




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2026屆山東省濟南歷下區(qū)七校聯(lián)考數(shù)學(xué)九上期末聯(lián)考模擬試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題3分,共30分)1.如圖,在中,D在AC邊上,,O是BD的中點,連接AO并延長交BC于E,則()A.1:2 B.1:3 C.1:4 D.2:32.如圖,、分別與相切于、兩點,點為上一點,連接,,若,則的度數(shù)為()A. B. C. D.3.已知(x1,y1),(x2,y2),(x3,y3)是反比例函數(shù)y=的圖象上的三個點,且x1<x2<0,x3>0,則y1,y2,y3的大小關(guān)系是()A.y3<y1<y2 B.y2<y1<y3 C.y1<y2<y3 D.y3<y2<y14.如圖,已知與位似,位似中心為點且的面積與面積之比為,則的值為()A. B.C. D.5.將6497.1億用科學(xué)記數(shù)法表示為()A.6.4971×1012 B.64.971×1010 C.6.5×1011 D.6.4971×10116.已知如圖:為估計池塘的寬度,在池塘的一側(cè)取一點,再分別取、的中點、,測得的長度為米,則池塘的寬的長為()A.米 B.米 C.米 D.米7.若拋物線y=ax2+2x﹣10的對稱軸是直線x=﹣2,則a的值為()A.2 B.1 C.-0.5 D.0.58.關(guān)于x的一元二次方程有實數(shù)根,則m的取值范圍是()A. B.C.且 D.且9.若二次函數(shù)y=x2﹣2x+c的圖象與坐標(biāo)軸只有兩個公共點,則c應(yīng)滿足的條件是()A.c=0 B.c=1 C.c=0或c=1 D.c=0或c=﹣110.先將拋物線關(guān)于軸作軸對稱變換,所得的新拋物線的解析式為()A. B. C. D.二、填空題(每小題3分,共24分)11.一組數(shù)據(jù):2,5,3,1,6,則這組數(shù)據(jù)的中位數(shù)是________.12.如圖,為的弦,的半徑為5,于點,交于點,且,則弦的長是_____.13.若,且一元二次方程有實數(shù)根,則的取值范圍是.14.因式分解:_______;15.在中,,,,將沿軸依次以點、、為旋轉(zhuǎn)中心順時針旋轉(zhuǎn),分別得到圖?、圖②、…,則旋轉(zhuǎn)得到的圖2018的直角頂點的坐標(biāo)為________.16.如圖,在等腰直角△ABC中,∠C=90°,將△ABC繞頂點A逆時針旋轉(zhuǎn)80°后得到△AB′C′,則∠CAB′的度數(shù)為_____.17.如圖,已知AB,CD是☉O的直徑,弧AE=弧AC,∠AOE=32°,那么∠COE的度數(shù)為________度.18.已知,二次函數(shù)的圖象如圖所示,當(dāng)y<0時,x的取值范圍是________.三、解答題(共66分)19.(10分)某廣告公司設(shè)計一幅周長為16米的矩形廣告牌,廣告設(shè)計費為每平方米2000元.設(shè)矩形一邊長為x,面積為S平方米.(1)求S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;(2)設(shè)計費能達到24000元嗎?為什么?(3)當(dāng)x是多少米時,設(shè)計費最多?最多是多少元?20.(6分)(1)如圖1,在△ABC中,AB>AC,點D,E分別在邊AB,AC上,且DE∥BC,若AD=2,AE=,則的值是;(2)如圖2,在(1)的條件下,將△ADE繞點A逆時針方向旋轉(zhuǎn)一定的角度,連接CE和BD,的值變化嗎?若變化,請說明理由;若不變化,請求出不變的值;(3)如圖3,在四邊形ABCD中,AC⊥BC于點C,∠BAC=∠ADC=θ,且tanθ=,當(dāng)CD=6,AD=3時,請直接寫出線段BD的長度.21.(6分)在平面直角坐標(biāo)系中,已知拋物線.(1)我們把一條拋物線上橫坐標(biāo)與縱坐標(biāo)相等的點叫做這條拋物線的“方點”.試求拋物線的“方點”的坐標(biāo);(2)如圖,若將該拋物線向左平移1個單位長度,新拋物線與軸相交于、兩點(在左側(cè)),與軸相交于點,連接.若點是直線上方拋物線上的一點,求的面積的最大值;(3)第(2)問中平移后的拋物線上是否存在點,使是以為直角邊的直角三角形?若存在,直接寫出所有符合條件的點的坐標(biāo);若不存在,說明理由.22.(8分)如圖,在中,,,,點分別是邊的中點,連接.將繞點順時針方向旋轉(zhuǎn),記旋轉(zhuǎn)角為.①②③④(1)問題發(fā)現(xiàn):當(dāng)時,.(2)拓展探究:試判斷:當(dāng)時,的大小有無變化?請僅就圖②的情況給出證明.(3)問題解決:當(dāng)旋轉(zhuǎn)至三點共線時,如圖③,圖④,直接寫出線段的長.23.(8分)如圖,在△ABC中,點D在BC邊上,BC=3CD,分別過點B,D作AD,AB的平行線,并交于點E,且ED交AC于點F,AD=3DF.(1)求證:△CFD∽△CAB;(2)求證:四邊形ABED為菱形;(3)若DF=,BC=9,求四邊形ABED的面積.24.(8分)如圖,已知正方形ABCD,點E為AB上的一點,EF⊥AB,交BD于點F.(1)如圖1,直按寫出的值;(2)將△EBF繞點B順時針旋轉(zhuǎn)到如圖2所示的位置,連接AE、DF,猜想DF與AE的數(shù)量關(guān)系,并證明你的結(jié)論;(3)如圖3,當(dāng)BE=BA時,其他條件不變,△EBF繞點B順時針旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角為α(0°<α<360°),當(dāng)α為何值時,EA=ED?在圖3或備用圖中畫出圖形,并直接寫出此時α=.25.(10分)萬州區(qū)某民營企業(yè)生產(chǎn)的甲、乙兩種產(chǎn)品,已知2件甲商品的出廠總價與3件乙商品的出廠總價相同,3件甲商品的出廠總價比2件乙商品的出廠總價多150元.(1)求甲、乙商品的出廠單價分別是多少元?(2)為促進萬州經(jīng)濟持續(xù)健康發(fā)展,為商家搭建展示平臺,為行業(yè)創(chuàng)造交流機會,2019年萬州區(qū)舉辦了多場商品展銷會.外地一經(jīng)銷商計劃購進甲商品200件,購進乙商品的數(shù)量是甲的4倍,恰逢展銷會期間該企業(yè)正在對甲商品進行降價促銷活動,甲商品的出廠單價降低了,該經(jīng)銷商購進甲的數(shù)量比原計劃增加了,乙的出廠單價沒有改變,該經(jīng)銷商購進乙的數(shù)量比原計劃減少了,結(jié)果該經(jīng)銷商付出的總貨款與原計劃的總貨款恰好相同,求的值.26.(10分)從甲、乙兩臺包裝機包裝的質(zhì)量為300g的袋裝食品中各抽取10袋,測得其實際質(zhì)量如下(單位:g)甲:301,300,305,302,303,302,300,300,298,299乙:305,302,300,300,300,300,298,299,301,305(1)分別計算甲、乙這兩個樣本的平均數(shù)和方差;(2)比較這兩臺包裝機包裝質(zhì)量的穩(wěn)定性.
參考答案一、選擇題(每小題3分,共30分)1、B【分析】過O作BC的平行線交AC與G,由中位線的知識可得出,根據(jù)已知和平行線分線段成比例得出,再由同高不同底的三角形中底與三角形面積的關(guān)系可求出的比.【詳解】解:如圖,過O作,交AC于G,∵O是BD的中點,∴G是DC的中點.又,設(shè),又,,故選B.考查平行線分線段成比例及三角形的中位線的知識,難度較大,注意熟練運用中位線定理和三角形面積公式.2、C【分析】先利用切線的性質(zhì)得∠OAP=∠OBP=90°,再利用四邊形的內(nèi)角和計算出∠AOB的度數(shù),然后根據(jù)圓周角定理計算∠ACB的度數(shù).【詳解】解:連接、,∵、分別與相切于、兩點,∴,,∴.∴,∴.故選C.本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點的半徑.也考查了圓周角定理.3、A【解析】試題分析:∵反比例函數(shù)中,k=-4<0,∴此函數(shù)的圖象在二、四象限,在每一象限內(nèi)y隨x的增大而增大.∵x1<x2<0<x3,∴0<y1<y2,y3<0,∴y3<y1<y2故選A.考點:反比例函數(shù)圖象上點的坐標(biāo)特征.4、A【分析】根據(jù)位似圖形的性質(zhì)得到AC:DF=3:1,AC∥DF,再證明∽,根據(jù)相似的性質(zhì)進而得出答案.【詳解】∵與位似,且的面積與面積之比為9:4,∴AC:DF=3:1,AC∥DF,∴∠ACO=∠DFO,∠CAO=∠FDO,∴∽,∴AO:OD=AC:DF=3:1.故選:A.本題考查位似圖形的性質(zhì),及相似三角形的判定與性質(zhì),注意掌握位似是相似的特殊形式,位似比等于相似比,其對應(yīng)的面積比等于相似比的平方.5、D【分析】科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負(fù)數(shù).【詳解】解:6497.1億=649710000000=6.4971×1.故選:D.此題主要考查科學(xué)記數(shù)法,解題的關(guān)鍵是熟知科學(xué)記數(shù)法的表示方法.6、C【分析】根據(jù)三角形中位線定理可得DE=BC,代入數(shù)據(jù)可得答案.【詳解】解:∵線段AB,AC的中點為D,E,
∴DE=BC,
∵DE=20米,
∴BC=40米,
故選:C.此題主要考查了三角形中位線定理,關(guān)鍵是掌握三角形的中位線平行于第三邊,并且等于第三邊的一半.7、D【分析】根據(jù)拋物線y=ax2+bx+c(a≠0)的對稱軸方程得到,然后求出a即可.【詳解】解:∵拋物線y=ax2+2x﹣10的對稱軸是直線x=﹣2,∴,∴;故選:D.本題考查了二次函數(shù)的圖象:二次函數(shù)y=ax2+bx+c(a≠0)的圖象為拋物線,當(dāng)a>0;對稱軸為直線;拋物線與y軸的交點坐標(biāo)為(0,c);當(dāng)b2-4ac>0,拋物線與x軸有兩個交點;當(dāng)b2-4ac=0,拋物線與x軸有一個交點;當(dāng)b2-4ac<0,拋物線與x軸沒有交點.8、D【解析】試題分析:∵關(guān)于x的一元二次方程有實數(shù)根,∴且△≥0,即,解得,∴m的取值范圍是且.故選D.考點:1.根的判別式;2.一元二次方程的定義.9、C【分析】根據(jù)二次函數(shù)y=x2﹣2x+c的圖象與坐標(biāo)軸只有兩個公共點,可知二次函數(shù)y=x2﹣2x+c的圖象與x軸只有一個公共點或者與x軸有兩個公共點,其中一個為原點兩種情況,然后分別計算出c的值即可解答本題.【詳解】解:∵二次函數(shù)y=x2﹣2x+c的圖象與坐標(biāo)軸只有兩個公共點,∴二次函數(shù)y=x2﹣2x+c的圖象與x軸只有一個公共點或者與x軸有兩個公共點,其中一個為原點,當(dāng)二次函數(shù)y=x2﹣2x+c的圖象與x軸只有一個公共點時,(﹣2)2﹣4×1×c=0,得c=1;當(dāng)二次函數(shù)y=x2﹣2x+c的圖象與軸有兩個公共點,其中一個為原點時,則c=0,y=x2﹣2x=x(x﹣2),與x軸兩個交點,坐標(biāo)分別為(0,0),(2,0);由上可得,c的值是1或0,故選:C.本題考查了二次函數(shù)與坐標(biāo)的交點問題,掌握解二次函數(shù)的方法是解題的關(guān)鍵.10、C【分析】根據(jù)平面直角坐標(biāo)系中,二次函數(shù)關(guān)于軸對稱的特點得出答案.【詳解】根據(jù)二次函數(shù)關(guān)于軸對稱的特點:兩拋物線關(guān)于軸對稱,二次項系數(shù),一次項系數(shù),常數(shù)項均互為相反數(shù),可得:拋物線關(guān)于軸對稱的新拋物線的解析式為故選:C.本題主要考查二次函數(shù)關(guān)于軸對稱的特點,熟知兩拋物線關(guān)于軸對稱,二次項系數(shù),一次項系數(shù),常數(shù)項均互為相反數(shù),對稱軸不變是關(guān)鍵.二、填空題(每小題3分,共24分)11、3【解析】根據(jù)中位數(shù)的定義進行求解即可得出答案.【詳解】將數(shù)據(jù)從小到大排列:1,2,3,5,6,處于最中間的數(shù)是3,∴中位數(shù)為3,故答案為:3.【點睛】本題考查了中位數(shù)的定義,中位數(shù)是將一組數(shù)據(jù)從小到大或從大到小排列,處于最中間(中間兩數(shù)的平均數(shù))的數(shù)即為這組數(shù)據(jù)的中位數(shù).12、1【分析】連接AO,得到直角三角形,再求出OD的長,就可以利用勾股定理求解.【詳解】連接,∵半徑是5,,∴,根據(jù)勾股定理,,∴,因此弦的長是1.解答此題不僅要用到垂徑定理,還要作出輔助線AO,這是解題的關(guān)鍵.13、且.【解析】試題分析:∵,.∴一元二次方程為.∵一元二次方程有實數(shù)根,∴且.考點:(1)非負(fù)數(shù)的性質(zhì);(2)一元二次方程根的判別式.14、(a-b)(a-b+1)【解析】原式變形后,提取公因式即可得到結(jié)果.【詳解】解:原式=(a-b)2+(a-b)=(a-b)(a-b+1),
故答案為:(a-b)(a-b+1)此題考查了因式分解-提公因式法,熟練掌握提取公因式的方法是解本題的關(guān)鍵.15、(8072,0)【分析】利用勾股定理得到AB的長度,結(jié)合圖形可求出圖③的直角頂點的坐標(biāo);根據(jù)圖形不難發(fā)現(xiàn),每3個圖形為一個循環(huán)組依次循環(huán),且下一組的第一個圖形與上一組的最后一個圖形的直角頂點重合.【詳解】∵∠AOB=90°,OA=3,OB=4,∴AB===5,∴旋轉(zhuǎn)得到圖③的直角頂點的坐標(biāo)為(12,0);根據(jù)圖形,每3個圖形為一個循環(huán)組,3+5+4=12,因為2018÷3=672…2所以圖2018的直角頂點在x軸上,橫坐標(biāo)為672×12+3+5=8072,所以圖2018的頂點坐標(biāo)為(8072,0),故答案是:(8072,0).本題考查了旋轉(zhuǎn)的性質(zhì)與規(guī)律的知識點,解題的關(guān)鍵是根據(jù)點的坐標(biāo)找出規(guī)律.16、125°【分析】根據(jù)等腰直角三角形的性質(zhì)得到∠CAB=45°,根據(jù)旋轉(zhuǎn)的性質(zhì)得到∠BAB′=80°,結(jié)合圖形計算即可.【詳解】解:∵△ABC是等腰直角三角形,∴∠CAB=45°,由旋轉(zhuǎn)的性質(zhì)可知,∠BAB′=80°,∴∠CAB′=∠CAB+∠BAB′=125°,故答案為:125°.本題考查旋轉(zhuǎn)的性質(zhì),關(guān)鍵在于熟練掌握基礎(chǔ)性質(zhì).17、64【分析】根據(jù)等弧所對的圓心角相等求得∠AOE=∠COA=32°,所以∠COE=∠AOE+∠COA=64°.【詳解】解:∵弧AE=弧AC,(已知)
∴∠AOE=∠COA(等弧所對的圓心角相等);
又∠AOE=32°,
∴∠COA=32°,
∴∠COE=∠AOE+∠COA=64°.
故答案是:64°.本題考查圓心角、弧、弦的關(guān)系.在同圓或等圓中,兩個圓心角、兩條弧、兩條弦三組量之間,如果有一組量相等,那么,它們所對應(yīng)的其它量也相等.18、【分析】直接利用函數(shù)圖象與x軸的交點再結(jié)合函數(shù)圖象得出答案.【詳解】解:如圖所示,圖象與x軸交于(-1,0),(1,0),故當(dāng)y<0時,x的取值范圍是:-1<x<1.故答案為:-1<x<1.此題主要考查了拋物線與x軸的交點,正確數(shù)形結(jié)合分析是解題關(guān)鍵.三、解答題(共66分)19、(1)S=﹣x2+8x,其中0<x<8;(2)能,理由見解析;(3)當(dāng)x=4米時,矩形的最大面積為16平方米,設(shè)計費最多,最多是32000元.【解析】試題分析:(1)由矩形的一邊長為x、周長為16得出另一邊長為8﹣x,根據(jù)矩形的面積公式可得答案;(2)由設(shè)計費為24000元得出矩形面積為12平方米,據(jù)此列出方程,解之求得x的值,從而得出答案;(3)將函數(shù)解析式配方成頂點式,可得函數(shù)的最值情況.試題解析:(1)∵矩形的一邊為x米,周長為16米,∴另一邊長為(8﹣x)米,∴S=x(8﹣x)=,其中0<x<8,即(0<x<8);(2)能,∵設(shè)計費能達到24000元,∴當(dāng)設(shè)計費為24000元時,面積為24000÷200=12(平方米),即=12,解得:x=2或x=6,∴設(shè)計費能達到24000元.(3)∵=,∴當(dāng)x=4時,S最大值=16,∴當(dāng)x=4米時,矩形的最大面積為16平方米,設(shè)計費最多,最多是32000元.考點:二次函數(shù)的應(yīng)用;一元二次方程的應(yīng)用;二次函數(shù)的最值;最值問題.20、(1);(2)的值不變化,值為,理由見解析;(3)【分析】(1)由平行線分線段成比例定理即可得出答案;(2)證明△ABD∽△ACE,得出==(3)作AE⊥CD于E,DM⊥AC于M,DN⊥BC于N,則DM=CN,DN=MC,由三角函數(shù)定義得出=,=,得出=,求出AE=AD=,DE=AE=,得出CE=CD﹣DE=,由勾股定理得出AC==,得出BC=AC=,由面積法求出CN=DM=,得出BN=BC+CN=,由勾股定理得出AM==,得出DN=MC=AM+AC=,再由勾股定理即可得出答案.【詳解】(1)∵DE∥BC,∴===;故答案為:;(2)的值不變化,值為;理由如下:由(1)得:DE∥B,∴△ADE∽△ABC,∴=,由旋轉(zhuǎn)的性質(zhì)得:∠BAD=∠CAE,∴△ABD∽△ACE,∴==;(3)作AE⊥CD于E,DM⊥AC于M,DN⊥BC于N,如圖3所示:則四邊形DMCN是矩形,∴DM=CN,DN=MC,∵∠BAC=∠ADC=θ,且tanθ=,∴=,=,∴=,∴AE=AD=×3=,DE=AE=,∴CE=CD﹣DE=6﹣=,∴AC===∴BC=AC=,∵△ACD的面積=AC×DM=CD×AE,∴CN=DM==,∴BN=BC+CN=,AM===,∴DN=MC=AM+AC=,∴BD===.本題是四邊形綜合題目,考查了相似三角形的判定與性質(zhì)、旋轉(zhuǎn)的性質(zhì)、平行線分線段成比例定理、矩形的判定與性質(zhì)、勾股定理、三角函數(shù)定義、三角形面積等知識;熟練掌握相似三角形的判定與性質(zhì)和勾股定理是解題的關(guān)鍵.21、(1)拋物線的方點坐標(biāo)是,;(2)當(dāng)時,的面積最大,最大值為;(3)存在,或【分析】(1)由定義得出x=y,直接代入求解即可(2)作輔助線PD平行于y軸,先求出拋物線與直線的解析式,設(shè)出點P的坐標(biāo),利用點坐標(biāo)求出PD的長,進而求出面積的二次函數(shù),再利用配方法得出最大值(3)通過拋物線與直線的解析式可求出點B,C的坐標(biāo),得出△OBC為等腰直角三角形,過點C作交x軸于點M,作交y軸于點N,得出M,N的坐標(biāo),得出直線BN、MC的解析式然后解方程組即可.【詳解】解:(1)由題意得:∴解得,∴拋物線的方點坐標(biāo)是,.(2)過點作軸的平行線交于點.易得平移后拋物線的表達式為,直線的解析式為.設(shè),則.∴∴∴當(dāng)時,的面積最大,最大值為.(3)如圖所示,過點C作交x軸于點M,作交y軸于點N由已知條件得出點B的坐標(biāo)為B(3,0),C的坐標(biāo)為C(0,3),∴△COB是等腰直角三角形,∴可得出M、N的坐標(biāo)分別為:M(-3,0),N(0,-3)直線CM的解析式為:y=x+3直線BN的解析式為:y=x-3由此可得出:或解方程組得出:或∴或本題是一道關(guān)于二次函數(shù)的綜合題目,解題的關(guān)鍵是根據(jù)題意得出拋物線與直線的解析式.22、(1);(2)無變化,理由見解析;(3)圖③中;圖④中;【分析】(1)問題發(fā)現(xiàn):由勾股定理可求AC的長,由中點的性質(zhì)可求AE,BD的長,即可求解;(2)拓展探究:通過證明△ACE∽△BCD,可得;(3)問題解決:由三角形中位線定理可求DE=1,∠EDC=∠B=90°,由勾股定理可求AD的長,即可求AE的長.【詳解】解:(1)問題發(fā)現(xiàn):∵∠B=90°,AB=2,BC=6,∴AC=,∵點D,E分別是邊BC,AC的中點,∴AE=EC=,BD=CD=3,∴,故答案為:;(2)無變化;證明如下:∵點,分別是邊,的中點,∴由旋轉(zhuǎn)的性質(zhì),,,∵,,∴,∴,∴;(3)如圖③,∵點D,E分別是邊BC,AC的中點,∴DE=AB=1,DE∥AB,∴∠CDE=∠B=90°,∵將△EDC繞點C順時針方向旋轉(zhuǎn),∴∠CDE=90°=∠ADC,∴AD=,∴AE=AD+DE=;如圖④,由上述可知:AD=,∴;本題是相似形綜合題,考查了相似三角形的判定和性質(zhì),旋轉(zhuǎn)的性質(zhì),勾股定理等知識,解題的關(guān)鍵是理解題意,正確尋找相似三角形解決問題,屬于中考??碱}型.23、(1)見解析;(2)見解析;(3)四邊形ABED的面積為1.【分析】(1)由平行線的性質(zhì)和公共角即可得出結(jié)論;(2)先證明四邊形ABED是平行四邊形,再證出AD=AB,即可得出四邊形ABED為菱形;(3)連接AE交BD于O,由菱形的性質(zhì)得出BD⊥AE,OB=OD,由相似三角形的性質(zhì)得出AB=3DF=5,求出OB=3,由勾股定理求出OA=4,AE=8,由菱形面積公式即可得出結(jié)果.【詳解】(1)證明:∵EF∥AB,∴∠CFD=∠CAB,又∵∠C=∠C,∴△CFD∽△CAB;(2)證明:∵EF∥AB,BE∥AD,∴四邊形ABED是平行四邊形,∵BC=3CD,∴BC:CD=3:1,∵△CFD∽△CAB,∴AB:DF=BC:CD=3:1,∴AB=3DF,∵AD=3DF,∴AD=AB,∴四邊形ABED為菱形;(3)解:連接AE交BD于O,如圖所示:∵四邊形ABED為菱形,∴BD⊥AE,OB=OD,∴∠AOB=90°,∵△CFD∽△CAB,∴AB:DF=BC:CD=3:1,∴AB=3DF=5,∵BC=3CD=9,∴CD=3,BD=6,∴OB=3,由勾股定理得:OA==4,∴AE=8,∴四邊形ABED的面積=AE×BD=×8×6=1.本題考查了相似三角形的判定與性質(zhì)、菱形的判定和性質(zhì)、平行四邊形的判定、勾股定理、菱形的面積公式,熟練掌握相似三角形的判定與性質(zhì),證明四邊形是菱形是解題的關(guān)鍵.24、(1);(2)DF=AE,理由見解析;(3)作圖見解析,30°或150°【分析】(1)直接利用等腰直角三角形的性質(zhì)計算即可得出結(jié)論;(2)先判斷出,進而得出△ABE∽△DBF,即可得出結(jié)論;(3)先判斷出點E在AD的中垂線上,再判斷出△BCE是等邊三角形,求出∠CBE=60°,再分兩種情況計算即可得出結(jié)論.【詳解】(1)∵BD是正方形ABCD的對角線,∴∠ABD=45,BD=AB,∵EF⊥AB,∴∠BEF=90,∴∠BFE=∠ABD=45,∴BE=EF,∴BF=BE,∴DF=BD﹣BF=AB﹣BE=(AB﹣BE)=AE,∴,故答案為:;(2)DF=AE,理由:由(1)知,BF=BE,BD=AB,∠BFE=∠ABD=45,∴,由旋轉(zhuǎn)知,∠ABE=∠DBF,∴△ABE∽△DBF,∴,∴DF=AE;(3)如圖3,連接DE,CE,∵EA=ED,∴點E在AD的中垂線上,∴AE=DE,BE=CE
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 城市更新中的老舊設(shè)施拆遷與重建
- 3.2定向越野初體驗·體驗定向越野 說課稿 2024-2025學(xué)年遼海版《綜合實踐活動》七年級上冊 -
- 8.2 公平正義的守護(教學(xué)設(shè)計)八年級道德與法治下冊同步備課系列(統(tǒng)編版)
- 《安全生產(chǎn)考試機構(gòu)和考試點管理規(guī)定》
- 老年大學(xué)心理健康與情緒管理創(chuàng)新創(chuàng)業(yè)項目商業(yè)計劃書
- 有機冬瓜種植園創(chuàng)新創(chuàng)業(yè)項目商業(yè)計劃書
- 精密金屬加工與組裝機器人行業(yè)跨境出海項目商業(yè)計劃書
- 美發(fā)護理產(chǎn)品行業(yè)跨境出海項目商業(yè)計劃書
- 虛擬現(xiàn)實音樂會票務(wù)創(chuàng)新創(chuàng)業(yè)項目商業(yè)計劃書
- 游泳池清潔與維護服務(wù)創(chuàng)新創(chuàng)業(yè)項目商業(yè)計劃書
- 2025年新生兒科常見疾病診斷試題答案及解析
- 律師調(diào)查報告委托合同9篇
- 尋烏縣2025年公開招聘社區(qū)工作者【10人】考試參考試題及答案解析
- 高校財會監(jiān)督與預(yù)算績效管理協(xié)同效能優(yōu)化研究
- 水庫巡查維護保潔人員配備及培訓(xùn)
- 酸棗樹栽培方法
- 進行性球麻痹的護理查房
- 抖音汽車直播培訓(xùn)方案
- 生物技術(shù)與醫(yī)藥研發(fā)的前沿與應(yīng)用
- 《建筑基坑工程監(jiān)測技術(shù)標(biāo)準(zhǔn)》(50497-2019)
- 《中國政治思想史》課程教學(xué)大綱
評論
0/150
提交評論