=α-β;如圖,在(1)的條件下,如果點(diǎn)P在線段NM的延長線上運(yùn)動(dòng)時(shí),∵AB∥CD,∠PCD=β,∴∠2=∠PCD=β,∵∠2=∠PAB+∠APC,∠PAB=α,∴β=α+∠APC,∴∠APC=β-α;(3)如圖3,過點(diǎn)P,Q分別作PE∥AB,QF∥AB,∵AB∥CD,∴AB∥QF∥PE∥CD,∴∠BAP=∠APE,∠PCD=∠EPC,∵∠APC=116°,∴∠BAP+∠PCD=116°,∵AQ平分∠BAP,CQ平分∠PCD,∴∠BAQ=∠BAP,∠DCQ=∠PCD,∴∠BAQ+∠DCQ=(∠BAP+∠PCD)=58°,∵AB∥QF∥CD,∴∠BAQ=∠AQF,∠DCQ=∠CQF,∴∠AQF+∠CQF=∠BAQ+∠DCQ=58°,∴∠AQC=58°.【點(diǎn)睛】此題考查了平行線的判定與性質(zhì),添加輔助線將兩條平行線相關(guān)的角聯(lián)系到一起是解題的關(guān)鍵.4.(1)見解析;(2)∠PEQ+2∠PFQ=360°;(3)30°【分析】(1)首先證明∠1=∠3,易證得AB//CD;(2)如圖2中,∠PEQ+2∠PFQ=360°.作EH//AB.理由平行線的性質(zhì)即可證明;(3)如圖3中,設(shè)∠QPF=y(tǒng),∠PHQ=x.∠EPQ=z,則∠EQF=∠FQH=5y,想辦法構(gòu)建方程即可解決問題;【詳解】(1)如圖1中,∵∠2=∠3,∠1=∠2,∴∠1=∠3,∴AB//CD.(2)結(jié)論:如圖2中,∠PEQ+2∠PFQ=360°.理由:作EH//AB.∵AB//CD,EH//AB,∴EH//CD,∴∠1=∠2,∠3=∠4,∴∠2+∠3=∠1+∠4,∴∠PEQ=∠1+∠4,同法可證:∠PFQ=∠BPF+∠FQD,∵∠BPE=2∠BPF,∠EQD=2∠FQD,∠1+∠BPE=180°,∠4+∠EQD=180°,∴∠1+∠4+∠EQD+∠BPE=2×180°,即∠PEQ+2(∠FQD+∠BPF)=360°,∴∠PEQ+2∠PFQ=360°.(3)如圖3中,設(shè)∠QPF=y(tǒng),∠PHQ=x.∠EPQ=z,則∠EQF=∠FQH=5y,∵EQ//PH,∴∠EQC=∠PHQ=x,∴x+10y=180°,∵AB//CD,∴∠BPH=∠PHQ=x,∵PF平分∠BPE,∴∠EPQ+∠FPQ=∠FPH+∠BPH,∴∠FPH=y(tǒng)+z﹣x,∵PQ平分∠EPH,∴Z=y(tǒng)+y+z﹣x,∴x=2y,∴12y=180°,∴y=15°,∴x=30°,∴∠PHQ=30°.【點(diǎn)睛】本題考查了平行線的判定與性質(zhì),角平分線的定義等知識(shí).(2)中能正確作出輔助線是解題的關(guān)鍵;(3)中能熟練掌握相關(guān)性質(zhì),找到角度之間的關(guān)系是解題的關(guān)鍵.5.(1)90°;(2)∠PFC=∠PEA+∠P;(3)∠G=α【分析】(1)根據(jù)平行線的性質(zhì)與判定可求解;(2)過P點(diǎn)作PN∥AB,則PN∥CD,可得∠FPN=∠PEA+∠FPE,進(jìn)而可得∠PFC=∠PEA+∠FPE,即可求解;(3)令A(yù)B與PF交點(diǎn)為O,連接EF,根據(jù)三角形的內(nèi)角和定理可得∠GEF+∠GFE=∠PEA+∠PFC+∠OEF+∠OFE,由(2)得∠PEA=∠PFC-α,由∠OFE+∠OEF=180°-∠FOE=180°-∠PFC可求解.【詳解】解:(1)如圖1,過點(diǎn)P作PM∥AB,∴∠1=∠AEP.又∠AEP=40°,∴∠1=40°.∵AB∥CD,∴PM∥CD,∴∠2+∠PFD=180°.∵∠PFD=130°,∴∠2=180°-130°=50°.∴∠1+∠2=40°+50°=90°.即∠EPF=90°.(2)∠PFC=∠PEA+∠P.理由:過P點(diǎn)作PN∥AB,則PN∥CD,∴∠PEA=∠NPE,∵∠FPN=∠NPE+∠FPE,∴∠FPN=∠PEA+∠FPE,∵PN∥CD,∴∠FPN=∠PFC,∴∠PFC=∠PEA+∠FPE,即∠PFC=∠PEA+∠P;(3)令A(yù)B與PF交點(diǎn)為O,連接EF,如圖3.在△GFE中,∠G=180°-(∠GFE+∠GEF),∵∠GEF=∠PEA+∠OEF,∠GFE=∠PFC+∠OFE,∴∠GEF+∠GFE=∠PEA+∠PFC+∠OEF+∠OFE,∵由(2)知∠PFC=∠PEA+∠P,∴∠PEA=∠PFC-α,∵∠OFE+∠OEF=180°-∠FOE=180°-∠PFC,∴∠GEF+∠GFE=(∠PFC?α)+∠PFC+180°?∠PFC=180°?α,∴∠G=180°?(∠GEF+∠GFE)=180°?180°+α=α.【點(diǎn)睛】本題主要考查平行線的性質(zhì)與判定,靈活運(yùn)用平行線的性質(zhì)與判定是解題的關(guān)鍵.6.(1)證明見解析;(2)證明見解析;(3)∠FBE=35°.【分析】(1)根據(jù)平行線的性質(zhì)得出∠ABF=∠BFE,∠DCF=∠EFC,進(jìn)而解答即可;(2)由(1)的結(jié)論和垂直的定義解答即可;(3)由(1)的結(jié)論和三角形的角的關(guān)系解答即可.【詳解】證明:(1)∵AB∥CD,EF∥CD,∴AB∥EF,∴∠ABF=∠BFE,∵EF∥CD,∴∠DCF=∠EFC,∴∠BFC=∠BFE+∠EFC=∠ABF+∠DCF;(2)∵BE⊥EC,∴∠BEC=90°,∴∠EBC+∠BCE=90°,由(1)可得:∠BFC=∠ABE+∠ECD=90°,∴∠ABE+∠ECD=∠EBC+∠BCE,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ECD=∠BCE,∴CE平分∠BCD;(3)設(shè)∠BCE=β,∠ECF=γ,∵CE平分∠BCD,∴∠DCE=∠BCE=β,∴∠DCF=∠DCE﹣∠ECF=β﹣γ,∴∠EFC=β﹣γ,∵∠BFC=∠BCF,∴∠BFC=∠BCE+∠ECF=γ+β,∴∠ABF=∠BFE=2γ,∵∠FBG=2∠ECF,∴∠FBG=2γ,∴∠ABE+∠DCE=∠BEC=90°,∴∠ABE=90°﹣β,∴∠GBE=∠ABE﹣∠ABF﹣∠FBG=90°﹣β﹣2γ﹣2γ,∵BE平分∠ABC,∴∠CBE=∠ABE=90°﹣β,∴∠CBG=∠CBE+∠GBE,∴70°=90°﹣β+90°﹣β﹣2γ﹣2γ,整理得:2γ+β=55°,∴∠FBE=∠FBG+∠GBE=2γ+90°﹣β﹣2γ﹣2γ=90°﹣(2γ+β)=35°.【點(diǎn)睛】本題主要考查平行線的性質(zhì),解決本題的關(guān)鍵是根據(jù)平行線的性質(zhì)解答.7.(1)兩;(2)2,3;(3)24,-48.【分析】(1)根據(jù)題中所給的分析方法先求出這32768的立方根都是兩位數(shù);(2)繼續(xù)分析求出個(gè)位數(shù)和十位數(shù)即可;(3)利用(1)(2)中材料中的過程進(jìn)行分析可得結(jié)論.【詳解】解:(1)由103=1000,1003=1000000,∵1000<32768<100000,∴10<<100,∴是兩位數(shù);故答案為:兩;(2)∵只有個(gè)位數(shù)是2的立方數(shù)是個(gè)位數(shù)是8,∴的個(gè)位上的數(shù)是2劃去32768后面的三位數(shù)768得到32,因?yàn)?3=27,43=64,∵27<32<64,∴30<<40.∴的十位上的數(shù)是3.故答案為:2,3;(3)由103=1000,1003=1000000,1000<13824<1000000,∴10<<100,∴是兩位數(shù);∵只有個(gè)位數(shù)是4的立方數(shù)是個(gè)位數(shù)是4,∴的個(gè)位上的數(shù)是4劃去13824后面的三位數(shù)824得到13,因?yàn)?3=8,33=27,∵8<13<27,∴20<<30.∴=24;由103=1000,1003=1000000,1000<110592<1000000,∴10<<100,∴是兩位數(shù);∵只有個(gè)位數(shù)是8的立方數(shù)是個(gè)位數(shù)是2,∴的個(gè)位上的數(shù)是8,劃去110592后面的三位數(shù)592得到110,因?yàn)?3=64,53=125,∵64<110<125,∴40<<50.∴=-48;故答案為:24,-48.【點(diǎn)睛】此題考查立方根,解題關(guān)鍵在于理解一個(gè)數(shù)的立方的個(gè)位數(shù)就是這個(gè)數(shù)的個(gè)位數(shù)的立方的個(gè)位數(shù).8.(1)-3006,990;(2)見解析;(3)P(t)的最大值是P(2262)=36.【分析】(1)根據(jù)“前介數(shù)”t與它的“中介數(shù)”的差為P(t)的定義求解即可;(2)設(shè)“前介數(shù)”為且a、b、c均不為0的整數(shù),即1a、b、c,根據(jù)定義得到P(t)=,則P(t)一定能被9整除;(3)設(shè)“前介數(shù)”為,根據(jù)題意得到能被3整除,且b只能取2,4,6,8中的其中一個(gè)數(shù);對(duì)應(yīng)的“中介數(shù)”是,得到a只能取2,4,6,8中的其中一個(gè)數(shù),計(jì)算P(t),推出要求P(t)的最大值,即要盡量的大,要盡量的小,再分類討論即可求解.【詳解】(1)解:2215是“前介數(shù)”,其對(duì)應(yīng)的“中介數(shù)”是5221,∴P(2215)=2215-5221=-3006;6655是“前介數(shù)”,其對(duì)應(yīng)的“中介數(shù)”是5665,∴P(6655)=6655-5665=990;故答案為:-3006,990;(2)證明:設(shè)“前介數(shù)”為且a、b、c均為不為0的整數(shù),即1a、b、c,∴,又對(duì)應(yīng)的“中介數(shù)”是,∴P(t)=,∵a、b、c均不為0的整數(shù),∴為整數(shù),∴P(t)一定能被9整除;(3)證明:設(shè)“前介數(shù)”為且即1a、b,a、b均為不為0的整數(shù),∴,∵能被6整除,∴能被2整除,也能被3整除,∴為偶數(shù),且能被3整除,又1,∴b只能取2,4,6,8中的其中一個(gè)數(shù),又對(duì)應(yīng)的“中介數(shù)”是,且該“中介數(shù)”能被2整除,∴為偶數(shù),又1,∴a只能取2,4,6,8中的其中一個(gè)數(shù),∴P(t)=,要求P(t)的最大值,即要盡量的大,要盡量的小,①的最大值為8,的最小值為2,但此時(shí),且14不能被3整除,不符合題意,舍去;②的最大值為6,的最小值仍為2,但此時(shí),能被3整除,且P(t)=2262-2226=36;③的最大值仍為8,的最小值為4,但此時(shí),且16不能被3整除,不符合題意,舍去;其他情況,減少,增大,則P(t)減少,∴滿足條件的P(t)的最大值是P(2262)=36.【點(diǎn)睛】本題考查用新定義解題,根據(jù)新定義,表示出“前介數(shù)”,與其對(duì)應(yīng)的“中介數(shù)”是求解本題的關(guān)鍵.本題中運(yùn)用到的分類討論思想是重要一種數(shù)學(xué)解題思想方法.9.(1),1;(2)兩位正整數(shù)為39,28,17,的最大值為;(3)①;②【分析】(1)仿照樣例進(jìn)行計(jì)算即可;(2)由題設(shè)可以看出交換前原數(shù)的十位上數(shù)字為a,個(gè)位上數(shù)字為b,則原數(shù)可以表示為,交換后十位上數(shù)字為b,個(gè)位上數(shù)字為a,則交換后數(shù)字可以表示為,根據(jù)“交換其個(gè)位上的數(shù)字與十位上的數(shù)字得到的新數(shù)減去原數(shù)所得的差為54”確定出a與b的關(guān)系式,進(jìn)而求出所有的兩位數(shù),然后求解確定出的最大值即可;(3)根據(jù)樣例分解計(jì)算即可.【詳解】解:(1)∵,∴;∵,∴,故答案為:;1;(2)由題意可得:交換后的數(shù)減去交換前的數(shù)的差為:,∴,∵,∴或或,∴t為39,28,17;∵39=1×39=3×13,∴;28=1×28=2×14=4×7,∴=;17=1×17,∴;∴的最大值.(3)①∵∴;②∴;故答案為:;【點(diǎn)睛】本題主要考查了有理數(shù)的運(yùn)算,理解最佳分解的定義,并將其轉(zhuǎn)化為有理數(shù)的運(yùn)算是解題的關(guān)鍵.10.(1)a2=2,a3=-1,a4=(2)a2016?a2017?a2018=-1(3)a33+a66+a99+…+a9999=-1【分析】(1)將a1=代入中即可求出a2,再將a2代入求出a3,同樣求出a4即可.(2)從(1)的計(jì)算結(jié)果可以看出,從a1開始,每三個(gè)數(shù)一循環(huán),而2016÷3=672,則a2016=-1,a2017=,a2018=2然后計(jì)算a2016?a2017?a2018的值;(3)觀察可得a3、a6、a9、…a99,都等于-1,將-1代入,即可求出結(jié)果.【詳解】(1)將a1=,代入,得;將a2=2,代入,得;將a3=-1,代入,得.(2)根據(jù)(1)的計(jì)算結(jié)果,從a1開始,每三個(gè)數(shù)一循環(huán),而2016÷3=672,則a2016=-1,a2017=,a2018=2所以,a2016?a2017?a2018=(-1)××2=-1(3)觀察可得a3、a6、a9、…a99,都等于-1,將-1代入,a33+a66+a99+…+a9999=(-1)3+(-1)6+(-1)9+…+(-1)99=(-1)+1+(-1)+…(-1)=-1【點(diǎn)睛】此類問題考查了數(shù)字類的變化規(guī)律,解題的關(guān)鍵是要嚴(yán)格根據(jù)定義進(jìn)行解答,同時(shí)注意分析循環(huán)的規(guī)律.11.(1);(2).【解析】【分析】設(shè),兩邊乘以2后得到關(guān)系式,與已知等式相減,變形即可求出所求式子的值;同理即可得到所求式子的值.【詳解】解:設(shè),將等式兩邊同時(shí)乘2得:,將下式減去上式得:,即,則;設(shè),兩邊同時(shí)乘3得:,得:,即,則.【點(diǎn)睛】本題考查了規(guī)律型:數(shù)字的變化類,有理數(shù)的混合運(yùn)算,解題的關(guān)鍵是明確題意,運(yùn)用題目中的解題方法,運(yùn)用類比的數(shù)學(xué)思想解答問題.12.(1),,;(2);(3)【分析】(1)÷1即可求出q,根據(jù)已知數(shù)的特點(diǎn)求出a18和an即可;(2)根據(jù)已知先求出3S,再相減,即可得出答案;(3)根據(jù)(1)(2)的結(jié)果得出規(guī)律即可.【詳解】解:(1)÷1=,a18=1×()17=,an=1×()n﹣1=,故答案為:,,;(2)設(shè)S=3+32+33+…+323,則3S=32+33+…+323+324,∴2S=324﹣3,∴S=(3)an=a1?qn﹣1,a1+a2+a3+…+an=.【點(diǎn)睛】本題考查了整式的混合運(yùn)算的應(yīng)用,主要考查學(xué)生的理解能力和閱讀能力,題目是一道比較好的題目,有一定的難度.13.(1);(2)①3,②4,③1或5;(3),理由見解析【分析】(1)由非負(fù)性的性質(zhì)以及算數(shù)平方根的性質(zhì)可得出的值,可答案可求出;(2)①1.5秒時(shí),小正方形向右移動(dòng)1.5厘米,即可計(jì)算出重疊部分的面積;②畫出圖形,計(jì)算所得圖形面積即可;③小正方形的高不變,根據(jù)面積即可求出小正方形平移的距離和時(shí)間;(3)過作軸,過作軸,設(shè),則,得出,得出,得出,.【詳解】解(1),,;(2)①當(dāng)秒時(shí),小正方形向右移動(dòng)1.5厘米,(平方厘米);②如圖1所示,小正方形的一條對(duì)角線掃過的面積為紅色平行四邊形,面積為:(平方厘米);③如圖2,小正方形平移距離為(厘米),小正方形平移的距離為1厘米或5厘米,或,綜上所述,小正方形平移的時(shí)間為1或5秒;(3)如圖3,過作軸,過作軸,平分,設(shè),則,,,,平分,,.【點(diǎn)睛】本題考查了非負(fù)數(shù)的性質(zhì)、坐標(biāo)與圖形的性質(zhì)、平移的性質(zhì)、平行線的性質(zhì)、角平分線的性質(zhì)、解題的關(guān)鍵是熟練掌握平行線的性質(zhì)及平移的性質(zhì).14.(1)150°;(2)∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′【分析】(1)先根據(jù)平行線的性質(zhì)得到∠AOE的度數(shù),再根據(jù)直角、周角的定義即可求得∠BOE的度數(shù);(2)如圖②,過O點(diǎn)作OF∥CD,根據(jù)平行線的判定和性質(zhì)可得∠OCD、∠BO′E′的數(shù)量關(guān)系;(3)由已知推出CP∥OB,得到∠AOB+∠PCO=180°,結(jié)合角平分線的定義可推出∠OCD=2∠PCO=360°-2∠AOB,根據(jù)(2)∠OCD+∠BO′E′=360°-∠AOB,進(jìn)而推出∠AOB=∠BO′E′.【詳解】解:(1)∵CD∥OE,∴∠AOE=∠OCD=120°,∴∠BOE=360°-∠AOE-∠AOB=360°-90°-120°=150°;(2)∠OCD+∠BO′E′=360°-α.證明:如圖②,過O點(diǎn)作OF∥CD,∵CD∥O′E′,∴OF∥O′E′,∴∠AOF=180°-∠OCD,∠BOF=∠E′O′O=180°-∠BO′E′,∴∠AOB=∠AOF+∠BOF=180°-∠OCD+180°-∠BO′E′=360°-(∠OCD+∠BO′E′)=α,∴∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′.證明:∵∠CPO′=90°,∴PO′⊥CP,∵PO′⊥OB,∴CP∥OB,∴∠PCO+∠AOB=180°,∴2∠PCO=360°-2∠AOB,∵CP是∠OCD的平分線,∴∠OCD=2∠PCO=360°-2∠AOB,∵由(2)知,∠OCD+∠BO′E′=360°-α=360°-∠AOB,∴360°-2∠AOB+∠BO′E′=360°-∠AOB,∴∠AOB=∠BO′E′.【點(diǎn)睛】此題考查了平行線的判定和性質(zhì),平移的性質(zhì),直角的定義,角平分線的定義,正確作出輔助線是解決問題的關(guān)鍵.15.(1)A(-2,0)、B(0,3);(2)∠APD=90°;(3)∠N的大小不變,∠N=45°【分析】(1)利用非負(fù)數(shù)的和為零,各項(xiàng)分別為零,求出a,b的值;(2)如圖,作DM∥x軸,結(jié)合題意可設(shè)∠ADP=∠OAP=x,∠EAF=∠CAF=∠OAP=y,根據(jù)平角的定義可知∠OAD=90°-2y,由平行線的性質(zhì)可得∠OAD+∠ADM=180°,即90-2y+2x+90°=180°,進(jìn)而可得出x=y,再結(jié)合圖形即可得出∠APD的度數(shù);(3)∠N的大小不變,∠N=45°,如圖,過D作DE∥BC,過N作NF∥BC,根據(jù)平行線的性質(zhì)可知∠BMD+∠OAD=∠ADM=90°,然后根據(jù)角平分線的定義和平行線的性質(zhì),可得∠ANM=∠BMD+∠OAD,據(jù)此即可得到結(jié)論.【詳解】(1)由,可得和,解得∴A的坐標(biāo)是(-2,0)、B的坐標(biāo)是(0,3);(2)如圖,作DM∥x軸根據(jù)題意,設(shè)∠ADP=∠OAP=x,∠EAF=∠CAF=∠OAP=y,∵∠CAD=90°,∴∠CAE+∠OAD=90°,∴2y+∠OAD=90°,∴∠OAD=90°-2y,∵DM∥x軸,∴∠OAD+∠ADM=180°,∴90-2y+2x+90°=180°,∴x=y,∴∠APD=180°-(∠PAD+∠ADP)=180°-(y+90°-2y+x)=180°-90°=90°(3)∠N的大小不變,∠N=45°理由:如圖,過D作DE∥BC,過N作NF∥BC.∵BC∥x軸,∴DE∥BC∥x軸,NF∥BC∥x軸,∴∠EDM=∠BMD,∠EDA=∠OAD,∵DM⊥AD,∴∠ADM=90°,∴∠BMD+∠OAD=∠EDM+∠EDA=∠ADM=90°,∵M(jìn)N平分∠BMD,AN平分∠DAO,∴∠BMN=∠BMD,∠OAN=∠OAD,∴∠ANM=∠BMN+∠OAN=∠BMD+∠OAD=×90°=45°.【點(diǎn)睛】本題考查了坐標(biāo)與圖形性質(zhì):利用點(diǎn)的坐標(biāo)計(jì)算出相應(yīng)的線段的長和判斷線段與坐標(biāo)軸的位置關(guān)系.也考查了三角形內(nèi)角和定理和三角形外角性質(zhì).16.(1)在乙家批發(fā)更優(yōu)惠;(2)當(dāng)x=200時(shí)他選擇任何一家批發(fā)所花費(fèi)用一樣多;當(dāng)100<x<200時(shí),師傅應(yīng)選擇甲家批發(fā)商所花費(fèi)用更少;當(dāng)x>200時(shí),師傅應(yīng)選擇乙家批發(fā)商所花費(fèi)用更少.【分析】(1)分別求出在甲、乙兩家批發(fā)240千克蘋果所需費(fèi)用,比較后即可得出結(jié)論;(2)分兩種情況:①若100<x≤150時(shí),②若x>150時(shí),分別用含x的代數(shù)式表示出在甲、乙兩家批發(fā)x千克蘋果所需費(fèi)用,再比較大小,列出不等式,求出x的范圍,即可得到結(jié)論.【詳解】(1)在甲家批發(fā)所需費(fèi)用為:240×8×85%=1632(元),在乙家批發(fā)所需費(fèi)用為:50×8×95%+(150?50)×8×85%+(240?150)×8×75%=1600(元),∵1632>1600,∴在乙家批發(fā)更優(yōu)惠;(2)①若100<x≤150時(shí),在甲家批發(fā)所需費(fèi)用為:8×85%x=6.8x,在乙家批發(fā)所需費(fèi)用為:50×8×95%+(x?50)×8×85%=6.8x+40,∵6.8x<6.8x+40,∴師傅應(yīng)選擇甲家批發(fā)商所花費(fèi)用更少;②若x>150時(shí),在甲家批發(fā)所需費(fèi)用為:8×85%x=6.8x,在乙家批發(fā)所需費(fèi)用為:50×8×95%+(150?50)×8×85%+(x?150)×8×75%=6x+160,當(dāng)6.8x=6x+160時(shí),即x=200時(shí),師傅選擇兩家批發(fā)商所花費(fèi)用一樣多,當(dāng)6.8x>6x+160時(shí),即x>200時(shí),師傅應(yīng)選擇乙家批發(fā)商所花費(fèi)用更少,當(dāng)6.8x<6x+160時(shí),即150<x<200時(shí),師傅應(yīng)選擇甲家批發(fā)商所花費(fèi)用更少.綜上所得:當(dāng)x=200時(shí)他選擇任何一家批發(fā)所花費(fèi)用一樣多;當(dāng)100<x<200時(shí),師傅應(yīng)選擇甲家批發(fā)商所花費(fèi)用更少;當(dāng)x>200時(shí),師傅應(yīng)選擇乙家批發(fā)商所花費(fèi)用更少.【點(diǎn)睛】本題主要考查代數(shù)式,一元一次方程,一元一次不等式的綜合實(shí)際應(yīng)用,理清數(shù)量關(guān)系,列出代數(shù)式,不等式或方程,是解題的關(guān)鍵.17.(1);(2)當(dāng)時(shí),和面積的相等;(3)m的取值范圍是【分析】(1)利用非負(fù)數(shù)的性質(zhì)求出a,b,c即可.(2)設(shè)點(diǎn)D的坐標(biāo)為(0,y),根據(jù)面積關(guān)系,構(gòu)建方程求出y,再根據(jù)△BOC和△AOD面積的相等,構(gòu)建方程求出t即可.(3)分兩種情形:①當(dāng)-2<m<0時(shí),如圖1中,②當(dāng)m≤-2時(shí),如圖2中,根據(jù)S△MOC≥5,構(gòu)建不等式求解即可.【詳解】解:(1)∵|a-2|+(b-3)2+=0,又∵|a-2|≥0,(b-3)2≥0,≥0,∴,∴a=2,b=3,c=-4;(2)設(shè)點(diǎn)D的坐標(biāo)為(0,y),則S△BOD=×BO×OD=×4×y=2y,S△AOD=xA?OD=×2y=y,S△AOB=×OB?yA=×4×3=6,∵S△BOD+S△AOD=S△AOB,即2y+y=6,解得y=2,即點(diǎn)D的坐標(biāo)為(0,2),∴S△BOC=BO?yc=×4t=2t,S△AOD=xA?OD=×2×2=2,∵△BOC和△AOD面積的相等,即2t=2,解得t=1,∴當(dāng)t=1時(shí),△BOC和△AOD面積的相等;(3)①當(dāng)-2<m<0時(shí),如圖1中,過點(diǎn)C作CF⊥軸于點(diǎn)F,過點(diǎn)M作GE⊥軸于點(diǎn)E,過點(diǎn)C作CG⊥軸交GE于點(diǎn)G,則四邊形CGEF為矩形,∵SCGEF=2×4=8,S△CFO=×2×1=1,S△EMO=×(0?m)×3=?m,S△CMG=×(m+2)×4=2(m+2),∴S△MOC=SCGEF-S△CFO-S△EMO-S△CMG=8?1?(?m)?2(m+2)=3?m,∵S△MOC≥5,即3?m≥5,解得m≤-4,這與-2<m<0矛盾.②當(dāng)m≤-2時(shí),如圖2中,過點(diǎn)C作GF⊥軸于點(diǎn)F,過點(diǎn)M作ME⊥軸于點(diǎn)E,過點(diǎn)M作MG⊥軸交GF于點(diǎn)G,則四邊形MEFG為矩形,∵SGMEF=(0-m)×4=-4m,S△CFO=×2×1=1,S△EMO=×(0?m)×3=?m,S△CMG=×(?2?m)×4=?2(m+2),∴S△MOC=SCGEF-S△CFO-S△EMO-S△CMG=?4m?1?(?m)?[?2(m+2)]=3?m,∵S△MOC≥5,即3?m≥5,解得m≤-4,綜上所述,m的取值范圍是m≤-4.【點(diǎn)睛】本題考查了坐標(biāo)與圖形的性質(zhì),三角形的面積,非負(fù)數(shù)的性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)利用參數(shù),構(gòu)建方程解決問題,屬于中考?jí)狠S題.18.(1),,;(2)存在,或;(3)存在,或;(4)存在,的縱坐標(biāo)總是4或.或者:點(diǎn)在平行于軸且與軸的距離等于4的兩條直線上;或者:點(diǎn)在直線或直線上【分析】(1)根據(jù)點(diǎn)的平移規(guī)律,即可得到對(duì)應(yīng)點(diǎn)坐標(biāo);(2)由,可以得到,即可得到P點(diǎn)坐標(biāo);(3)由,可以得到,結(jié)合點(diǎn)C坐標(biāo),就可以求得點(diǎn)Q坐標(biāo);(4)由,可以AB邊上的高的長度,從而得到點(diǎn)的坐標(biāo)規(guī)律.【詳解】(1)∵點(diǎn),點(diǎn)∴向上平移3個(gè)單位,再向右平移1個(gè)單位之后對(duì)應(yīng)點(diǎn)坐標(biāo)為,點(diǎn)∴∴(2)存在,理由如下:∵即:=12∴∴或(3)存在,理由如下:∵即:∵∴∵∴或(4)存在:理由如下:∵∴設(shè)中,AB邊上的高為h則:∴∴點(diǎn)在直線或直線上【點(diǎn)睛】本題考查直角坐標(biāo)系中點(diǎn)的坐標(biāo)平移規(guī)律,由點(diǎn)到坐標(biāo)軸的距離確定點(diǎn)坐標(biāo)等知識(shí)點(diǎn),根據(jù)相關(guān)內(nèi)容解題是關(guān)鍵.19.(1);(2)“小勇同學(xué)的解答”錯(cuò)誤,診斷分析和評(píng)價(jià)見解析【分析】(1)由兩種方法分別得出2=5-5k,求解即可;(2)從二元一次方程的解和二元一次方程組的解的概念進(jìn)行診斷分析,再從創(chuàng)新的角度進(jìn)行評(píng)價(jià)即可.【詳解】解:(1)方法一:②×2得:4x+6y=6-4k③,由③-①得:x+y=5-5k,∵x+y=2,∴2=5-5k,解得:k=,方法二:由①-②得:x+2y=3k-2③,由②-③得:x+y=5-5k,∵x+y=2,∴2=5-5k,解得:k=;(2)“小勇同學(xué)的解答”錯(cuò)誤,理由如下:∵令3x=k,5y=1,求出的x、y的值只是方程①的一個(gè)解,而方程①有無數(shù)個(gè)解,根據(jù)方程組的解的概念,僅有方程①或方程②的某一個(gè)解中的x、y求出的k值不一定適合方程組中的另一個(gè)方程;只有當(dāng)方程①、②取公共解時(shí),k和x、y之間對(duì)應(yīng)的數(shù)量關(guān)系才能成立,這時(shí),求得的k=才是正確答案;另一方面,小勇的解答雖然錯(cuò)誤,但他的思維給我們有創(chuàng)新的感覺,也讓我們鞏固加深了對(duì)方程組解的概念的連接,同時(shí)啟發(fā)我們平時(shí)在學(xué)習(xí)中,要善于多角度去探索問題,尋求新穎的解題方法.【點(diǎn)睛】本題考查了二元一次方程組的應(yīng)用、二元一次方程的解、一元一次方程的解法以及整體思想的應(yīng)用等知識(shí);熟練掌握二元一次方程組的解法,由整體思想得出2=5-5k是解題的關(guān)鍵.20.1【分析】利用AM:AN=8:9,設(shè)通道的寬為xm,AM=8ym,則AN=9ym,進(jìn)而利用AD為18m,AB為13m,得出等式求出即可.【詳解】設(shè)通道的寬是xm,AM=8ym.因?yàn)锳M∶AN=8∶9,所以AN=9ym.所以解得答:通道的寬是1m.故答案為1.【點(diǎn)睛】本題考查了二元一次方程組的應(yīng)用.21.(1);(2)有4種方案:3臺(tái)甲種機(jī)器,7臺(tái)乙種機(jī)器;2臺(tái)甲種機(jī)器,8臺(tái)乙種機(jī)器;1臺(tái)甲種機(jī)器,9臺(tái)乙種機(jī)器;10臺(tái)乙種機(jī)器.(3)最省錢的方案是購買2臺(tái)甲種機(jī)器,8臺(tái)乙種機(jī)器.【分析】(1)根據(jù)購買一臺(tái)甲型機(jī)器比購買一臺(tái)乙型機(jī)器多12萬元,購買2臺(tái)甲型機(jī)器比購買3臺(tái)乙型機(jī)器多6萬元這一條件建立一元二次方程組求解即可,(2)設(shè)買了x臺(tái)甲種機(jī)器,根據(jù)該公司購買新機(jī)器的資金不超過216萬元,建立一次不等式求解即可,(3)將兩種機(jī)器生產(chǎn)的產(chǎn)量相加,使總產(chǎn)量不低于1890噸,求出x的取值范圍,再分別求出對(duì)應(yīng)的成本即可解題.【詳解】(1)解:由題意得,解得,;(2)解:設(shè)買了x臺(tái)甲種機(jī)器由題意得:30+18(10-x)≤216解得:x≤3∵x為非負(fù)整數(shù)∴x=0、1、2、3∴有4種方案:3臺(tái)甲種機(jī)器,7臺(tái)乙種機(jī)器;2臺(tái)甲種機(jī)器,8臺(tái)乙種機(jī)器;1臺(tái)甲種機(jī)器,9臺(tái)乙種機(jī)器;10臺(tái)乙種機(jī)器.(3)解:由題意得:240+180(10-x)≥1890解得:x≥1.5∴1.5≤x≤3∴整數(shù)x=2或3當(dāng)x=2時(shí)購買費(fèi)用=30×2+18×8=204(元)當(dāng)x=3時(shí)購買費(fèi)用=30×3+18×7=216(元)∴最省錢的方案是購買2臺(tái)甲種機(jī)器,8臺(tái)乙種機(jī)器.【點(diǎn)睛】本題考查了利潤的實(shí)際應(yīng)用,二元一次方程租的實(shí)際應(yīng)用,一元一次不等式的實(shí)際應(yīng)用,難度較大,認(rèn)真審題,找到等量關(guān)系和不等關(guān)系并建立方程組和不等式組是解題關(guān)鍵.22.(1)七(1)班有47人,七(2)班有51人;(2)如果兩個(gè)班聯(lián)合起來買票,不可以買單價(jià)為9元的票,省錢的方法,可以買101張票,多余的作廢即可【解析】【分析】(1)由兩個(gè)班聯(lián)合起來,作為一個(gè)團(tuán)體購票,則需付1078元可知:可得票價(jià)不是9元,所以兩個(gè)班的總?cè)藬?shù)沒有超過100人,設(shè)七(1)班有x人,七(2)班有y人,可列方程組,解方程組即可得答案;(2)如果兩班聯(lián)合起來作為一個(gè)團(tuán)體購票,則每張票11元,省錢的方法,可以買101張票,多余的作廢即可。【詳解】解:(1)∵兩個(gè)班聯(lián)合起來,作為一個(gè)團(tuán)體購票,則需付1078元有∵可得票價(jià)不是9元,所以兩個(gè)班的總?cè)藬?shù)沒有超過100人,∴設(shè)七(1)班有x人,七(2)班有y人,依題意得:∴七(1)班有47人,七(2)班有51人(2)因?yàn)?7+51=98<100∴如果兩個(gè)班聯(lián)合起來買票,不可以買單價(jià)為9元的票∴省錢的方法,可以買101張票,多余的作廢即可??墒。骸军c(diǎn)睛】熟練掌握二元一次方程組的實(shí)際問題是解題的關(guān)鍵。23.(1),,;(2)見解析.【分析】(1)令中的,求出相應(yīng)的x的值,即可得到A的坐標(biāo),將方程和方程聯(lián)立成方程組,解方程組即可得到C的坐標(biāo),進(jìn)而可得到B的坐標(biāo);(2)分別利用梯形的面積公式表示出四邊形MNAC的面積與四邊形MNOB的面積,然后根據(jù)t的范圍,分情況討論即可.【詳解】(1)令,則,解得,.解得.軸,∴點(diǎn)B的縱坐標(biāo)與點(diǎn)C的縱坐標(biāo)相同,;(2),,,.∵點(diǎn)M從點(diǎn)C以每秒1個(gè)單位長度的速度向左運(yùn)動(dòng),同時(shí)點(diǎn)N從點(diǎn)O以每秒1.5個(gè)單位長度的速度向右運(yùn)動(dòng),,,,.當(dāng)時(shí),即時(shí),;當(dāng)時(shí),即時(shí),;當(dāng)時(shí),即時(shí),.【點(diǎn)睛】本題主要考查二元一次方程及方程組的應(yīng)用,數(shù)形結(jié)合并分情況討論是解題的關(guān)鍵.24.(1);(2)該公司有6種購買方案,方案1:購買10臺(tái)乙型設(shè)備;方案2:購買1臺(tái)甲型設(shè)備,9臺(tái)乙型設(shè)備;方案3:購買2臺(tái)甲型設(shè)備,8臺(tái)乙型設(shè)備;方案4:購買3臺(tái)甲型設(shè)備,7臺(tái)乙型設(shè)備;方案5:購買4臺(tái)甲型設(shè)備,6臺(tái)乙型設(shè)備;方案6:購買5臺(tái)甲型設(shè)備,5臺(tái)乙型設(shè)備;(3)最省錢的購買方案為:購買4臺(tái)甲型設(shè)備,6臺(tái)乙型設(shè)備.【分析】(1)由一臺(tái)A型設(shè)備的價(jià)格是x萬元,一臺(tái)乙型設(shè)備的價(jià)格是y萬元,根據(jù)題意得等量關(guān)系:購買一臺(tái)甲型設(shè)備-購買一臺(tái)乙型設(shè)備=2萬元,購買4臺(tái)乙型設(shè)備-購買3臺(tái)甲型設(shè)備=2萬元,根據(jù)等量關(guān)系,列出方程組,再解即可;(2)設(shè)購買甲型設(shè)備m臺(tái),則購買乙型設(shè)備(10-m)臺(tái),由題意得不等關(guān)系:購買甲型設(shè)備的花費(fèi)+購買乙型設(shè)備的花費(fèi)≤91萬元,根據(jù)不等關(guān)系列出不等式,再解即可;(3)由題意可得:甲型設(shè)備處理污水量+乙型設(shè)備處理污水量≥2750噸,根據(jù)不等關(guān)系,列出不等式,再解即可.【詳解】(1)依題意,得:,解得:.(2)設(shè)該治污公司購進(jìn)m臺(tái)甲型設(shè)備,則購進(jìn)(10﹣m)臺(tái)乙型設(shè)備,依題意,得:10m+8(10﹣m)≤91,解得:m≤5.又∵m為非零整數(shù),∴m=0,1,2,3,4,5,∴該公司有6種購買方案,方案1:購買10臺(tái)乙型設(shè)備;方案2:購買1臺(tái)甲型設(shè)備,9臺(tái)乙型設(shè)備;方案3:購買2臺(tái)甲型設(shè)備,8臺(tái)乙型設(shè)備;方案4:購買3臺(tái)甲型設(shè)備,7臺(tái)乙型設(shè)備;方案5:購買4臺(tái)甲型設(shè)備,6臺(tái)乙型設(shè)備;方案6:購買5臺(tái)甲型設(shè)備,5臺(tái)乙型設(shè)備.(3)依題意,得:300m+260(10﹣m)≥2750,解得:m≥3,∴m=4,5.當(dāng)m=4時(shí),總費(fèi)用為10×4+8×6=88(萬元);當(dāng)m=5時(shí),總費(fèi)用為10×5+8×5=90(萬元).∵88<90,∴最省錢的購買方案為:購買4臺(tái)甲型設(shè)備,6臺(tái)乙型設(shè)備.【點(diǎn)睛】此題主要考查了二元一次方程組的應(yīng)用和一元一次不等式的應(yīng)用,關(guān)鍵是正確理解題意,找出題目中的等量關(guān)系和不等關(guān)系,列出方程(組)和不等式.25.(1)①a=1,b=3;②-2≤p<-;(2)a=2b.【分析】(1)①按題意的運(yùn)算可得方程組,即可求得a、b的值;②按題意的運(yùn)算可得不等式組,即可求得p的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論