考點(diǎn)解析滬科版9年級(jí)下冊(cè)期末試題附完整答案詳解【典優(yōu)】_第1頁
考點(diǎn)解析滬科版9年級(jí)下冊(cè)期末試題附完整答案詳解【典優(yōu)】_第2頁
考點(diǎn)解析滬科版9年級(jí)下冊(cè)期末試題附完整答案詳解【典優(yōu)】_第3頁
考點(diǎn)解析滬科版9年級(jí)下冊(cè)期末試題附完整答案詳解【典優(yōu)】_第4頁
考點(diǎn)解析滬科版9年級(jí)下冊(cè)期末試題附完整答案詳解【典優(yōu)】_第5頁
已閱讀5頁,還剩30頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

滬科版9年級(jí)下冊(cè)期末試題考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計(jì)16分)1、同時(shí)拋擲兩枚質(zhì)地均勻的硬幣,兩枚硬幣全部正面向上的概率是()A. B. C. D.2、在平面直角坐標(biāo)系中,已知點(diǎn)與點(diǎn)關(guān)于原點(diǎn)對(duì)稱,則的值為()A.4 B.-4 C.-2 D.23、如圖,在△ABC中,∠CAB=64°,將△ABC在平面內(nèi)繞點(diǎn)A旋轉(zhuǎn)到△AB′C′的位置,使CC′AB,則旋轉(zhuǎn)角的度數(shù)為()A.64° B.52° C.42° D.36°4、已知菱形ABCD的對(duì)角線交于原點(diǎn)O,點(diǎn)A的坐標(biāo)為,點(diǎn)B的坐標(biāo)為,則點(diǎn)D的坐標(biāo)是()A. B. C. D.5、下列圖形中,是中心對(duì)稱圖形,但不是軸對(duì)稱圖形的是()A. B. C. D.6、如圖,在中,,,,將繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,則旋轉(zhuǎn)后點(diǎn)A的對(duì)應(yīng)點(diǎn)的坐標(biāo)是()A. B. C. D.7、如圖,從⊙O外一點(diǎn)P引圓的兩條切線PA,PB,切點(diǎn)分別是A,B,若∠APB=60°,PA=5,則弦AB的長(zhǎng)是()A. B. C.5 D.58、扇形的半徑擴(kuò)大為原來的3倍,圓心角縮小為原來的,那么扇形的面積()A.不變 B.面積擴(kuò)大為原來的3倍C.面積擴(kuò)大為原來的9倍 D.面積縮小為原來的第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計(jì)14分)1、如圖,在平行四邊形中,,,,以點(diǎn)為圓心,為半徑的圓弧交于點(diǎn),連接,則圖中黑色陰影部分的面積為________.(結(jié)果保留)2、數(shù)學(xué)興趣活動(dòng)課上,小方將等腰的底邊BC與直線l重合,問:(1)如圖(1)已知,,點(diǎn)P在BC邊所在的直線l上移動(dòng),小方發(fā)現(xiàn)AP的最小值是______;(2)如圖(2)在直角中,,,,點(diǎn)D是CB邊上的動(dòng)點(diǎn),連接AD,將線段AD順時(shí)針旋轉(zhuǎn)60°,得到線段AP,連接CP,線段CP的最小值是______.3、《九章算術(shù)》是我國(guó)古代的數(shù)學(xué)名著,書中有這樣的一個(gè)問題:“今有勾八步,股十五步,問勾中容圓徑幾何?”.其意思是:“如圖,現(xiàn)有直角三角形,勾(短直角邊)長(zhǎng)為8步,股(長(zhǎng)直角邊)長(zhǎng)為15步,問該直角三角形所能容納的最大圓的直徑是多少?”答:該直角三角形所能容納的最大圓的直徑是______步.4、在△ABC中,已知∠ABC=90°,∠BAC=30°,BC=1,如圖所示,將△ABC繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)90°后得到△AB′C′.則圖中陰影部分的面積為_____.5、一個(gè)直角三角形的斜邊長(zhǎng)cm,兩條直角邊長(zhǎng)的和是6cm,則這個(gè)直角三角形外接圓的半徑為______cm,直角三角形的面積是________.6、點(diǎn)P為邊長(zhǎng)為2的正方形ABCD內(nèi)一點(diǎn),是等邊三角形,點(diǎn)M為BC中點(diǎn),N是線段BP上一動(dòng)點(diǎn),將線段MN繞點(diǎn)M順時(shí)針旋轉(zhuǎn)60°得到線段MQ,連接AQ、PQ,則的最小值為______.7、在同一平面上,外有一點(diǎn)P到圓上的最大距離是8cm,最小距離為2cm,則的半徑為______cm.三、解答題(7小題,每小題0分,共計(jì)0分)1、如圖,已知為的直徑,切于點(diǎn)C,交的延長(zhǎng)線于點(diǎn)D,且.(1)求的大?。唬?)若,求的長(zhǎng).2、如圖,在中,AB是直徑,弦EF∥AB.(1)請(qǐng)僅用無刻度的直尺畫出劣弧EF的中點(diǎn)P;(保留作圖痕跡,不寫作法)(2)在(1)的條件下,連接OP交EF于點(diǎn)Q,,,求PQ的長(zhǎng)度.3、為了引導(dǎo)青少年學(xué)黨史,某中學(xué)舉行了“獻(xiàn)禮建黨百年”黨史知識(shí)競(jìng)賽活動(dòng),將成績(jī)劃分為四個(gè)等級(jí):A(優(yōu)秀)、B(優(yōu)良)、C(合格)、D(不合格).小李隨機(jī)調(diào)查了部分同學(xué)的競(jìng)賽成績(jī),繪制成了如下統(tǒng)計(jì)圖(部分信息未給出):(1)小李共抽取了名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì)分析,扇形統(tǒng)計(jì)圖中“優(yōu)秀”等級(jí)對(duì)應(yīng)的扇形圓心角度數(shù)為,請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;(2)該校共有2000名學(xué)生,請(qǐng)你估計(jì)該校競(jìng)賽成績(jī)“優(yōu)秀”的學(xué)生人數(shù);(3)已知調(diào)查對(duì)象中只有兩位女生競(jìng)賽成績(jī)不合格,小李準(zhǔn)備隨機(jī)回訪兩位競(jìng)賽成績(jī)不合格的同學(xué),請(qǐng)用樹狀圖或列表法求出恰好回訪到一男一女的概率.4、如圖,ABC是⊙O的內(nèi)接三角形,,,連接AO并延長(zhǎng)交⊙O于點(diǎn)D,過點(diǎn)C作⊙O的切線,與BA的延長(zhǎng)線相交于點(diǎn)E.(1)求證:AD∥EC;(2)若AD=6,求線段AE的長(zhǎng).5、在中,,,點(diǎn)E在射線CB上運(yùn)動(dòng).連接AE,將線段AE繞點(diǎn)E順時(shí)針旋轉(zhuǎn)90°得到EF,連接CF.(1)如圖1,點(diǎn)E在點(diǎn)B的左側(cè)運(yùn)動(dòng).①當(dāng),時(shí),則___________°;②猜想線段CA,CF與CE之間的數(shù)量關(guān)系為____________.(2)如圖2,點(diǎn)E在線段CB上運(yùn)動(dòng)時(shí),第(1)問中線段CA,CF與CE之間的數(shù)量關(guān)系是否仍然成立?如果成立,請(qǐng)說明理由;如果不成立,請(qǐng)求出它們之間新的數(shù)量關(guān)系.6、對(duì)于平面直角坐標(biāo)系xOy中的圖形M,N,給出如下定義:若圖形M和圖形N有且只有一個(gè)公共點(diǎn)P,則稱點(diǎn)P是圖形M和圖形N的“關(guān)聯(lián)點(diǎn)”.已知點(diǎn),,,.(1)直線l經(jīng)過點(diǎn)A,的半徑為2,在點(diǎn)A,C,D中,直線l和的“關(guān)聯(lián)點(diǎn)”是______;(2)G為線段OA中點(diǎn),Q為線段DG上一點(diǎn)(不與點(diǎn)D,G重合),若和有“關(guān)聯(lián)點(diǎn)”,求半徑r的取值范圍;(3)的圓心為點(diǎn),半徑為t,直線m過點(diǎn)A且不與x軸重合.若和直線m的“關(guān)聯(lián)點(diǎn)”在直線上,請(qǐng)直接寫出b的取值范圍.7、如圖,在⊙O中,點(diǎn)E是弦CD的中點(diǎn),過點(diǎn)O,E作直徑AB(AE>BE),連接BD,過點(diǎn)C作CFBD交AB于點(diǎn)G,交⊙O于點(diǎn)F,連接AF.求證:AG=AF.-參考答案-一、單選題1、A【分析】首先利用列舉法可得所有等可能的結(jié)果有:正正,正反,反正,反反,然后利用概率公式求解即可求得答案.【詳解】解:∵拋擲兩枚質(zhì)地均勻的硬幣,兩枚硬幣落地后的所有等可能的結(jié)果有:正正,正反,反正,反反,∴正面都朝上的概率是:

.故選A.【點(diǎn)睛】本題考查了列舉法求概率的知識(shí).此題比較簡(jiǎn)單,注意在利用列舉法求解時(shí),要做到不重不漏,注意概率=所求情況數(shù)與總情況數(shù)之比.2、C【分析】根據(jù)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)特點(diǎn):兩個(gè)點(diǎn)關(guān)于原點(diǎn)對(duì)稱時(shí),它們的坐標(biāo)符號(hào)相反即可得到答案.【詳解】解:點(diǎn)與點(diǎn)關(guān)于原點(diǎn)對(duì)稱,,,.故選:C.【點(diǎn)睛】此題主要考查了原點(diǎn)對(duì)稱點(diǎn)的坐標(biāo)特點(diǎn),解題的關(guān)鍵是掌握點(diǎn)的變化規(guī)律.3、B【分析】先根據(jù)平行線的性質(zhì)得∠ACC′=∠CAB=64°,再根據(jù)旋轉(zhuǎn)的性質(zhì)得∠CAC′等于旋轉(zhuǎn)角,AC=AC′,則利用等腰三角形的性質(zhì)得∠ACC′=∠AC′C=64°,然后根據(jù)三角形內(nèi)角和定理可計(jì)算出∠CAC′的度數(shù),從而得到旋轉(zhuǎn)角的度數(shù).【詳解】解:∵CC′∥AB,∴∠ACC′=∠CAB=64°∵△ABC在平面內(nèi)繞點(diǎn)A旋轉(zhuǎn)到△AB′C′的位置,∴∠CAC′等于旋轉(zhuǎn)角,AC=AC′,∴∠ACC′=∠AC′C=64°,∴∠CAC′=180°-∠ACC′-∠AC′C=180°-2×64°=52°,∴旋轉(zhuǎn)角為52°.故選:B.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì):對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.4、A【分析】根據(jù)菱形是中心對(duì)稱圖形,菱形ABCD的對(duì)角線交于原點(diǎn)O,則點(diǎn)與點(diǎn)關(guān)于原點(diǎn)中心對(duì)稱,根據(jù)中心對(duì)稱的點(diǎn)的坐標(biāo)特征進(jìn)行求解即可【詳解】解:∵菱形是中心對(duì)稱圖形,菱形ABCD的對(duì)角線交于原點(diǎn)O,∴與點(diǎn)關(guān)于原點(diǎn)中心對(duì)稱,點(diǎn)B的坐標(biāo)為,點(diǎn)D的坐標(biāo)是故選A【點(diǎn)睛】本題考查了菱形的性質(zhì),求關(guān)于原點(diǎn)中心對(duì)稱的點(diǎn)的坐標(biāo),掌握菱形的性質(zhì)是解題的關(guān)鍵.5、B【分析】根據(jù)“把一個(gè)圖形繞著某一個(gè)點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個(gè)圖形叫做中心對(duì)稱圖形”及“如果一個(gè)平面圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個(gè)圖形就叫做軸對(duì)稱圖形”,由此問題可求解.【詳解】解:A、既不是軸對(duì)稱圖形也不是中心對(duì)稱圖形,故不符合題意;B、是中心對(duì)稱圖形但不是軸對(duì)稱圖形,故符合題意;C、既不是軸對(duì)稱圖形也不是中心對(duì)稱圖形,故不符合題意;D、是軸對(duì)稱圖形但不是中心對(duì)稱圖形,故不符合題意;故選B.【點(diǎn)睛】本題主要考查中心對(duì)稱圖形及軸對(duì)稱圖形的識(shí)別,熟練掌握中心對(duì)稱圖形及軸對(duì)稱圖形的定義是解題的關(guān)鍵.6、C【分析】過點(diǎn)A作AC⊥x軸于點(diǎn)C,設(shè),則,根據(jù)勾股定理,可得,從而得到,進(jìn)而得到∴,可得到點(diǎn),再根據(jù)旋轉(zhuǎn)的性質(zhì),即可求解.【詳解】解:如圖,過點(diǎn)A作AC⊥x軸于點(diǎn)C,設(shè),則,∵,,∴,∵,,∴,解得:,∴,∴,∴點(diǎn),∴將繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,則旋轉(zhuǎn)后點(diǎn)A的對(duì)應(yīng)點(diǎn)的坐標(biāo)是,∴將繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,則旋轉(zhuǎn)后點(diǎn)A的對(duì)應(yīng)點(diǎn)的坐標(biāo)是.故選:C【點(diǎn)睛】本題考查坐標(biāo)與圖形變化一旋轉(zhuǎn),解直角三角形等知識(shí),解題的關(guān)鍵是求出點(diǎn)A的坐標(biāo),屬于中考??碱}型.7、C【分析】先利用切線長(zhǎng)定理得到PA=PB,再利用∠APB=60°可判斷△APB為等邊三角形,然后根據(jù)等邊三角形的性質(zhì)求解.【詳解】解:∵PA,PB為⊙O的切線,∴PA=PB,∵∠APB=60°,∴△APB為等邊三角形,∴AB=PA=5.故選:C.【點(diǎn)睛】本題考查了切線長(zhǎng)定理以及等邊三角形的判定與性質(zhì).此題比較簡(jiǎn)單,注意掌握數(shù)形結(jié)合思想的應(yīng)用.8、A【分析】設(shè)原來扇形的半徑為r,圓心角為n,則變化后的扇形的半徑為3r,圓心角為,利用扇形的面積公式即可計(jì)算得出它們的面積,從而進(jìn)行比較即可得答案.【詳解】設(shè)原來扇形的半徑為r,圓心角為n,∴原來扇形的面積為,∵扇形的半徑擴(kuò)大為原來的3倍,圓心角縮小為原來的,∴變化后的扇形的半徑為3r,圓心角為,∴變化后的扇形的面積為,∴扇形的面積不變.故選:A.【點(diǎn)睛】本題考查了扇形面積,熟練掌握并靈活運(yùn)用扇形面積公式是解題關(guān)鍵.二、填空題1、【分析】過點(diǎn)C作于點(diǎn)H,根據(jù)正弦定義解得CH的長(zhǎng),再由扇形面積公式、三角形的面積公式解題即可.【詳解】解:過點(diǎn)C作于點(diǎn)H,在平行四邊形中,平行四邊形的面積為:,圖中黑色陰影部分的面積為:,故答案為:.【點(diǎn)睛】本題考查平行四邊形的性質(zhì)、扇形面積等知識(shí),是基礎(chǔ)考點(diǎn),掌握相關(guān)知識(shí)是解題關(guān)鍵.2、105【分析】(1)如圖,作AH⊥BC于H.根據(jù)垂線段最短,求出AH即可解決問題.(2)如圖,在AB上取一點(diǎn)K,使得AK=AC,連接CK,DK.由△PAC≌△DAK(SAS),推出PC=DK,易知KD⊥BC時(shí),KD的值最小,求出KD的最小值即可解決問題.【詳解】解:如圖作AH⊥BC于H,∵AB=AC=20,,∴,∵,∴,根據(jù)垂線段最短可知,當(dāng)AP與AH重合時(shí),PA的值最小,最小值為10.∴AP的最小值是10;(2)如圖,在AB上取一點(diǎn)K,使得AK=AC,連接CK,DK.∵∠ACB=90°,∠B=30°,∴∠CAK=60°,∴∠PAD=∠CAK,∴∠PAC=∠DAK,∵PA=DA,CA=KA,∴△PAC≌△DAK(SAS),∴PC=DK,∵KD⊥BC時(shí),KD的值最小,∵,是等邊三角形,∴,∴PC的最小值為5.【點(diǎn)睛】本題屬于幾何變換綜合題,考查了等腰三角形的性質(zhì),垂線段最短,全等三角形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)用轉(zhuǎn)化的思想思考問題.3、6【分析】依題意,直角三角形性質(zhì),結(jié)合題意能夠容納的最大為內(nèi)切圓,結(jié)合內(nèi)切圓半徑,利用等積法求解即可;【詳解】設(shè)直角三角形中能容納最大圓的半徑為:;依據(jù)直角三角形的性質(zhì):可得斜邊長(zhǎng)為:依據(jù)直角三角形面積公式:,即為;內(nèi)切圓半徑面積公式:,即為;所以,可得:,所以直徑為:;故填:6;【點(diǎn)睛】本題主要考查直角三角形及其內(nèi)切圓的性質(zhì),重點(diǎn)在理解題意和利用內(nèi)切圓半徑求解面積;4、【分析】利用勾股定理求出AC及AB的長(zhǎng),根據(jù)陰影面積等于求出答案.【詳解】解:由旋轉(zhuǎn)得,,=∠BAC=30°,∵∠ABC=90°,∠BAC=30°,BC=1,∴AC=2BC=2,AB=,,∴陰影部分的面積==,故答案為:..【點(diǎn)睛】此題考查了求不規(guī)則圖形的面積,正確掌握勾股定理、30度角直角三角形的性質(zhì)、扇形面積計(jì)算公式及分析出陰影面積的構(gòu)成特點(diǎn)是解題的關(guān)鍵.5、4【分析】設(shè)一直角邊長(zhǎng)為x,另一直角邊長(zhǎng)為(6-x)根據(jù)勾股定理,解一元二次方程求出,根據(jù)這個(gè)直角三角形的斜邊長(zhǎng)為外接圓的直徑,可求外接圓的半徑為cm,利用三角形面積公式求即可.【詳解】解:設(shè)一直角邊長(zhǎng)為x,另一直角邊長(zhǎng)為(6-x),∵三角形是直角三角形,∴根據(jù)勾股定理,整理得:,解得,這個(gè)直角三角形的斜邊長(zhǎng)為外接圓的直徑,∴外接圓的半徑為cm,三角形面積為.故答案為;.【點(diǎn)睛】本題考查直角三角形的外接圓,直角所對(duì)弦性質(zhì),勾股定理,一元二次方程,三角形面積,掌握以上知識(shí)是解題關(guān)鍵.6、【分析】如圖,取的中點(diǎn),連接,,,證明,進(jìn)而證明在上運(yùn)動(dòng),且垂直平分,根據(jù),求得最值,根據(jù)正方形的性質(zhì)和勾股定理求得的長(zhǎng)即可求得的最小值.【詳解】解:如圖,取的中點(diǎn),連接,,,將線段MN繞點(diǎn)M順時(shí)針旋轉(zhuǎn)60°得到線段MQ,,是等邊三角形,,是的中點(diǎn),是的中點(diǎn)是等邊三角形,即在和中,又是的中點(diǎn)點(diǎn)在上是的中點(diǎn),是等邊三角,又垂直平分即的最小值為四邊形是正方形,且的最小值為故答案為:【點(diǎn)睛】本題考查了正方形的性質(zhì)等邊三角形的性質(zhì),旋轉(zhuǎn)的性質(zhì),全等三角形的性質(zhì)與判定,勾股定理,垂直平分線的性質(zhì)與判定,根據(jù)以上知識(shí)轉(zhuǎn)化線段是解題的關(guān)鍵.7、5或3【分析】分點(diǎn)P在圓內(nèi)或圓外進(jìn)行討論.【詳解】解:①當(dāng)點(diǎn)P在圓內(nèi)時(shí),⊙O的直徑長(zhǎng)為8+2=10(cm),半徑為5cm;②當(dāng)點(diǎn)P在圓外時(shí),⊙O的直徑長(zhǎng)為8-2=6(cm),半徑為3cm;綜上所述:⊙O的半徑長(zhǎng)為5cm或3cm.故答案為:5或3.【點(diǎn)睛】本題考查了點(diǎn)與圓的位置關(guān)系:點(diǎn)的位置可以確定該點(diǎn)到圓心距離與半徑的關(guān)系,反過來已知點(diǎn)到圓心距離與半徑的關(guān)系可以確定該點(diǎn)與圓的位置關(guān)系.三、解答題1、(1)45°(2)【分析】(1)連接OC,根據(jù)切線的性質(zhì)得到OC⊥CD,根據(jù)圓周角定理得到∠DOC=2∠CAD,進(jìn)而證明∠D=∠DOC,根據(jù)等腰直角三角形的性質(zhì)求出∠D的度數(shù);(2)根據(jù)等腰三角形的性質(zhì)求出OC,根據(jù)弧長(zhǎng)公式計(jì)算即可.(1)連接.∵,∴,即.∵,∴.∵是⊙的切線,∴,即.∴.∴.∴.(2)∵,,∴.∵,∴.∴的長(zhǎng).【點(diǎn)睛】本題考查的是切線的性質(zhì)、圓周角定理、弧長(zhǎng)的計(jì)算,掌握?qǐng)A的切線垂直于經(jīng)過切點(diǎn)的半徑是解題的關(guān)鍵.2、(1)見解析(2)1【分析】(1)如圖,連接BE,AF,BE交AF于C,作直線OC交于點(diǎn)P,點(diǎn)P即為所求.(2)利用垂徑定理結(jié)合勾股定理求得OQ=4,進(jìn)一步計(jì)算即可求解.(1)解:如圖中,點(diǎn)P即為所求.(2)解:連接OF,由作圖知OP⊥EF,EQ=QF=EF=3,∵AB=10,∴OF=OP=AB=5,∴OQ==4,∴PQ=OP-OQ=1,∴PQ的長(zhǎng)度為1.【點(diǎn)睛】本題考查了作圖-應(yīng)用與設(shè)計(jì),垂徑定理,勾股定理,,解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問題.3、(1)100,126°,條形統(tǒng)計(jì)圖見解析;(2)700;(3)【分析】(1)根據(jù)C等級(jí)的人數(shù)和所占比可求出抽取的總?cè)藬?shù),用A等級(jí)的人數(shù)除以抽取的總?cè)藬?shù)乘以360°可得A等級(jí)對(duì)應(yīng)扇形圓心角的度數(shù),用抽取的總?cè)藬?shù)乘以B等級(jí)所占的百分比得B等級(jí)的人數(shù),用抽取的總?cè)藬?shù)減去A、B、C等級(jí)的人數(shù)得出D等級(jí)人數(shù),即可補(bǔ)全條形統(tǒng)計(jì)圖;(2)用2000乘以A等級(jí)所占的百分比即可估計(jì)出成績(jī)“優(yōu)秀”的學(xué)生人數(shù);(3)由(1)得不合格有5人,故由3男2女,用列表法即可求回訪到一男一女的概率.【詳解】(1)C等級(jí)的人數(shù)和所占比可得抽取的總?cè)藬?shù)為:(名),∴“優(yōu)秀”等級(jí)對(duì)應(yīng)的扇形圓心角度數(shù)為:,B等級(jí)的人數(shù)為:(名),D等級(jí)的人數(shù)為:(名),∴補(bǔ)全條形統(tǒng)計(jì)圖如下所示:(2)(名),∴該校競(jìng)賽成績(jī)“優(yōu)秀”的學(xué)生人數(shù)為700名;(3)∵抽取不及格的人數(shù)有5名,其中有2名女生,∴有3名男生,設(shè)3名男生分別為,,,2名女生分別為,,列表格如下所示:∴總的結(jié)果有20種,一男一女的有12種,∴回訪到一男一女的概率為.【點(diǎn)睛】本題考查統(tǒng)計(jì)與概率,其中涉及到條形統(tǒng)計(jì)圖與扇形統(tǒng)計(jì)圖相關(guān)聯(lián)問題,用樣本估計(jì)總體以及用列舉法求概率,讀懂條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖所給出的條件是解題的關(guān)鍵.4、(1)見解析;(2)6【分析】(1)連接OC,根據(jù)CE是⊙O的切線,可得∠OCE=,根據(jù)圓周角定理,可得∠AOC=,從而得到∠AOC+∠OCE=,即可求證;(2)過點(diǎn)A作AF⊥EC交EC于點(diǎn)F,由∠AOC=,OA=OC,可得∠OAC=,從而得到∠BAD=,再由AD∥EC,可得,然后證得四邊形OAFC是正方形,可得,從而得到AF=3,再由直角三角形的性質(zhì),即可求解.【詳解】證明:(1)連接OC,∵CE是⊙O的切線,∴∠OCE=,∵∠ABC=,∴∠AOC=2∠ABC=,∵∠AOC+∠OCE=,∴AD∥EC;(2)解:過點(diǎn)A作AF⊥EC交EC于點(diǎn)F,∵∠AOC=,OA=OC,∴∠OAC=,∵∠BAC=,∴∠BAD=,∵AD∥EC,∴,∵∠OCE=,∠AOC=,∠AFC=90°,∴四邊形OAFC是矩形,∵OA=OC,∴四邊形OAFC是正方形,∴,∵,∴,在Rt△AFE中,,∴AE=2AF=6.【點(diǎn)睛】本題主要考查了圓周角定理,切線的性質(zhì),直角三角形的性質(zhì),正方形的判定和性質(zhì),熟練掌握相關(guān)知識(shí)點(diǎn)是解題的關(guān)鍵.5、(1)①;②(2)不成立,【分析】(1)①由直角三角形的性質(zhì)可得出答案;②過點(diǎn)E作ME⊥EC交CA的延長(zhǎng)線于M,由旋轉(zhuǎn)的性質(zhì)得出AE=EF,∠AEF=90°,得出∠AEM=∠CEF,證明△FEC≌△AEM(SAS),由全等三角形的性質(zhì)得出CF=AM,由等腰直角三角形的性質(zhì)可得出結(jié)論;(2)過點(diǎn)F作FH⊥BC交BC的延長(zhǎng)線于點(diǎn)H.證明△ABE≌△EHF(AAS),由全等三角形的性質(zhì)得出FH=BE,EH=AB=BC,由等腰直角三角形的性質(zhì)可得出結(jié)論;(1)①∵,,,∴,∵sin∠EAB=∴,故答案為:30°;②.如圖1,過

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論