人教版七年級數(shù)學下冊期末解答題壓軸題附答案_第1頁
人教版七年級數(shù)學下冊期末解答題壓軸題附答案_第2頁
人教版七年級數(shù)學下冊期末解答題壓軸題附答案_第3頁
人教版七年級數(shù)學下冊期末解答題壓軸題附答案_第4頁
人教版七年級數(shù)學下冊期末解答題壓軸題附答案_第5頁
已閱讀5頁,還剩31頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

人教版七年級數(shù)學下冊期末解答題壓軸題附答案(1)一、解答題1.如圖,用兩個面積為的小正方形拼成一個大的正方形.(1)則大正方形的邊長是;(2)若沿著大正方形邊的方向裁出一個長方形,能否使裁出的長方形紙片的長寬之比為,且面積為?2.如圖,用兩個面積為的小正方形紙片剪拼成一個大的正方形.(1)大正方形的邊長是________;(2)請你探究是否能將此大正方形紙片沿著邊的方向裁出一個面積為的長方形紙片,使它的長寬之比為,若能,求出這個長方形紙片的長和寬,若不能,請說明理由.3.工人師傅準備從一塊面積為36平方分米的正方形工料上裁剪出一塊面積為24平方分米的長方形的工件.(1)求正方形工料的邊長;(2)若要求裁下的長方形的長寬的比為4:3,問這塊正方形工料是否滿足需要?(參考數(shù)據(jù):,)4.學校要建一個面積是81平方米的草坪,草坪周圍用鐵柵欄圍繞,現(xiàn)有兩種方案:有人建議建成正方形,也有人建議建成圓形,如果從節(jié)省鐵柵欄費用的角度考慮(柵欄周長越小,費用越少),你選擇哪種方案?請說明理由.(π取3)5.如圖,用兩個邊長為10的小正方形拼成一個大的正方形.(1)求大正方形的邊長?(2)若沿此大正方形邊的方向出一個長方形,能否使裁出的長方形的長寬之比為3:2,且面積為480cm2?二、解答題6.綜合與實踐課上,同學們以“一個直角三角形和兩條平行線”為背景開展數(shù)學活動,如圖,已知兩直線,且是直角三角形,,操作發(fā)現(xiàn):(1)如圖1.若,求的度數(shù);(2)如圖2,若的度數(shù)不確定,同學們把直線向上平移,并把的位置改變,發(fā)現(xiàn),請說明理由.(3)如圖3,若∠A=30°,平分,此時發(fā)現(xiàn)與又存在新的數(shù)量關系,請寫出與的數(shù)量關系并說明理由.7.如圖,∠EBF=50°,點C是∠EBF的邊BF上一點.動點A從點B出發(fā)在∠EBF的邊BE上,沿BE方向運動,在動點A運動的過程中,始終有過點A的射線AD∥BC.(1)在動點A運動的過程中,(填“是”或“否”)存在某一時刻,使得AD平分∠EAC?(2)假設存在AD平分∠EAC,在此情形下,你能猜想∠B和∠ACB之間有何數(shù)量關系?并請說明理由;(3)當AC⊥BC時,直接寫出∠BAC的度數(shù)和此時AD與AC之間的位置關系.8.綜合與探究(問題情境)王老師組織同學們開展了探究三角之間數(shù)量關系的數(shù)學活動(1)如圖1,,點、分別為直線、上的一點,點為平行線間一點,請直接寫出、和之間的數(shù)量關系;(問題遷移)(2)如圖2,射線與射線交于點,直線,直線分別交、于點、,直線分別交、于點、,點在射線上運動,①當點在、(不與、重合)兩點之間運動時,設,.則,,之間有何數(shù)量關系?請說明理由.②若點不在線段上運動時(點與點、、三點都不重合),請你畫出滿足條件的所有圖形并直接寫出,,之間的數(shù)量關系.9.如圖1,把一塊含30°的直角三角板ABC的BC邊放置于長方形直尺DEFG的EF邊上.(1)根據(jù)圖1填空:∠1=°,∠2=°;(2)現(xiàn)把三角板繞B點逆時針旋轉n°.①如圖2,當n=25°,且點C恰好落在DG邊上時,求∠1、∠2的度數(shù);②當0°<n<180°時,是否會存在三角板某一邊所在的直線與直尺(有四條邊)某一邊所在的直線垂直?如果存在,請直接寫出所有n的值和對應的那兩條垂線;如果不存在,請說明理由.10.如圖,已知直線射線CD,.P是射線EB上一動點,過點P作PQEC交射線CD于點Q,連接CP.作,交直線AB于點F,CG平分.(1)若點P,F(xiàn),G都在點E的右側,求的度數(shù);(2)若點P,F(xiàn),G都在點E的右側,,求的度數(shù);(3)在點P的運動過程中,是否存在這樣的情形,使?若存在,求出的度數(shù);若不存在,請說明理由.三、解答題11.如圖,以直角三角形的直角頂點為原點,以、所在直線為軸和軸建立平面直角坐標系,點,滿足.(1)點的坐標為______;點的坐標為______.(2)如圖1,已知坐標軸上有兩動點、同時出發(fā),點從點出發(fā)沿軸負方向以1個單位長度每秒的速度勻速移動,點從點出發(fā)以2個單位長度每秒的速度沿軸正方向移動,點到達點整個運動隨之結束.的中點的坐標是,設運動時間為.問:是否存在這樣的,使?若存在,請求出的值:若不存在,請說明理由.(3)如圖2,過作,作交于點,點是線段上一動點,連交于點,當點在線段上運動的過程中,的值是否會發(fā)生變化?若不變,請求出它的值:若變化,請說明理由.12.長江汛期即將來臨,防汛指揮部在一危險地帶兩岸各安置了一探照燈,便于夜間查看江水及兩岸河堤的情況,如圖,燈A射線自順時針旋轉至便立即回轉,燈B射線自順時針旋轉至便立即回轉,兩燈不停交叉照射巡視,若燈A轉動的速度是a°/秒,燈B轉動的速度是b°/秒,且a、b滿足.假定這一帶長江兩岸河堤是平行的,即,且(1)求a、b的值;(2)若燈B射線先轉動45秒,燈A射線才開始轉動,當燈B射線第一次到達時運動停止,問A燈轉動幾秒,兩燈的光束互相平行?(3)如圖,兩燈同時轉動,在燈A射線到達之前.若射出的光束交于點C,過C作交于點D,則在轉動過程中,與的數(shù)量關系是否發(fā)生變化?若不變,請求出其數(shù)量關系;若改變,請求出其取值范圍.13.已知,交AC于點E,交AB于點F.(1)如圖1,若點D在邊BC上,①補全圖形;②求證:.(2)點G是線段AC上的一點,連接FG,DG.①若點G是線段AE的中點,請你在圖2中補全圖形,判斷,,之間的數(shù)量關系,并證明;②若點G是線段EC上的一點,請你直接寫出,,之間的數(shù)量關系.14.已知直線,點分別為,上的點.(1)如圖1,若,,,求與的度數(shù);(2)如圖2,若,,,則_________;(3)若把(2)中“,,”改為“,,”,則_________.(用含的式子表示)15.如圖,兩個形狀,大小完全相同的含有30°、60°的三角板如圖放置,PA、PB與直線MN重合,且三角板PAC,三角板PBD均可以繞點P逆時針旋轉.(1)①如圖1,∠DPC=度.②我們規(guī)定,如果兩個三角形只要有一組邊平行,我們就稱這兩個三角形為“孿生三角形”,如圖1,三角板BPD不動,三角板PAC從圖示位置開始每秒10°逆時針旋轉一周(0°旋轉360°),問旋轉時間t為多少時,這兩個三角形是“孿生三角形”.(2)如圖3,若三角板PAC的邊PA從PN處開始繞點P逆時針旋轉,轉速3°/秒,同時三角板PBD的邊PB從PM處開始繞點P逆時針旋轉,轉速2°/秒,在兩個三角板旋轉過程中,(PC轉到與PM重合時,兩三角板都停止轉動).設兩個三角板旋轉時間為t秒,以下兩個結論:①為定值;②∠BPN+∠CPD為定值,請選擇你認為對的結論加以證明.四、解答題16.如圖,在中,是高,是角平分線,,.()求、和的度數(shù).()若圖形發(fā)生了變化,已知的兩個角度數(shù)改為:當,,則__________.當,時,則__________.當,時,則__________.當,時,則__________.()若和的度數(shù)改為用字母和來表示,你能找到與和之間的關系嗎?請直接寫出你發(fā)現(xiàn)的結論.17.Rt△ABC中,∠C=90°,點D、E分別是△ABC邊AC、BC上的點,點P是一動點.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若點P在線段AB上,如圖(1)所示,且∠α=50°,則∠1+∠2=°;(2)若點P在邊AB上運動,如圖(2)所示,則∠α、∠1、∠2之間的關系為:;(3)若點P運動到邊AB的延長線上,如圖(3)所示,則∠α、∠1、∠2之間有何關系?猜想并說明理由.(4)若點P運動到△ABC形外,如圖(4)所示,則∠α、∠1、∠2之間的關系為:.18.如圖①所示,在三角形紙片中,,,將紙片的一角折疊,使點落在內的點處.(1)若,________.(2)如圖①,若各個角度不確定,試猜想,,之間的數(shù)量關系,直接寫出結論.②當點落在四邊形外部時(如圖②),(1)中的猜想是否仍然成立?若成立,請說明理由,若不成立,,,之間又存在什么關系?請說明.(3)應用:如圖③:把一個三角形的三個角向內折疊之后,且三個頂點不重合,那么圖中的和是________.19.已知在中,,點在上,邊在上,在中,邊在直線上,;(1)如圖1,求的度數(shù);(2)如圖2,將沿射線的方向平移,當點在上時,求度數(shù);(3)將在直線上平移,當以為頂點的三角形是直角三角形時,直接寫出度數(shù).20.閱讀下列材料并解答問題:在一個三角形中,如果一個內角的度數(shù)是另一個內角度數(shù)的3倍,那么這樣的三角形我們稱為“夢想三角形”例如:一個三角形三個內角的度數(shù)分別是120°,40°,20°,這個三角形就是一個“夢想三角形”.反之,若一個三角形是“夢想三角形”,那么這個三角形的三個內角中一定有一個內角的度數(shù)是另一個內角度數(shù)的3倍.(1)如果一個“夢想三角形”有一個角為108°,那么這個“夢想三角形”的最小內角的度數(shù)為__________(2)如圖1,已知∠MON=60°,在射線OM上取一點A,過點A作AB⊥OM交ON于點B,以A為端點作射線AD,交線段OB于點C(點C不與O、B重合),若∠ACB=80°.判定△AOB、△AOC是否是“夢想三角形”,為什么?(3)如圖2,點D在△ABC的邊上,連接DC,作∠ADC的平分線交AC于點E,在DC上取一點F,使得∠EFC+∠BDC=180°,∠DEF=∠B.若△BCD是“夢想三角形”,求∠B的度數(shù).【參考答案】一、解答題1.(1);(2)無法裁出這樣的長方形.【分析】(1)先計算兩個小正方形的面積之和,在根據(jù)算術平方根的定義,即可求解;(2)設長方形長為cm,寬為cm,根據(jù)題意列出方程,解方程比較4x與20的大小解析:(1);(2)無法裁出這樣的長方形.【分析】(1)先計算兩個小正方形的面積之和,在根據(jù)算術平方根的定義,即可求解;(2)設長方形長為cm,寬為cm,根據(jù)題意列出方程,解方程比較4x與20的大小即可.【詳解】解:(1)由題意得,大正方形的面積為200+200=400cm2,∴邊長為:;根據(jù)題意設長方形長為cm,寬為cm,由題:則長為無法裁出這樣的長方形.【點睛】本題考查了算術平方根,根據(jù)題意列出算式(方程)是解決此題的關鍵.2.(1)4;(2)不能,理由見解析.【分析】(1)根據(jù)已知正方形的面積求出大正方形的邊長即可;(2)先設未知數(shù)根據(jù)面積=14(cm2)列方程,求出長方形的邊長,將長方形的長與正方形邊長比較大小再解析:(1)4;(2)不能,理由見解析.【分析】(1)根據(jù)已知正方形的面積求出大正方形的邊長即可;(2)先設未知數(shù)根據(jù)面積=14(cm2)列方程,求出長方形的邊長,將長方形的長與正方形邊長比較大小再判斷即可.【詳解】解:(1)兩個正方形面積之和為:2×8=16(cm2),∴拼成的大正方形的面積=16(cm2),∴大正方形的邊長是4cm;故答案為:4;(2)設長方形紙片的長為2xcm,寬為xcm,則2x?x=14,解得:,2x=2>4,∴不存在長寬之比為且面積為的長方形紙片.【點睛】本題考查了算術平方根,能夠根據(jù)題意列出算式是解此題的關鍵.3.(1)6分米;(2)滿足.【分析】(1)由正方形面積可知,求出的值即可;(2)設長方形的長寬分別為4a分米、3a分米,根據(jù)面積得出方程,求出,求出長方形的長和寬和6比較即可.【詳解】解:(解析:(1)6分米;(2)滿足.【分析】(1)由正方形面積可知,求出的值即可;(2)設長方形的長寬分別為4a分米、3a分米,根據(jù)面積得出方程,求出,求出長方形的長和寬和6比較即可.【詳解】解:(1)正方形工料的邊長為分米;(2)設長方形的長為4a分米,則寬為3a分米.則,解得:,長為,寬為∴滿足要求.【點睛】本題主要考查了算術平方根及實數(shù)大小比較,用了轉化思想,即把實際問題轉化成數(shù)學問題.4.選擇建成圓形草坪的方案,理由詳見解析【分析】根據(jù)正方形的面積公式、算術平方根的概念求出正方形的邊長,求出正方形的周長,根據(jù)圓的面積公式、算術平方根的概念求出圓的半徑,求出圓的周長,比較大小得到答解析:選擇建成圓形草坪的方案,理由詳見解析【分析】根據(jù)正方形的面積公式、算術平方根的概念求出正方形的邊長,求出正方形的周長,根據(jù)圓的面積公式、算術平方根的概念求出圓的半徑,求出圓的周長,比較大小得到答案.【詳解】解:選擇建成圓形草坪的方案,理由如下:設建成正方形時的邊長為x米,由題意得:x2=81,解得:x=±9,∵x>0,∴x=9,∴正方形的周長為4×9=36,設建成圓形時圓的半徑為r米,由題意得:πr2=81.解得:,∵r>0.∴,∴圓的周長=,∵,∴,∴建成圓形草坪時所花的費用較少,故選擇建成圓形草坪的方案.【點睛】本題考查的是算術平方根的應用,掌握算術平方根概念是解題的關鍵.5.(1)大正方形的邊長是;(2)不能【分析】(1)根據(jù)已知正方形的面積求出大正方形的面積,即可求出邊長;(2)先求出長方形的邊長,再判斷即可.【詳解】(1)大正方形的邊長是(2)設長方形紙解析:(1)大正方形的邊長是;(2)不能【分析】(1)根據(jù)已知正方形的面積求出大正方形的面積,即可求出邊長;(2)先求出長方形的邊長,再判斷即可.【詳解】(1)大正方形的邊長是(2)設長方形紙片的長為3xcm,寬為2xcm,則3x?2x=480,解得:x=因為,所以沿此大正方形邊的方向剪出一個長方形,不能使剪出的長方形紙片的長寬之比為2:3,且面積為480cm2.【點睛】本題考查算術平方根,解題的關鍵是能根據(jù)題意列出算式.二、解答題6.(1)42°;(2)見解析;(3)∠1=∠2,理由見解析【分析】(1)由平角定義求出∠3=42°,再由平行線的性質即可得出答案;(2)過點B作BD∥a.由平行線的性質得∠2+∠ABD=180°解析:(1)42°;(2)見解析;(3)∠1=∠2,理由見解析【分析】(1)由平角定義求出∠3=42°,再由平行線的性質即可得出答案;(2)過點B作BD∥a.由平行線的性質得∠2+∠ABD=180°,∠1=∠DBC,則∠ABD=∠ABC-∠DBC=60°-∠1,進而得出結論;(3)過點C

作CP∥a,由角平分線定義得∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,由平行線的性質得∠1=∠BAM=60°,∠PCA=∠CAM=30°,∠2=∠BCP=60°,即可得出結論.【詳解】解:(1)∵∠1=48°,∠BCA=90°,∴∠3=180°-∠BCA-∠1=180°-90°-48°=42°,∵a∥b,∴∠2=∠3=42°;(2)理由如下:過點B作BD∥a.如圖2所示:則∠2+∠ABD=180°,∵a∥b,∴b∥BD,∴∠1=∠DBC,∴∠ABD=∠ABC-∠DBC=60°-∠1,∴∠2+60°-∠1=180°,∴∠2-∠1=120°;(3)∠1=∠2,理由如下:過點C

作CP∥a,如圖3所示:∵AC平分∠BAM∴∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,又∵a∥b,∴CP∥b,∠1=∠BAM=60°,∴∠PCA=∠CAM=30°,∴∠BCP=∠BCA-∠PCA=90°-30°=60°,又∵CP∥a,∴∠2=∠BCP=60°,∴∠1=∠2.【點睛】本題是三角形綜合題目,考查了平移的性質、直角三角形的性質、平行線的判定與性質、角平分線定義、平角的定義等知識;本題綜合性強,熟練掌握平移的性質和平行線的性質是解題的關鍵.7.(1)是;(2)∠B=∠ACB,證明見解析;(3)∠BAC=40°,AC⊥AD.【分析】(1)要使AD平分∠EAC,則要求∠EAD=∠CAD,由平行線的性質可得∠B=∠EAD,∠ACB=∠CAD解析:(1)是;(2)∠B=∠ACB,證明見解析;(3)∠BAC=40°,AC⊥AD.【分析】(1)要使AD平分∠EAC,則要求∠EAD=∠CAD,由平行線的性質可得∠B=∠EAD,∠ACB=∠CAD,則當∠ACB=∠B時,有AD平分∠EAC;(2)根據(jù)角平分線可得∠EAD=∠CAD,由平行線的性質可得∠B=∠EAD,∠ACB=∠CAD,則有∠ACB=∠B;(3)由AC⊥BC,有∠ACB=90°,則可求∠BAC=40°,由平行線的性質可得AC⊥AD.【詳解】解:(1)是,理由如下:要使AD平分∠EAC,則要求∠EAD=∠CAD,由平行線的性質可得∠B=∠EAD,∠ACB=∠CAD,則當∠ACB=∠B時,有AD平分∠EAC;故答案為:是;(2)∠B=∠ACB,理由如下:∵AD平分∠EAC,∴∠EAD=∠CAD,∵AD∥BC,∴∠B=∠EAD,∠ACB=∠CAD,∴∠B=∠ACB.(3)∵AC⊥BC,∴∠ACB=90°,∵∠EBF=50°,∴∠BAC=40°,∵AD∥BC,∴AD⊥AC.【點睛】此題考查了角平分線和平行線的性質,熟練掌握角平分線和平行線的有關性質是解題的關鍵.8.(1);(2)①,理由見解析;②圖見解析,或【分析】(1)作PQ∥EF,由平行線的性質,即可得到答案;(2)①過作交于,由平行線的性質,得到,,即可得到答案;②根據(jù)題意,可對點P進行分類討論解析:(1);(2)①,理由見解析;②圖見解析,或【分析】(1)作PQ∥EF,由平行線的性質,即可得到答案;(2)①過作交于,由平行線的性質,得到,,即可得到答案;②根據(jù)題意,可對點P進行分類討論:當點在延長線時;當在之間時;與①同理,利用平行線的性質,即可求出答案.【詳解】解:(1)作PQ∥EF,如圖:∵,∴,∴,,∵∴;(2)①;理由如下:如圖,過作交于,∵,∴,∴,,∴;②當點在延長線時,如備用圖1:∵PE∥AD∥BC,∴∠EPC=,∠EPD=,∴;當在之間時,如備用圖2:∵PE∥AD∥BC,∴∠EPD=,∠CPE=,∴.【點睛】本題考查了平行線的性質,解題的關鍵是熟練掌握兩直線平行同旁內角互補,兩直線平行內錯角相等,從而得到角的關系.9.(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②見解析【分析】(1)根據(jù)鄰補角的定義和平行線的性質解答;(2)①根據(jù)鄰補角的定義求出∠ABE,再根據(jù)兩直線平行,同位角相解析:(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②見解析【分析】(1)根據(jù)鄰補角的定義和平行線的性質解答;(2)①根據(jù)鄰補角的定義求出∠ABE,再根據(jù)兩直線平行,同位角相等可得∠1=∠ABE,根據(jù)兩直線平行,同旁內角互補求出∠BCG,然后根據(jù)周角等于360°計算即可得到∠2;②結合圖形,分AB、BC、AC三條邊與直尺垂直討論求解.【詳解】解:(1)∠1=180°-60°=120°,∠2=90°;故答案為:120,90;(2)①如圖2,∵∠ABC=60°,∴∠ABE=180°-60°-n°=120°-n°,∵DG∥EF,∴∠1=∠ABE=120°-n°,∠BCG=180°-∠CBF=180°-n°,∵∠ACB+∠BCG+∠2=360°,∴∠2=360°-∠ACB-∠BCG=360°-90°-(180°-n°)=90°+n°;②當n=30°時,∵∠ABC=60°,∴∠ABF=30°+60°=90°,AB⊥DG(EF);當n=90°時,∠C=∠CBF=90°,∴BC⊥DG(EF),AC⊥DE(GF);當n=120°時,∴AB⊥DE(GF).【點睛】本題考查了平行線角的計算,垂線的定義,主要利用了平行線的性質,直角三角形的性質,讀懂題目信息并準確識圖是解題的關鍵.10.(1)40°;(2)65°;(3)存在,56°或20°【分析】(1)依據(jù)平行線的性質以及角平分線的定義,即可得到∠PCG的度數(shù);(2)依據(jù)平行線的性質以及角平分線的定義,即可得到∠ECG=∠G解析:(1)40°;(2)65°;(3)存在,56°或20°【分析】(1)依據(jù)平行線的性質以及角平分線的定義,即可得到∠PCG的度數(shù);(2)依據(jù)平行線的性質以及角平分線的定義,即可得到∠ECG=∠GCF=25°,再根據(jù)PQ∥CE,即可得出∠CPQ=∠ECP=65°;(3)設∠EGC=4x,∠EFC=3x,則∠GCF=4x-3x=x,分兩種情況討論:①當點G、F在點E的右側時,②當點G、F在點E的左側時,依據(jù)等量關系列方程求解即可.【詳解】解:(1)∵∠CEB=100°,AB∥CD,∴∠ECQ=80°,∵∠PCF=∠PCQ,CG平分∠ECF,∴∠PCG=∠PCF+∠FCG=∠QCF+∠FCE=∠ECQ=40°;(2)∵AB∥CD∴∠QCG=∠EGC,∠QCG+∠ECG=∠ECQ=80°,∴∠EGC+∠ECG=80°,又∵∠EGC-∠ECG=30°,∴∠EGC=55°,∠ECG=25°,∴∠ECG=∠GCF=25°,∠PCF=∠PCQ=(80°-50°)=15°,∵PQ∥CE,∴∠CPQ=∠ECP=65°;(3)設∠EGC=4x,∠EFC=3x,則∠GCF=∠FCD=4x-3x=x,①當點G、F在點E的右側時,則∠ECG=x,∠PCF=∠PCD=x,∵∠ECD=80°,∴x+x+x+x=80°,解得x=16°,∴∠CPQ=∠ECP=x+x+x=56°;②當點G、F在點E的左側時,則∠ECG=∠GCF=x,∵∠CGF=180°-4x,∠GCQ=80°+x,∴180°-4x=80°+x,解得x=20°,∴∠FCQ=∠ECF+∠ECQ=40°+80°=120°,∴∠PCQ=∠FCQ=60°,∴∠CPQ=∠ECP=80°-60°=20°.【點睛】本題主要考查了平行線的性質,解題時注意:兩直線平行,同旁內角互補;兩直線平行,內錯角相等.三、解答題11.(1),;(2)1;(3)不變,值為2【分析】(1)根據(jù)絕對值和算術平方根的非負性,求得a,b的值,再利用中點坐標公式即可得出答案;(2)先得出CP=t,OP=2-t,OQ=2t,AQ=4-解析:(1),;(2)1;(3)不變,值為2【分析】(1)根據(jù)絕對值和算術平方根的非負性,求得a,b的值,再利用中點坐標公式即可得出答案;(2)先得出CP=t,OP=2-t,OQ=2t,AQ=4-2t,再根據(jù)S△ODP=S△ODQ,列出關于t的方程,求得t的值即可;(3)過H點作AC的平行線,交x軸于P,先判定OG∥AC,再根據(jù)角的和差關系以及平行線的性質,得出∠PHO=∠GOF=∠1+∠2,∠OHC=∠OHP+∠PHC=∠GOF+∠4=∠1+∠2+∠4,最后代入進行計算即可.【詳解】解:(1)∵+|b-2|=0,∴a-2b=0,b-2=0,解得a=4,b=2,∴A(0,4),C(2,0).(2)存在,理由:如圖1中,D(1,2),由條件可知:P點從C點運動到O點時間為2秒,Q點從O點運動到A點時間為2秒,∴0<t≤2時,點Q在線段AO上,即CP=t,OP=2-t,OQ=2t,AQ=4-2t,∴S△DOP=?OP?yD=(2-t)×2=2-t,S△DOQ=?OQ?xD=×2t×1=t,∵S△ODP=S△ODQ,∴2-t=t,∴t=1.(3)結論:的值不變,其值為2.理由如下:如圖2中,∵∠2+∠3=90°,又∵∠1=∠2,∠3=∠FCO,∴∠GOC+∠ACO=180°,∴OG∥AC,∴∠1=∠CAO,∴∠OEC=∠CAO+∠4=∠1+∠4,如圖,過H點作AC的平行線,交x軸于P,則∠4=∠PHC,PH∥OG,∴∠PHO=∠GOF=∠1+∠2,∴∠OHC=∠OHP+∠PHC=∠GOF+∠4=∠1+∠2+∠4,∴=2.【點睛】本題主要考查三角形綜合題、非負數(shù)的性質、三角形的面積、平行線的性質等知識,解題的關鍵是學會添加常用輔助線,學會用轉化的思想思考問題.12.(1),;(2)15秒或63秒;(3)不發(fā)生變化,【分析】(1)利用非負數(shù)的性質解決問題即可.(2)分三種情形,利用平行線的性質構建方程即可解決問題.(3)由參數(shù)表示,即可判斷.【詳解】解析:(1),;(2)15秒或63秒;(3)不發(fā)生變化,【分析】(1)利用非負數(shù)的性質解決問題即可.(2)分三種情形,利用平行線的性質構建方程即可解決問題.(3)由參數(shù)表示,即可判斷.【詳解】解:(1)∵,∴,,;(2)設燈轉動秒,兩燈的光束互相平行,①當時,,解得;②當時,,解得;③當時,,解得,(不合題意)綜上所述,當t=15秒或63秒時,兩燈的光束互相平行;(3)設燈轉動時間為秒,,,又,,而,,,即.【點睛】本題考查平行線的性質和判定,非負數(shù)的性質等知識,解題的關鍵是理解題意,學會利用參數(shù)構建方程解決問題,屬于中考??碱}型.13.(1)①見解析;②;見解析(2)①∠AFG+∠EDG=∠DGF;②∠AFG-∠EDG=∠DGF【分析】(1)①根據(jù)題意畫出圖形;②依據(jù)DE∥AB,DF∥AC,可得∠EDF+∠AFD=180°,∠解析:(1)①見解析;②;見解析(2)①∠AFG+∠EDG=∠DGF;②∠AFG-∠EDG=∠DGF【分析】(1)①根據(jù)題意畫出圖形;②依據(jù)DE∥AB,DF∥AC,可得∠EDF+∠AFD=180°,∠A+∠AFD=180°,進而得出∠EDF=∠A;(2)①過G作GH∥AB,依據(jù)平行線的性質,即可得到∠AFG+∠EDG=∠FGH+∠DGH=∠DGF;②過G作GH∥AB,依據(jù)平行線的性質,即可得到∠AFG-∠EDG=∠FGH-∠DGH=∠DGF.【詳解】解:(1)①如圖,②∵DE∥AB,DF∥AC,∴∠EDF+∠AFD=180°,∠A+∠AFD=180°,∴∠EDF=∠A;(2)①∠AFG+∠EDG=∠DGF.如圖2所示,過G作GH∥AB,∵AB∥DE,∴GH∥DE,∴∠AFG=∠FGH,∠EDG=∠DGH,∴∠AFG+∠EDG=∠FGH+∠DGH=∠DGF;②∠AFG-∠EDG=∠DGF.如圖所示,過G作GH∥AB,∵AB∥DE,∴GH∥DE,∴∠AFG=∠FGH,∠EDG=∠DGH,∴∠AFG-∠EDG=∠FGH-∠DGH=∠DGF.【點睛】本題考查了平行線的判定和性質:兩直線平行,內錯角相等.正確的作出輔助線是解題的關鍵.14.(1)120o,120o;(2)160;(3)【分析】(1)過點作,,根據(jù),平行線的性質和周角可求出,則,再根據(jù),,可得,,可求出,,根據(jù)即可得到結果;(2)同理(1)的求法,解析:(1)120o,120o;(2)160;(3)【分析】(1)過點作,,根據(jù),平行線的性質和周角可求出,則,再根據(jù),,可得,,可求出,,根據(jù)即可得到結果;(2)同理(1)的求法,根據(jù),,求解即可;(3)同理(1)的求法,根據(jù),,求解即可;【詳解】解:(1)如圖示,分別過點作,,∵,∴,∴,∴,∴,∵,∴,又∵,∴,,∴.(2)如圖示,分別過點作,,∵,∴,∴,∴,∴,∵,∴,又∵,∴,,∴.故答案為:160;(3)同理(1)的求法∵,∴,∴,∴,∴,∵,∴,又∵,∴,,∴.故答案為:.【點睛】本題主要考查了平行線的性質和角度的運算,熟悉相關性質是解題的關鍵.15.(1)①90;②t為或或或或或或;(2)①正確,②錯誤,證明見解析.【分析】(1)①由平角的定義,結合已知條件可得:從而可得答案;②當時,有兩種情況,畫出符合題意的圖形,利用平行線的性質與角的和解析:(1)①90;②t為或或或或或或;(2)①正確,②錯誤,證明見解析.【分析】(1)①由平角的定義,結合已知條件可得:從而可得答案;②當時,有兩種情況,畫出符合題意的圖形,利用平行線的性質與角的和差求解旋轉角,可得旋轉時間;當時,有兩種情況,畫出符合題意的圖形,利用平行線的性質與角的和差關系求解旋轉角,可得旋轉時間;當時,有兩種情況,畫出符合題意的圖形,利用平行線的性質與角的和差關系求解旋轉角,可得旋轉時間;當時,畫出符合題意的圖形,利用平行線的性質與角的和差關系求解旋轉角,可得旋轉時間;當時的旋轉時間與相同;(2)分兩種情況討論:當在上方時,當在下方時,①分別用含的代數(shù)式表示,從而可得的值;②分別用含的代數(shù)式表示,得到是一個含的代數(shù)式,從而可得答案.【詳解】解:(1)①∵∠DPC=180°﹣∠CPA﹣∠DPB,∠CPA=60°,∠DPB=30°,∴∠DPC=180﹣30﹣60=90°,故答案為90;②如圖1﹣1,當BD∥PC時,∵PC∥BD,∠DBP=90°,∴∠CPN=∠DBP=90°,∵∠CPA=60°,∴∠APN=30°,∵轉速為10°/秒,∴旋轉時間為3秒;如圖1﹣2,當PC∥BD時,∵∠PBD=90°,∴∠CPB=∠DBP=90°,∵∠CPA=60°,∴∠APM=30°,∵三角板PAC繞點P逆時針旋轉的角度為180°+30°=210°,∵轉速為10°/秒,∴旋轉時間為21秒,如圖1﹣3,當PA∥BD時,即點D與點C重合,此時∠ACP=∠BPD=30°,則AC∥BP,∵PA∥BD,∴∠DBP=∠APN=90°,∴三角板PAC繞點P逆時針旋轉的角度為90°,∵轉速為10°/秒,∴旋轉時間為9秒,如圖1﹣4,當PA∥BD時,∵∠DPB=∠ACP=30°,∴AC∥BP,∵PA∥BD,∴∠DBP=∠BPA=90°,∴三角板PAC繞點P逆時針旋轉的角度為90°+180°=270°,∵轉速為10°/秒,∴旋轉時間為27秒,如圖1﹣5,當AC∥DP時,∵AC∥DP,∴∠C=∠DPC=30°,∴∠APN=180°﹣30°﹣30°﹣60°=60°,∴三角板PAC繞點P逆時針旋轉的角度為60°,∵轉速為10°/秒,∴旋轉時間為6秒,如圖1﹣6,當時,∴三角板PAC繞點P逆時針旋轉的角度為∵轉速為10°/秒,∴旋轉時間為秒,如圖1﹣7,當AC∥BD時,∵AC∥BD,∴∠DBP=∠BAC=90°,∴點A在MN上,∴三角板PAC繞點P逆時針旋轉的角度為180°,∵轉速為10°/秒,∴旋轉時間為18秒,當時,如圖1-3,1-4,旋轉時間分別為:,綜上所述:當t為或或或或或或時,這兩個三角形是“孿生三角形”;(2)如圖,當在上方時,①正確,理由如下:設運動時間為t秒,則∠BPM=2t,∴∠BPN=180°﹣2t,∠DPM=30°﹣2t,∠APN=3t.∴∠CPD=180°﹣∠DPM﹣∠CPA﹣∠APN=90°﹣t,∴②∠BPN+∠CPD=180°﹣2t+90°﹣t=270°﹣3t,可以看出∠BPN+∠CPD隨著時間在變化,不為定值,結論錯誤.當在下方時,如圖,①正確,理由如下:設運動時間為t秒,則∠BPM=2t,∴∠BPN=180°﹣2t,∠DPM=∠APN=3t.∴∠CPD=∴②∠BPN+∠CPD=180°﹣2t+90°﹣t=270°﹣3t,可以看出∠BPN+∠CPD隨著時間在變化,不為定值,結論錯誤.綜上:①正確,②錯誤.【點睛】本題考查的是角的和差倍分關系,平行線的性質與判定,角的動態(tài)定義(旋轉角)的理解,掌握分類討論的思想是解題的關鍵.四、解答題16.(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)當時,;當時,.【分析】(1)先利用三角形內角和定理求出的度數(shù),再根據(jù)角平分線和高的性質分別得出和的度數(shù),進而可求和的度數(shù);解析:(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)當時,;當時,.【分析】(1)先利用三角形內角和定理求出的度數(shù),再根據(jù)角平分線和高的性質分別得出和的度數(shù),進而可求和的度數(shù);(2)先利用三角形內角和定理求出的度數(shù),再根據(jù)角平分線和高的性質分別得出和的度數(shù),則前三問利用即可得出答案,第4問利用即可得出答案;(3)按照(2)的方法,將相應的數(shù)換成字母即可得出答案.【詳解】(1)∵,,∴.∵平分,∴.∵是高,,,,.(2)當,時,∵,,∴.∵平分,∴.∵是高,,,;當,時,∵,,∴.∵平分,∴.∵是高,,,;當,時,∵,,∴.∵平分,∴.∵是高,,,;當,時,∵,,∴.∵平分,∴.∵是高,,,.(3)當時,即時,∵,,∴.∵平分,∴.∵是高,,,;當時,即時,∵,,∴.∵平分,∴.∵是高,,,;綜上所述,當時,;當時,.【點睛】本題主要考查三角形內角和定理和三角形的角平分線,高,掌握三角形內角和定理和直角三角形兩銳角互余是解題的關鍵.17.(1)140°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由見解析;(4)∠2=90°+∠1﹣α.【詳解】試題分析:(1)根據(jù)四邊形內角和定理以及鄰補角的定義,得出∠1+∠2解析:(1)140°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由見解析;(4)∠2=90°+∠1﹣α.【詳解】試題分析:(1)根據(jù)四邊形內角和定理以及鄰補角的定義,得出∠1+∠2=∠C+∠α,進而得出即可;(2)利用(1)中所求的結論得出∠α、∠1、∠2之間的關系即可;(3)利用三角外角的性質,得出∠1=∠C+∠2+α=90°+∠2+α;(4)利用三角形內角和定理以及鄰補角的性質可得出∠α、∠1、∠2之間的關系.試題分析:(1)∵∠1+∠2+∠CDP+∠CEP=360°,∠C+∠α+∠CDP+∠CEP=360°,∴∠1+∠2=∠C+∠α,∵∠C=90°,∠α=50°,∴∠1+∠2=140°,故答案為140;(2)由(1)得∠α+∠C=∠1+∠2,∴∠1+∠2=90°+∠α.故答案為∠1+∠2=90°+∠α.(3)∠1=90°+∠2+∠α.理由如下:如圖③,設DP與BE的交點為M,∵∠2+∠α=∠DME,∠DME+∠C=∠1,∴∠1=∠C+∠2+∠α=90°+∠2+∠α.(4)如圖④,設PE與AC的交點為F,∵∠PFD=∠EFC,∴180°-∠PFD=180°-∠EFC,∴∠α+180°-∠1=∠C+180°-∠2,∴∠2=90°+∠1-∠α.故答案為∠2=90°+∠1-∠α點睛:本題考查了三角形內角和定理和外角的性質、對頂角相等的性質,熟練掌握三角形外角的性質是解決問題的關鍵.18.(1)50°;(2)①見解析;②見解析;(3)360°.【分析】(1)根據(jù)題意,已知,,可結合三角形內角和定理和折疊變換的性質求解;(2)①先根據(jù)折疊得:∠ADE=∠A′DE,∠AED=∠A′解析:(1)50°;(2)①見解析;②見解析;(3)360°.【分析】(1)根據(jù)題意,已知,,可結合三角形內角和定理和折疊變換的性質求解;(2)①先根據(jù)折疊得:∠ADE=∠A′DE,∠AED=∠A′ED,由兩個平角∠AEB和∠ADC得:∠1+∠2等于360°與四個折疊角的差,化簡得結果;②利用兩次外角定理得出結論;(3)由折疊可知∠1+∠2+∠3+∠4+∠5+∠6等于六邊形的內角和減去(∠B'GF+∠B'FG)以及(∠C'DE+∠C'ED)和(∠A'HL+∠A'LH),再利用三角形的內角和定理即可求解.【詳解】解:(1)∵,,∴∠A′=∠A=180°-(65°+70°)=45°,∴∠A′ED+∠A′DE=180°-∠A′=135°,∴∠2=360°-(∠C+∠B+∠1+∠A′ED+∠A′DE)=360°-310°=50°;(2)①,理由如下由折疊得:∠ADE=∠A′DE,∠AED=∠A′ED,∵∠AEB+∠ADC=360°,∴∠1+∠2=360°-∠ADE-∠A′DE-∠AED-∠A′ED=360°-2∠ADE-2∠AED,∴∠1+∠2=2(180°-∠ADE-∠AED)=2∠A;②,理由如下:∵是的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論