浙江省樂清育英學校2026屆數(shù)學九上期末教學質(zhì)量檢測模擬試題含解析_第1頁
浙江省樂清育英學校2026屆數(shù)學九上期末教學質(zhì)量檢測模擬試題含解析_第2頁
浙江省樂清育英學校2026屆數(shù)學九上期末教學質(zhì)量檢測模擬試題含解析_第3頁
浙江省樂清育英學校2026屆數(shù)學九上期末教學質(zhì)量檢測模擬試題含解析_第4頁
浙江省樂清育英學校2026屆數(shù)學九上期末教學質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

浙江省樂清育英學校2026屆數(shù)學九上期末教學質(zhì)量檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.如圖所示的幾何體,它的俯視圖是()A. B.C. D.2.若正六邊形的邊長為6,則其外接圓半徑為()A.3 B.3 C.3 D.63.如圖,⊙O是等邊△ABC的外接圓,其半徑為3,圖中陰影部分的面積是()A.π B. C.2π D.3π4.如圖,在菱形中,,,則對角線等于()A.2 B.4 C.6 D.85.如圖,平行四邊形ABCD的對角線AC與BD相交于點O,設(shè),,下列式子中正確的是()A. B.;C. D..6.在中,,,,那么的值等于()A. B. C. D.7.下列說法正確的是()A.“清明時節(jié)雨紛紛”是必然事件B.要了解路邊行人邊步行邊低頭看手機的情況,可采取對在路邊行走的學生隨機發(fā)放問卷的方式進行調(diào)查C.做重復試驗:拋擲同一枚瓶蓋1000次,經(jīng)過統(tǒng)計得“凸面向上”的頻數(shù)為550次,則可以由此估計拋擲這枚瓶蓋出現(xiàn)“凸面向上”的概率為0.55D.射擊運動員甲、乙分別射擊10次且擊中環(huán)數(shù)的方差分別是0.5和1.2,則運動員甲的成績較好8.下列語句,錯誤的是()A.直徑是弦 B.相等的圓心角所對的弧相等C.弦的垂直平分線一定經(jīng)過圓心 D.平分弧的半徑垂直于弧所對的弦9.擲一枚質(zhì)地均勻的硬幣6次,下列說法正確的是()A.必有3次正面朝上 B.可能有3次正面朝上C.至少有1次正面朝上 D.不可能有6次正面朝上10.式子在實數(shù)范圍內(nèi)有意義,則x的取值范圍是()A.x>﹣2 B.x≥﹣2 C.x<﹣2 D.x≤﹣2二、填空題(每小題3分,共24分)11.如圖所示,平面上七個點,,,,,,,圖中所有的連線長均相等,則______.12.如圖,在平面直角坐標系中,,則經(jīng)過三點的圓弧所在圓的圓心的坐標為__________;點坐標為,連接,直線與的位置關(guān)系是___________.13.某扇形的弧長為πcm,面積為3πcm2,則該扇形的半徑為_____cm14.小亮測得一圓錐模型的底面直徑為10cm,母線長為7cm,那么它的側(cè)面展開圖的面積是_____cm1.15.圓錐的母線長為5cm,高為4cm,則該圓錐的全面積為_______cm2.16.小明向如圖所示的區(qū)域內(nèi)投擲飛鏢,陰影部分時的內(nèi)切圓,已知,,,如果小明投擲飛鏢一次,則飛鏢落在陰影部分的概率為____________.17.二次函數(shù)的最小值是.18.在長8cm,寬6cm的矩形中,截去一個矩形,使留下的矩形與原矩形相似,那么留下的矩形面積是_______cm2三、解答題(共66分)19.(10分)計算:(1)(2)解方程:20.(6分)在平面直角坐標系中,△OAB三個頂點的坐標分別為O(0,0),A(3,0),B(2,3).(1)tan∠OAB=;(2)在第一象限內(nèi)畫出△OA'B',使△OA'B'與△OAB關(guān)于點O位似,相似比為2:1;(3)在(2)的條件下,S△OAB:S四邊形AA′B′B=.21.(6分)課本上有如下兩個命題:命題1:圓的內(nèi)接四邊形的對角互補.命題2:如果一個四邊形兩組對角互補,那么該四邊形的四個頂點在同一個圓上.請判斷這兩個命題的真、假?并選擇其中一個說明理由.22.(8分)如圖,某校數(shù)學興趣小組為測量該校旗桿及篤志樓的高度,先在操場的處用測角儀測得旗桿頂端的仰角為,此時篤志樓頂端恰好在視線上,再向前走到達處,用該測角儀又測得篤志樓頂端的仰視角為.已知測角儀高度為,點、、在同一水平線上.(1)求旗桿的高度;(2)求篤志樓的高度(精確到).(參考數(shù)據(jù):,)23.(8分)如圖,拋物線經(jīng)過點,請解答下列問題:求拋物線的解析式;拋物線的頂點為點,對稱軸與軸交于點,連接,求的長.點在拋物線的對稱軸上運動,是否存在點,使的面積為,如果存在,直接寫出點的坐標;如果不存在,請說明理由.24.(8分)綜合與探究:如圖,將拋物線向右平移個單位長度,再向下平移個單位長度后,得到的拋物線,平移后的拋物線與軸分別交于,兩點,與軸交于點.拋物線的對稱軸與拋物線交于點.(1)請你直接寫出拋物線的解析式;(寫出頂點式即可)(2)求出,,三點的坐標;(3)在軸上存在一點,使的值最小,求點的坐標.25.(10分)計算:(1)2sin30°+cos45°tan60°(2)()0()-2tan230.26.(10分)如圖,拋物線過點,,直線交拋物線于點,點的橫坐標為,點是線段上的動點.(1)求直線及拋物線的解析式;(2)過點的直線垂直于軸,交拋物線于點,求線段的長度與的關(guān)系式,為何值時,最長?(3)是否存在點使為等腰三角形,若存在請直接寫出點的坐標,若不存在,請說明理由.

參考答案一、選擇題(每小題3分,共30分)1、D【分析】根據(jù)俯視圖的確定方法,找到從上面看所得到的圖形即是所求圖形.【詳解】從幾何體上面看,有三列,第一列2個,第二列1個位于第2層,第三列1個位于第2層.故選:D.本題考查了簡單組合體的三視圖,從上邊看得到的圖形是俯視圖.2、D【分析】連接正六邊形的中心和各頂點,得到六個全等的正三角形,于是可知正六邊形的邊長等于正三角形的邊長,為正六邊形的外接圓半徑.【詳解】如圖為正六邊形的外接圓,ABCDEF是正六邊形,∴∠AOF=10°,∵OA=OF,∴△AOF是等邊三角形,∴OA=AF=1.所以正六邊形的外接圓半徑等于邊長,即其外接圓半徑為1.故選D.本題考查了正六邊形的外接圓的知識,解題的關(guān)鍵是畫出圖形,找出線段之間的關(guān)系.3、D【分析】根據(jù)等邊三角形的性質(zhì)得到∠A=60°,再利用圓周角定理得到∠BOC=120°,然后根據(jù)扇形的面積公式計算圖中陰影部分的面積即可.【詳解】∵△ABC為等邊三角形,∴∠A=60°,∴∠BOC=2∠A=120°,∴圖中陰影部分的面積==3π.故選D.本題考查了三角形的外接圓與外心、圓周角定理及扇形的面積公式,求得∠BOC=120°是解決問題的關(guān)鍵.4、A【分析】由菱形的性質(zhì)可證得為等邊三角形,則可求得答案.【詳解】四邊形為菱形,,,,,為等邊三角形,,故選:.主要考查菱形的性質(zhì),利用菱形的性質(zhì)證得為等邊三角形是解題的關(guān)鍵.5、C【分析】由平行四邊形性質(zhì),得,由三角形法則,得到,代入計算即可得到答案.【詳解】解:∵四邊形ABCD是平行四邊形,∴,∵,,在△OAB中,有,∴,∴;故選擇:C.此題考查了平面向量的知識以及平行四邊形的性質(zhì).注意掌握平行四邊形法則與三角形法則的應用是解此題的關(guān)鍵.6、A【解析】在直角三角形中,銳角的正切等于對邊比鄰邊,由此可得.【詳解】解:如圖,.故選:A.本題主要考查了銳角三角函數(shù)中的正切,熟練掌握正切的表示是解題的關(guān)鍵.7、C【分析】根據(jù)隨機事件的概念、抽樣調(diào)查的特點、方差的意義及概率公式分別判斷可得.【詳解】解:A、“清明時節(jié)雨紛紛”是隨機事件,此選項錯誤;B、要了解路邊行人邊步行邊低頭看手機的情況,采取對在路邊行走的學生隨機發(fā)放問卷的方式進行調(diào)查不具代表性,此選項錯誤;C、做重復試驗:拋擲同一枚瓶蓋1000次,經(jīng)過統(tǒng)計得“凸面向上”的頻數(shù)為550次,則可以由此估計拋擲這枚瓶蓋出現(xiàn)“凸面向上”的概率為0.55,正確;D、射擊運動員甲、乙分別射擊10次且擊中環(huán)數(shù)的方差分別是0.5和1.2,則運動員甲的成績較穩(wěn)定,此選項錯誤;8、B【分析】將每一句話進行分析和處理即可得出本題答案.【詳解】A.直徑是弦,正確.B.∵在同圓或等圓中,相等的圓心角所對的弧相等,∴相等的圓心角所對的弧相等,錯誤.C.弦的垂直平分線一定經(jīng)過圓心,正確.D.平分弧的半徑垂直于弧所對的弦,正確.故答案選:B.本題考查了圓中弦、圓心角、弧度之間的關(guān)系,熟練掌握該知識點是本題解題的關(guān)鍵.9、B【分析】根據(jù)隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件,可得答案.【詳解】解:擲硬幣問題,正、反面朝上的次數(shù)屬于隨機事件,不是確定事件,故A,C,D錯誤.

故選:B.本題考查了隨機事件,解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件.不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.10、B【分析】根據(jù)二次根式有意義的條件可得,再解不等式即可.【詳解】解:由題意得:,解得:,

故選:B.此題主要考查了二次根式有意義的條件,關(guān)鍵是掌握二次根式中的被開方數(shù)是非負數(shù).二、填空題(每小題3分,共24分)11、【分析】連接AC、AD,由各邊都相等,得△ABG、△AEF、△CBG和△DEF都是等邊三角形,四邊形ABCG、四邊形AEDF是菱形,若設(shè)AB的長為x,根據(jù)等邊三角形、菱形的性質(zhì),計算出AD的長,∠BAC=∠EAD=30°,證明∠BAF=∠CAD,在△CAD中構(gòu)造直角△AMD,利用勾股定理求出cos∠CAD.【詳解】連接AC、AD,過點D作DM⊥AC,垂直為M.設(shè)AE的長為x,則AB=AG=BG=CG=CB=AF=AE=EF=x,∴△ABG、△AEF、△CBG和△DEF都是等邊三角形,四邊形ABCG、四邊形AEDF是菱形,

∴∠BAC=∠EAD=30°∴∵∠CAD=∠BAE-∠BAC-∠EAD=∠BAE-60°,∠BAF=∠BAE-∠EAF=∠BAE-60°∴∠BAF=∠CAD在Rt△AMD中,因為DM=AM=cos∠CAD,CM=在Rt△CMD中,

CD2=CM2+MD2,

整理,得

∴cos∠CAD=

∴cos∠BAF=故答案為:.本題考查了等邊三角形與菱形的性質(zhì),勾股定理以及三角函數(shù)的應用,解題的關(guān)鍵是根據(jù)勾股定理建立方程.12、(2,0)相切【分析】由網(wǎng)格容易得出AB的垂直平分線和BC的垂直平分線,它們的交點即為點M,根據(jù)圖形即可得出點M的坐標;由于C在⊙M上,如果CD與⊙M相切,那么C點必為切點;因此可連接MC,證MC是否與CD垂直即可.可根據(jù)C、M、D三點坐標,分別表示出△CMD三邊的長,然后用勾股定理來判斷∠MCD是否為直角.【詳解】解:如圖,作線段AB,CD的垂直平分線交點即為M,由圖可知經(jīng)過A、B、C三點的圓弧所在圓的圓心M的坐標為(2,0).

連接MC,MD,

∵MC2=42+22=20,CD2=42+22=20,MD2=62+22=40,∴MD2=MC2+CD2,∴∠MCD=90°,

又∵MC為半徑,

∴直線CD是⊙M的切線.故答案為:(2,0);相切.本題考查的直線與圓的位置關(guān)系,圓的切線的判定等知識,在網(wǎng)格和坐標系中巧妙地與圓的幾何證明有機結(jié)合,較新穎.13、1【分析】根據(jù)扇形的面積公式S=,可得出R的值.【詳解】解:∵扇形的弧長為πcm,面積為3πcm2,扇形的面積公式S=,可得R=故答案為1.本題考查了扇形面積的求法,掌握扇形面積公式是解答本題的關(guān)鍵.14、35π.【解析】首先求得圓錐的底面周長,然后利用扇形的面積公式S=lr即可求解.【詳解】底面周長是:10π,則側(cè)面展開圖的面積是:×10π×7=35πcm1.故答案是:35π.本題考查了圓錐的計算,正確理解圓錐的側(cè)面展開圖與原來的扇形之間的關(guān)系是解決本題的關(guān)鍵,理解圓錐的母線長是扇形的半徑,圓錐的底面圓周長是扇形的弧長.15、14π【分析】利用圓錐的母線長和圓錐的高求得圓錐的底面半徑,表面積=底面積+側(cè)面積=π×底面半徑1+底面周長×母線長÷1.【詳解】解:∵圓錐母線長為5cm,圓錐的高為4cm,∴底面圓的半徑為3,則底面周長=6π,∴側(cè)面面積=×6π×5=15π;∴底面積為=9π,∴全面積為:15π+9π=14π.故答案為14π.本題利用了圓的周長公式和扇形面積公式求解.16、【分析】利用幾何概率等于陰影部分的面積與三角形的面積之比即可得出答案.【詳解】,,,∴是直角三角形,設(shè)圓的半徑為r,利用三角形的面積有即解得∴陰影部分的面積為∵三角形的面積為∴飛鏢落在陰影部分的概率為故答案為:.本題主要考查幾何概率,掌握幾何概率的求法是解題的關(guān)鍵.17、﹣1.【解析】試題分析:∵=,∵a=1>0,∴x=﹣2時,y有最小值=﹣1.故答案為﹣1.考點:二次函數(shù)的最值.18、1【解析】由題意,在長為8cm寬6cm的矩形中,截去一個矩形使留下的矩形與原矩形相似,根據(jù)相似形的對應邊長比例關(guān)系,就可以求解.【詳解】解:設(shè)寬為xcm,

∵留下的矩形與原矩形相似,解得∴截去的矩形的面積為∴留下的矩形的面積為48-21=1cm2,

故答案為:1.本題就是考查相似形的對應邊的比相等,分清矩形的對應邊是解決本題的關(guān)鍵.三、解答題(共66分)19、(1);(2)【分析】(1)由題意利用乘方運算法則并代入特殊三角函數(shù)值進行計算即可;(2)根據(jù)題意直接利用因式分解法進行方程的求解即可.【詳解】解:(1)(2),解得.本題考查實數(shù)的混合運算以及解一元二次方程,熟練掌握乘方運算法則和特殊三角函數(shù)值以及利用因式分解法解方程是解題的關(guān)鍵.20、(1)1;(2)見解析;(1)1【分析】(1)根據(jù)正切的定義求解可得;(2)利用位似圖形的概念作出點A、B的對應點,再與點O首尾順次連接即可得;(1)利用位似變換的性質(zhì)求解可得.【詳解】解:(1)如圖,過點B作BC⊥OA于點C,則AC=1、BC=1,∴tan∠OAB==1,故答案為:1;(2)如圖所示,△OA'B'即為所求.(1)∵△OA'B'與△OAB關(guān)于點O位似,相似比為2:1,∴S△OA'B'=4S△OAB,則S四邊形AA′B′B=1S△OAB,即S△OAB:S四邊形AA′B′B=1:1,故答案為:1.本題主要考查作圖?位似變換,解題的關(guān)鍵是掌握位似變換的定義和性質(zhì).21、命題一、二均為真命題,證明見解析.【分析】利用圓周角定理可證明命題正確;利用反證法可證明命題2正確.【詳解】命題一、二均為真命題,命題1、命題2都是真命題.證明命題1:如圖,四邊形ABCD為⊙O的內(nèi)接四邊形,連接OA、OC,∵∠B=∠1,∠D=∠2,而∠1+∠2=360°,∴∠B+∠D=×360°=180°,即圓的內(nèi)接四邊形的對角互補.本題考查了命題與定理:命題寫成“如果…,那么…”的形式,這時,“如果”后面接的部分是題設(shè),“那么”后面解的部分是結(jié)論.命題的“真”“假”是就命題的內(nèi)容而言.任何一個命題非真即假.要說明一個命題的正確性,一般需要推理、論證,而判斷一個命題是假命題,只需舉出一個反例即可.22、(1)9.5m;(2)20.5m.【分析】(1)根據(jù)題意得到,等腰直角三角形,從而得到,從而求解;(2)解直角三角形,求CH,構(gòu)建方程即可解決問題;【詳解】解:(1)在中,∵,,∴.∴.∴旗桿的高為.(2)在中,設(shè).∵,∴.在中,,,∴,∴.解得.∴.答:篤志樓的高約為.本題考查解直角三角形的應用-仰角俯角問題,解題的關(guān)鍵是學會添加常用輔助線,構(gòu)造直角三角形解決問題,屬于中考常考題型.23、(1)y=-x2+2x+3;(2)2;(3)存在點F,點F(1,2)或(1,-2)【分析】(1)利用待定系數(shù)法即可求出結(jié)論;(2)先求出頂點D的坐標,然后分別求出BE和DE的長,利用勾股定理即可求出結(jié)論;(3)先求出BC的長,然后根據(jù)三角形的面積公式即可求出點F的縱坐標,從而求出結(jié)論.【詳解】解:(1)∵拋物線y=ax2+2x+c經(jīng)過點A(0,3),B(-1,0),∴將A(0,3),B(-1,0)代入得:,解得:則拋物線解析式為y=-x2+2x+3;(2)y=-x2+2x+3=-(x-1)2+4由D為拋物線頂點,得到D(1,4),∵

對稱軸與

x

軸交于點E

,∴

DE=4,OE=1

,∵

B(﹣1,0),∴

BO=1,∴

BE=2,在

RtBED

中,根據(jù)勾股定理得:

BD==2(3)拋物線的對稱軸為直線x=1由對稱性可得:點C的坐標為(3,0)∴BC=3-(-1)=4∵的面積為,∴BC·=4解得:=2或-2∴點F的坐標為(1,2)或(1,-2)即存在點F,點F(1,2)或(1,-2)此題考查的是二次函數(shù)的綜合大題,掌握利用待定系數(shù)法求二次函數(shù)解析式、勾股定理和三角形的面積公式是解決此題的關(guān)鍵.24、(1);(2),,;(3).【分析】(1)可根據(jù)二次函數(shù)圖像左加右減,上加下減的平移規(guī)律進行解答.(2)令x=0即可得到點C的坐標,令y=0即可得到點B,A的坐標(3)有圖像可知的對稱軸,即可得出點D的坐標;由圖像得出的坐標,設(shè)直線的解析式為,代入數(shù)值,即可得出直線的解析式,就可以得出點P的坐標.【詳解】解:(1)二次函數(shù)向右平移個單位長度得,,再向下平移個單位長度得故答案為:.(2)由拋物線的圖象可知,.當時,,解得:,.,.(3)由拋物線的圖象可知,其對稱軸的為直線,將代入拋物線,可得.由拋物線的圖象可知,點關(guān)于拋物線的對稱軸軸的對稱點為.設(shè)直線的解析式為,解得:直線直線的解析式為與軸交點即為點,.本題考查了二次函數(shù)的綜合,熟練掌握二次函數(shù)的性質(zhì)及圖形是解題的關(guān)鍵.25、(1)-2(2)【分析】(1)根據(jù)特殊角的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論