湖南省長沙市鐵路第一中學2026屆數(shù)學九年級第一學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁
湖南省長沙市鐵路第一中學2026屆數(shù)學九年級第一學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁
湖南省長沙市鐵路第一中學2026屆數(shù)學九年級第一學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁
湖南省長沙市鐵路第一中學2026屆數(shù)學九年級第一學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁
湖南省長沙市鐵路第一中學2026屆數(shù)學九年級第一學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

湖南省長沙市鐵路第一中學2026屆數(shù)學九年級第一學期期末質(zhì)量跟蹤監(jiān)視模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題3分,共30分)1.下列實數(shù):,其中最大的實數(shù)是()A.-2020 B. C. D.2.如圖,從一塊直徑為的圓形鐵皮上剪出一個圓心角為90°的扇形.則此扇形的面積為()A. B. C. D.3.下列事件中,是必然事件的是()A.從裝有10個黑球的不透明袋子中摸出一個球,恰好是紅球B.拋擲一枚普通正方體骰子,所得點數(shù)小于7C.拋擲一枚一元硬幣,正面朝上D.從一副沒有大小王的撲克牌中抽出一張,恰好是方塊4.在一個晴朗的上午,小麗拿著一塊矩形木板在陽光下做投影實驗,矩形木板在地面上形成的投影不可能是()A. B.C. D.5.將一元二次方程x2-4x+3=0化成(x+m)2=n的形式,則n等于()A.-3 B.1 C.4 D.76.小華同學某體育項目7次測試成績?nèi)缦拢▎挝唬悍郑?,7,1,8,1,9,1.這組數(shù)據(jù)的中位數(shù)和眾數(shù)分別為()A.8,1 B.1,9 C.8,9 D.9,17.若關于x的一元二次方程(k﹣1)x2+2x﹣2=0有兩個不相等的實數(shù)根,則k的取值范圍是()A.k> B.k≥ C.k>且k≠1 D.k≥且k≠18.現(xiàn)有四張分別標有數(shù)字﹣2,﹣1,1,3的卡片,它們除數(shù)字外完全相同,把卡片背面朝上洗勻,從中隨機抽取一張卡片,記下數(shù)字后放回,洗勻,再隨機抽取一張卡片,則第一次抽取的卡片上的數(shù)字大于第二次抽取的卡片上的數(shù)字的概率是()A. B. C. D.9.如圖是某個幾何體的三視圖,該幾何體是()A.長方體 B.圓錐 C.三棱柱 D.圓柱10.如圖,的直徑,弦于.若,則的長是()A. B. C. D.二、填空題(每小題3分,共24分)11.二次函數(shù)y=2x2﹣4x+4的圖象如圖所示,其對稱軸與它的圖象交于點P,點N是其圖象上異于點P的一點,若PM⊥y軸,MN⊥x軸,則=_____.12.如圖(1),在矩形ABCD中,將矩形折疊,使點B落在邊AD上,這時折痕與邊AD和BC分別交于點E、點F.然后再展開鋪平,以B、E、F為頂點的△BEF稱為矩形ABCD的“折痕三角形”.如圖(2),在矩形ABCD中,AB=2,BC=4,當“折痕△BEF”面積最大時,點E的坐標為_________________________.13.在平面直角坐標系中,將點A(﹣3,2)向右平移3個單位長度,再向下平移2個單位長度,那么平移后對應的點A′的坐標是_____.14.如圖,在平面直角坐標系中,矩形的頂點O落在坐標原點,點A、點C分別位于x軸,y軸的正半軸,G為線段上一點,將沿翻折,O點恰好落在對角線上的點P處,反比例函數(shù)經(jīng)過點B.二次函數(shù)的圖象經(jīng)過、G、A三點,則該二次函數(shù)的解析式為_______.(填一般式)15.如圖,在△ABC中,∠BAC=75°,以點A為旋轉(zhuǎn)中心,將△ABC繞點A逆時針旋轉(zhuǎn),得△AB'C',連接BB',若BB'∥AC',則∠BAC′的度數(shù)是______________.16.在平面直角坐標系xOy中,點O的坐標為O,□OABC的頂點A在反比例函數(shù)的圖象上,頂點B在反比例函數(shù)的圖象上,點C在x軸正半軸上,則□OABC的面積是________17.在△ABC中,∠B=45°,cosA=,則∠C的度數(shù)是_____.18.若一個正六邊形的周長為24,則該正六邊形的面積為▲.三、解答題(共66分)19.(10分)如圖,正方形ABCD的邊長為2,點E是AD邊上的動點,從點A開始沿AD向D運動.以BE為邊,在BE的上方作正方形BEFG,EF交DC于點H,連接CG、BH.請?zhí)骄浚海?)線段AE與CG是否相等?請說明理由.(2)若設AE=x,DH=y,當x取何值時,y最大?最大值是多少?(3)當點E運動到AD的何位置時,△BEH∽△BAE?20.(6分)如圖,拋物線與直線交于A、B兩點.點A的橫坐標為-3,點B在y軸上,點P是y軸左側拋物線上的一動點,橫坐標為m,過點P作PC⊥x軸于C,交直線AB于D.(1)求拋物線的解析式;(2)當m為何值時,;(3)是否存在點P,使△PAD是直角三角形,若存在,求出點P的坐標;若不存在,說明理由.21.(6分)如圖,矩形中,,,點是邊上一定點,且.(1)當時,上存在點,使與相似,求的長度.(2)對于每一個確定的的值上存在幾個點使得與相似?22.(8分)如圖,四邊形ABCD內(nèi)接于⊙O,AB是直徑,C為的中點,延長AD,BC交于點P,連結AC.(1)求證:AB=AP;(2)若AB=10,DP=2,①求線段CP的長;②過點D作DE⊥AB于點E,交AC于點F,求△ADF的面積.23.(8分)如圖,在平面直角坐標系中,拋物線y=ax2+bx+6經(jīng)過點A(﹣3,0)和點B(2,0),直線y=h(h為常數(shù),且0<h<6)與BC交于點D,與y軸交于點E,與AC交于點F.(1)求拋物線的解析式;(2)連接AE,求h為何值時,△AEF的面積最大.(3)已知一定點M(﹣2,0),問:是否存在這樣的直線y=h,使△BDM是等腰三角形?若存在,請求出h的值和點D的坐標;若不存在,請說明理由.24.(8分)如圖,一次函數(shù)圖象經(jīng)過點,與軸交于點,且與正比例函數(shù)的圖象交于點,點的橫坐標是.請直接寫出點的坐標(,);求該一次函數(shù)的解析式;求的面積.25.(10分)如圖,二次函數(shù)(a0)與x軸交于A、C兩點,與y軸交于點B,P為拋物線的頂點,連接AB,已知OA:OC=1:3.(1)求A、C兩點坐標;(2)過點B作BD∥x軸交拋物線于D,過點P作PE∥AB交x軸于E,連接DE,①求E坐標;②若tan∠BPM=,求拋物線的解析式.26.(10分)為進一步發(fā)展基礎教育,自年以來,某縣加大了教育經(jīng)費的投入,年該縣投入教育經(jīng)費萬元.年投入教育經(jīng)費萬元.假設該縣這兩年投入教育經(jīng)費的年平均增長率相同.求這兩年該縣投入教育經(jīng)費的年平均增長率.

參考答案一、選擇題(每小題3分,共30分)1、C【解析】根據(jù)正數(shù)大于0,0大于負數(shù),正數(shù)大于負數(shù),比較即可;【詳解】∵=-2020,=-2020,=2020,=,∴,故選C.本題主要考查了實數(shù)大小比較,掌握實數(shù)大小比較是解題的關鍵.2、A【解析】分析:連接AC,根據(jù)圓周角定理得出AC為圓的直徑,解直角三角形求出AB,根據(jù)扇形面積公式求出即可.詳解:連接AC.∵從一塊直徑為2m的圓形鐵皮上剪出一個同心角為90°的扇形,即∠ABC=90°,∴AC為直徑,即AC=2m,AB=BC.∵AB2+BC2=22,∴AB=BC=m,∴陰影部分的面積是=(m2).故選A.點睛:本題考查了圓周角定理和扇形的面積計算,能熟記扇形的面積公式是解答此題的關鍵.3、B【解析】根據(jù)事件發(fā)生的可能性大小即可判斷.【詳解】A.從裝有10個黑球的不透明袋子中摸出一個球,恰好是紅球的概率為0,故錯誤;B.拋擲一枚普通正方體骰子,所得點數(shù)小于7的概率為1,故為必然事件,正確;C.拋擲一枚一元硬幣,正面朝上的概率為50%,為隨機事件,故錯誤;D.從一副沒有大小王的撲克牌中抽出一張,恰好是方塊,為隨機事件,故錯誤;故選B.此題主要考查事件發(fā)生的可能性,解題的關鍵是熟知概率的定義.4、A【解析】解:將矩形木框立起與地面垂直放置時,形成B選項的影子;將矩形木框與地面平行放置時,形成C選項影子;將木框傾斜放置形成D選項影子;根據(jù)同一時刻物高與影長成比例,又因矩形對邊相等,因此投影不可能是A選項中的梯形,因為梯形兩底不相等.故選A.5、B【分析】先把常數(shù)項移到方程右側,兩邊加上4,利用完全平方公式得到(x-2)2=1,從而得到m=-2,n=1,然后計算m+n即可.【詳解】x2-4x+3=0,

x2-4x=-3

x2-4x+4=-3+4,

(x-2)2=1,

即n=1.

故選B.本題考查了解一元二次方程的應用,解題的關鍵是能正確配方,即方程兩邊都加上一次項系數(shù)一半的平方(當二次項系數(shù)為1時).6、D【解析】試題分析:把這組數(shù)據(jù)從小到大排列:7,8,9,9,1,1,1,最中間的數(shù)是9,則中位數(shù)是9;1出現(xiàn)了3次,出現(xiàn)的次數(shù)最多,則眾數(shù)是1;故選D.考點:眾數(shù);中位數(shù).7、C【詳解】根據(jù)題意得k-1≠0且△=22-4(k-1)×(-2)>0,解得:k>且k≠1.故選C本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2-4ac,關鍵是熟練掌握:當△>0,方程有兩個不相等的實數(shù)根;當△=0,方程有兩個相等的實數(shù)根;當△<0,方程沒有實數(shù)根.8、B【分析】畫樹狀圖得出所有等可能結果,從找找到符合條件得結果數(shù),在根據(jù)概率公式計算可得.【詳解】畫樹狀圖如下:由樹狀圖知共有16種等可能結果,其中第一次抽取的卡片上的數(shù)字大于第二次抽取的卡片上的數(shù)字的有6種結果,所以第一次抽取的卡片上的數(shù)字大于第二次抽取的卡片上的數(shù)字的概率為.故選B.本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.9、D【分析】首先根據(jù)俯視圖排除正方體、三棱柱,然后跟主視圖和左視圖排除圓錐,即可得到結論.【詳解】∵俯視圖是圓,

∴排除A和C,

∵主視圖與左視圖均是長方形,

∴排除B,

故選:D.本題主要考查了簡單幾何體的三視圖,用到的知識點為:三視圖分為主視圖、左視圖、俯視圖,分別是從物體正面、左面和上面看,所得到的圖形.10、C【分析】先根據(jù)線段的比例、直徑求出OC、OP的長,再利用勾股定理求出CP的長,然后根據(jù)垂徑定理即可得.【詳解】如圖,連接OC直徑在中,弦于故選:C.本題考查了勾股定理、垂徑定理等知識點,屬于基礎題型,掌握垂徑定理是解題關鍵.二、填空題(每小題3分,共24分)11、1.【分析】根據(jù)題目中的函數(shù)解析式可得到點P的坐標,然后設出點M、點N的坐標,然后計算即可解答本題.【詳解】解:∵二次函數(shù)y=1x1﹣4x+4=1(x﹣1)1+1,∴點P的坐標為(1,1),設點M的坐標為(a,1),則點N的坐標為(a,1a1﹣4a+4),∴===1,故答案為:1.本題考查了二次函數(shù)與幾何的問題,解題的關鍵是求出點P左邊,設出點M、點N的坐標,表達出.12、(,2).【詳解】解:如圖,當點B與點D重合時,△BEF面積最大,設BE=DE=x,則AE=4-x,在RT△ABE中,∵EA2+AB2=BE2,∴(4-x)2+22=x2,∴x=,∴BE=ED=,AE=AD-ED=,∴點E坐標(,2).故答案為:(,2).本題考查翻折變換(折疊問題),利用數(shù)形結合思想解題是關鍵.13、(0,0)【解析】根據(jù)坐標的平移規(guī)律解答即可.【詳解】將點A(-3,2)向右平移3個單位長度,再向下平移2個單位長度,那么平移后對應的點A′的坐標是(-3+3,2-2),即(0,0),故答案為(0,0).此題主要考查坐標與圖形變化-平移.平移中點的變化規(guī)律是:橫坐標右移加,左移減;縱坐標上移加,下移減.14、【分析】先由題意得到,再設設,由勾股定理得到,解得x的值,最后將點C、G、A坐標代入二次函數(shù)表達式,即可得到答案.【詳解】解:點,反比例函數(shù)經(jīng)過點B,則點,則,,∴,設,則,,由勾股定理得:,解得:,故點,將點C、G、A坐標代入二次函數(shù)表達式得:,解得:,故答案為.本題考查求二次函數(shù)解析式,解題的關鍵是熟練掌握待定系數(shù)法.15、105°【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)得AB′=AB,∠B′AB=∠C′AC,再根據(jù)等腰三角形的性質(zhì)得∠AB′B=∠ABB′,然后根據(jù)平行線的性質(zhì)得到∠AB′B=∠C′AB′=75°,于是得到結論.【詳解】解:∵△ABC繞點A逆時針旋轉(zhuǎn)到△AB′C′,

∴AB′=AB,∠B′AB=∠C′AC,∠C′AB′=∠CAB=75°,

∴△AB′B是等腰三角形,∴∠AB′B=∠ABB′

∵BB'∥AC,

∴∠AB′B=∠C′AB′=75°,

∴∠C′AC=∠B′AB=180°-2×75°=30°,

∴∠BAC′=∠C′AC+∠BAC=30°+75°=105°,故答案為:105°.本題考查了旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后兩圖形全等;對應點到旋轉(zhuǎn)中心的距離相等;對應點與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角.也考查了平行線的性質(zhì).16、3【分析】根據(jù)平行四邊形的性質(zhì)和反比例函數(shù)系數(shù)k的幾何意義即可求得.【詳解】解:如圖作BD⊥x軸于D,延長BA交y軸于E,

∵四邊形OABC是平行四邊形,

∴AB∥OC,OA=BC,

∴BE⊥y軸,

∴OE=BD,

∴Rt△AOE≌Rt△CBD(HL),

根據(jù)系數(shù)k的幾何意義,S矩形BDOE=5,S△AOE=1,

∴四邊形OABC的面積=5-1-1=3,

故選:C.本題考查了反比例函數(shù)的比例系數(shù)k的幾何意義、平行四邊形的性質(zhì)等,有一定的綜合性17、75°【解析】已知在△ABC中°,cosA=,可得∠A=60°,又因∠B=45,根據(jù)三角形的內(nèi)角和定理可得∠C=75°.18、【解析】根據(jù)題意畫出圖形,如圖,連接OB,OC,過O作OM⊥BC于M,∴∠BOC=×360°=60°.∵OB=OC,∴△OBC是等邊三角形.∴∠OBC=60°.∵正六邊形ABCDEF的周長為21,∴BC=21÷6=1.∴OB=BC=1,∴BM=OB·sin∠OBC=1·.∴.三、解答題(共66分)19、(1)AE=CG,見解析;(2)當x=1時,y有最大值,為;(3)當E點是AD的中點時,△BEH∽△BAE,見解析.【解析】(1)由正方形的性質(zhì)可得AB=BC,BE=BG,∠ABC=∠EBG=90°,由“SAS”可證△ABE≌△CBG,可得AE=CG;(2)由正方形的性質(zhì)可得∠A=∠D=∠FEB=90°,由余角的性質(zhì)可得∠ABE=∠DEH,可得△ABE∽△DEH,可得,由二次函數(shù)的性質(zhì)可求最大值;(3)當E點是AD的中點時,可得AE=1,DH=,可得,且∠A=∠FEB=90°,即可證△BEH∽△BAE.【詳解】(1)AE=CG,理由如下:∵四邊形ABCD,四邊形BEFG是正方形,∴AB=BC,BE=BG,∠ABC=∠EBG=90°,∴∠ABE=∠CBG,且AB=BC,BE=BG,∴△ABE≌△CBG(SAS),∴AE=CG;(2)∵四邊形ABCD,四邊形BEFG是正方形,∴∠A=∠D=∠FEB=90°,∴∠AEB+∠ABE=90°,∠AEB+∠DEH=90°,∴∠ABE=∠DEH,又∵∠A=∠D,∴△ABE∽△DEH,∴,∴∴=,∴當x=1時,y有最大值為;(3)當E點是AD的中點時,△BEH∽△BAE,理由如下:∵E是AD中點,∴AE=1,∴又∵△ABE∽△DEH,∴,又∵,∴,且∠DAB=∠FEB=90°,∴△BEH∽△BAE.本題是相似形綜合題,考查了相似三角形的判定和性質(zhì),正方形的性質(zhì),二次函數(shù)的性質(zhì),靈活運用這些性質(zhì)進行推理是本題的關鍵.20、(1)y=x1+4x-1;(1)∴m=,-1,或-3時S四邊形OBDC=1SS△BPD【解析】試題分析:(1)由x=0時帶入y=x-1求出y的值求出B的坐標,當x=-3時,代入y=x-1求出y的值就可以求出A的坐標,由待定系數(shù)法就可以求出拋物線的解析式;(1)連結OP,由P點的橫坐標為m可以表示出P、D的坐標,可以表示出S四邊形OBDC和1S△BPD建立方程求出其解即可.(3)如圖1,當∠APD=90°時,設出P點的坐標,就可以表示出D的坐標,由△APD∽△FCD就可與求出結論,如圖3,當∠PAD=90°時,作AE⊥x軸于E,就有,可以表示出AD,再由△PAD∽△FEA由相似三角形的性質(zhì)就可以求出結論.試題解析:∵y=x-1,∴x=0時,y=-1,∴B(0,-1).當x=-3時,y=-4,∴A(-3,-4).∵y=x1+bx+c與直線y=x-1交于A、B兩點,∴∴∴拋物線的解析式為:y=x1+4x-1;(1)∵P點橫坐標是m(m<0),∴P(m,m1+4m-1),D(m,m-1)如圖1①,作BE⊥PC于E,∴BE=-m.CD=1-m,OB=1,OC=-m,CP=1-4m-m1,∴PD=1-4m-m1-1+m=-3m-m1,∴解得:m1=0(舍去),m1=-1,m3=如圖1②,作BE⊥PC于E,∴BE=-m.PD=1-4m-m1+1-m=1-4m-m1,解得:m=0(舍去)或m=-3,∴m=,-1,或-3時S四邊形OBDC=1S△BPD;)如圖1,當∠APD=90°時,設P(a,a1+4a-1),則D(a,a-1),∴AP=m+4,CD=1-m,OC=-m,CP=1-4m-m1,∴DP=1-4m-m1-1+m=-3m-m1.在y=x-1中,當y=0時,x=1,∴(1,0),∴OF=1,∴CF=1-m.AF=4∵PC⊥x軸,∴∠PCF=90°,∴∠PCF=∠APD,∴CF∥AP,∴△APD∽△FCD,∴解得:m=1舍去或m=-1,∴P(-1,-5)如圖3,當∠PAD=90°時,作AE⊥x軸于E,∴∠AEF=90°.CE=-3-m,EF=4,AF=4PD=1-m-(1-4m-m1)=3m+m1.∵PC⊥x軸,∵PC⊥x軸,∴∠DCF=90°,∴∠DCF=∠AEF,∴AE∥CD.∴AD=(-3-m)∵△PAD∽△FEA,∴∴m=-1或m=-3∴P(-1,-5)或(-3,-4)與點A重合,舍去,∴P(-1,-5).考點:二次函數(shù)綜合題.21、(1)或1;(2)當且時,有1個;當時,有2個;當時,有2個;當時,有1個.【分析】(1)分△AEF∽△BFC和△AEF∽△BCF兩種情形,分別構建方程即可解決問題;(2)根據(jù)題意畫出圖形,交點個數(shù)分類討論即可解決問題;【詳解】解:(1)當∠AEF=∠BFC時,

要使△AEF∽△BFC,需,即,解得AF=1或1;

當∠AEF=∠BCF時,

要使△AEF∽△BCF,需,即,解得AF=1;

綜上所述AF=1或1.(2)如圖,延長DA,作點E關于AB的對稱點E′,連結CE′,交AB于點F1;

連結CE,以CE為直徑作圓交AB于點F2、F1.當m=4時,由已知條件可得DE=1,則CE=5,即圖中圓的直徑為5,可得此時圖中所作圓的圓心到AB的距離為2.5,等于所作圓的半徑,F(xiàn)2和F1重合,即當m=4時,符合條件的F有2個,當m>4時,圖中所作圓和AB相離,此時F2和F1不存在,即此時符合條件的F只有1個,當1<m<4且m≠1時,由所作圖形可知,符合條件的F有1個,綜上所述:當1<m<4且m≠1時,有1個;

當m=1時,有2個;

當m=4時,有2個;

當m>4時,有1個.本題考查作圖-相似變換,矩形的性質(zhì),圓的有關知識等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考??碱}型.22、(1)見解析;(2)①PC=;②S△ADF=.【分析】(1)利用等角對等邊證明即可;(2)①利用勾股定理分別求出BD,PB,再利用等腰三角形的性質(zhì)即可解決問題;②作FH⊥AD于H,首先利用相似三角形的性質(zhì)求出AE,DE,再證明AE=AH,設FH=EF=x,利用勾股定理構建方程解決問題即可.【詳解】(1)證明:∵=,∴∠BAC=∠CAP,∵AB是直徑,∴∠ACB=∠ACP=90°,∵∠ABC+∠BAC=90°,∠P+∠CAP=90°,∴∠ABC=∠P,∴AB=AP.(2)①解:連接BD.∵AB是直徑,∴∠ADB=∠BDP=90°,∵AB=AP=10,DP=2,∴AD=10﹣2=8,∴BD===6,∴PB===2,∵AB=AP,AC⊥BP,∴BC=PC=PB=,∴PC=.②解:作FH⊥AD于H.∵DE⊥AB,∴∠AED=∠ADB=90°,∵∠DAE=∠BAD,∴△ADE∽△ABD,∴==,∴==,∴AE=,DE=,∵∠FEA=∠FEH,F(xiàn)E⊥AE,F(xiàn)H⊥AH,∴FH=FE,∠AEF=∠AHF=90°,∵AF=AF,∴Rt△AFE≌Rt△AFH(HL),∴AH=AE=,DH=AD﹣AH=,設FH=EF=x,在Rt△FHD中,則有(﹣x)2=x2+()2,解得x=,∴S△ADF=?AD?FH=×8×=.故答案為①PC=;②S△ADF=.本題考查了圓周角定理,等腰三角形的判定與性質(zhì),解直角三角形,相似三角形的判定與性質(zhì)等知識.屬于圓的綜合題,解題的關鍵是學會添加常用輔助線,構造直角三角形解決問題.23、(1)y=﹣x2﹣x+1;(2)當h=3時,△AEF的面積最大,最大面積是.(3)存在,當h=時,點D的坐標為(,);當h=時,點D的坐標為(,).【分析】(1)利用待定系數(shù)法即可解決問題.(2)由題意可得點E的坐標為(0,h),點F的坐標為(,h),根據(jù)S△AEF=?OE?FE=?h?=﹣(h﹣3)2+.利用二次函數(shù)的性質(zhì)即可解決問題.(3)存在.分兩種情形情形,分別列出方程即可解決問題.【詳解】解:如圖:(1)∵拋物線y=ax2+bx+1經(jīng)過點A(﹣3,0)和點B(2,0),∴,解得:.∴拋物線的解析式為y=﹣x2﹣x+1.(2)∵把x=0代入y=﹣x2﹣x+1,得y=1,∴點C的坐標為(0,1),設經(jīng)過點A和點C的直線的解析式為y=mx+n,則,解得,∴經(jīng)過點A和點C的直線的解析式為:y=2x+1,∵點E在直線y=h上,∴點E的坐標為(0,h),∴OE=h,∵點F在直線y=h上,∴點F的縱坐標為h,把y=h代入y=2x+1,得h=2x+1,解得x=,∴點F的坐標為(,h),∴EF=.∴S△AEF=?OE?FE=?h?=﹣(h﹣3)2+,∵﹣<0且0<h<1,∴當h=3時,△AEF的面積最大,最大面積是.(3)存在符合題意的直線y=h.∵B(2,0),C(0,1),∴直線BC的解析式為y=﹣3x+1,設D(m,﹣3m+1).①當BM=BD時,(m﹣2)2+(﹣3m+1)2=42,解得m=或(舍棄),∴D(,),此時h=.②當MD=BM時,(m+2)2+(﹣3m+1)2=42,解得m=或2(舍棄),∴D(,),此時h=.∵綜上所述,存在這樣的直線y=或y=,使△BDM是等腰三角形,當h=時,點D的坐標為(,);當h=時,點D的坐標為(,).此題考查了待定系數(shù)法求函數(shù)的解析式、二次函數(shù)的性質(zhì)、等腰三角形的性質(zhì)、勾股定理一次函數(shù)的應用等知識,此題難度較大,注意掌握方程思想、分類討論思想與數(shù)形結合思想的應用.24、(1);(2);(3)1【分析】(1)根據(jù)正比例函數(shù)即可得出答案;(2)根據(jù)點A和B的坐標,利用待定系數(shù)法求解即可;(3)先根據(jù)題(2)求出點C的坐標,從而可知OC的長,再利用三角形的面積公式即可得.【詳解】(1)將代入正比例函數(shù)得,故點的坐標是;(2)設這個一次函數(shù)的解析式為把代入,得解方程組,得故這個一次函數(shù)的解析式為;

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論