難點(diǎn)詳解滬科版9年級下冊期末試題帶答案詳解(A卷)_第1頁
難點(diǎn)詳解滬科版9年級下冊期末試題帶答案詳解(A卷)_第2頁
難點(diǎn)詳解滬科版9年級下冊期末試題帶答案詳解(A卷)_第3頁
難點(diǎn)詳解滬科版9年級下冊期末試題帶答案詳解(A卷)_第4頁
難點(diǎn)詳解滬科版9年級下冊期末試題帶答案詳解(A卷)_第5頁
已閱讀5頁,還剩26頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

滬科版9年級下冊期末試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、下列事件中,是必然事件的是()A.剛到車站,恰好有車進(jìn)站B.在一個僅裝著白乒乓球的盒子中,摸出黃乒乓球C.打開九年級上冊數(shù)學(xué)教材,恰好是概率初步的內(nèi)容D.任意畫一個三角形,其外角和是360°2、如圖,AB為的直徑,,,劣弧BC的長是劣弧BD長的2倍,則AC的長為()A. B. C.3 D.3、在中,,cm,cm.以C為圓心,r為半徑的與直線AB相切.則r的取值正確的是()A.2cm B.2.4cm C.3cm D.3.5cm4、在中,,,給出條件:①;②;③外接圓半徑為4.請在給出的3個條件中選取一個,使得BC的長唯一.可以選取的是()A.① B.② C.③ D.①或③5、若的圓心角所對的弧長是,則此弧所在圓的半徑為()A.1 B.2 C.3 D.46、如圖,在中,,,將繞點(diǎn)C逆時針旋轉(zhuǎn)90°得到,則的度數(shù)為()A.105° B.120° C.135° D.150°7、下列圖形中,既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.8、如圖,在中,,,將繞點(diǎn)A順時針旋轉(zhuǎn)60°得到,此時點(diǎn)B的對應(yīng)點(diǎn)D恰好落在BC邊上,則CD的長為()A.1 B.2 C.3 D.4第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、已知一個扇形的半徑是1,圓心角是120°,則這個扇形的面積是___________.2、一個五邊形共有__________條對角線.3、如圖,將矩形繞點(diǎn)A順時針旋轉(zhuǎn)到矩形的位置,旋轉(zhuǎn)角為.若,則的大小為________(度).4、背面完全相同的四張卡片,正面分別寫著數(shù)字-4,-1,2,3,背面朝上并洗勻,從中隨機(jī)抽取一張,將卡片上的數(shù)字記為,再從余下的卡片中隨機(jī)抽取一張,將卡片上的數(shù)字記為,則點(diǎn)在第四象限的概率為__________.5、不透明袋子中裝有5個球,其中有2個紅球、3個黑球,這些球除顏色外無其他差別.從袋子中隨機(jī)取出1個球,則它是黑球的概率是________.6、在一個不透明的盒子里裝有若干個紅球和20個白球,這些球除顏色外其余全部相同,每次從袋子中摸出一球記下顏色后放回,通過多次重復(fù)實驗發(fā)現(xiàn)摸到紅球的頻率穩(wěn)定在0.6附近,則袋中紅球大約有________個.7、圖①所示,平整的地面上有一個不規(guī)則圖案(圖中陰影部分),小明想了解該圖案的面積是多少,他采取了以下辦法:用一個長為6m,寬為4m的長方形,將不規(guī)則圖案圍起來,然后在適當(dāng)位置隨機(jī)地朝長方形區(qū)域扔小球,并記錄小球落在不規(guī)則圖案上的次數(shù)(球扔在界線上或長方形區(qū)域外不計實驗結(jié)果),他將若干次有效實驗的結(jié)果繪制成了②所示的折線統(tǒng)計圖,由此他估計不規(guī)則圖案的面積大約為_____m2.三、解答題(7小題,每小題0分,共計0分)1、一個不透明的口袋中有4個完全相同的小球,把它們分別標(biāo)號為1,2,3,4隨機(jī)摸取一個小球后,不放回,再隨機(jī)摸出一個小球,分別求下列事件的概率:(1)兩次取出的小球標(biāo)號和為奇數(shù);(2)兩次取出的小球標(biāo)號和為偶數(shù).2、在中,,,過點(diǎn)A作BC的垂線AD,垂足為D,E為線段DC上一動點(diǎn)(不與點(diǎn)C重合),連接AE,以點(diǎn)A為中心,將線段AE逆時針旋轉(zhuǎn)90°得到線段AF,連接BF,與直線AD交于點(diǎn)G.(1)如圖,當(dāng)點(diǎn)E在線段CD上時,①依題意補(bǔ)全圖形,并直接寫出BC與CF的位置關(guān)系;②求證:點(diǎn)G為BF的中點(diǎn).(2)直接寫出AE,BE,AG之間的數(shù)量關(guān)系.3、如圖,是由若干個完全相同的小正方體組成的一個幾何體.(1)請畫出這個幾何體的從左面看和從上面看的形狀圖;(用陰影表示)(2)已知每個小正方體的邊長是2cm,求出這個幾何體的表面積是多少?4、在直角坐標(biāo)平面內(nèi),三個頂點(diǎn)的坐標(biāo)分別為、、(正方形網(wǎng)格中每個小正方形的邊長是一個單位長度).(1)將向下平移4個單位長度得到的,則點(diǎn)的坐標(biāo)是____________;(2)以點(diǎn)B為位似中心,在網(wǎng)格上畫出,使與位似,且位似比為2:1,求點(diǎn)的坐標(biāo);(3)若是外接圓,求的半徑.5、一張圓桌旁設(shè)有4個座位,丙先坐在了如圖所示的座位上,甲、乙、丁3人等可能地坐到①、②、③中的3個座位上.(1)甲坐在①號座位的概率是;(2)用畫樹狀圖或列表的方法,求甲與乙相鄰而坐的概率.6、如圖,在Rt△ABC中,∠B=90°,∠BAC的平分線AD交BC于點(diǎn)D,點(diǎn)E在AC上,以AE為直徑的⊙O經(jīng)過點(diǎn)D.(1)求證:①BC是⊙O的切線;②;(2)若點(diǎn)F是劣弧AD的中點(diǎn),且CE=3,試求陰影部分的面積.7、如圖,在⊙O中,弦AC與弦BD交于點(diǎn)P,AC=BD.(1)求證AP=BP;(2)連接AB,若AB=8,BP=5,DP=3,求⊙O的半徑.-參考答案-一、單選題1、D【分析】根據(jù)必然事件的概念“在一定條件下,有些事件必然會發(fā)生,這樣的事件稱為必然事件”可判斷選項D是必然事件;根據(jù)不可能事件的概念“有些事件必然不會發(fā)生,這樣的事件稱為不可能事件”可判斷選項B是不可能事件;根據(jù)隨機(jī)事件的概念“在一定條件下,可能發(fā)生也可能不發(fā)生的事件,稱為隨機(jī)事件”判斷選項A、C是隨機(jī)事件,即可得.【詳解】解:A、剛到車站,恰好有車進(jìn)站是隨機(jī)事件;B、在一個僅裝著白乒乓球的盒子中,摸出黃乒乓球是不可能事件;C、打開九年級上冊數(shù)學(xué)教材,恰好是概率初步的內(nèi)容是隨機(jī)事件;D、任意畫一個三角形,其外角和是360°是必然事件;故選D.【點(diǎn)睛】本題考查了必然事件,解題的關(guān)鍵是熟記必然事件的概念,不可能事件的概念和隨機(jī)事件的概念.2、D【分析】連接,根據(jù)求得半徑,進(jìn)而根據(jù)的長,勾股定理的逆定理證明,根據(jù)弧長關(guān)系可得,即可證明是等邊三角形,求得,進(jìn)而由勾股定理即可求得【詳解】如圖,連接,,是直角三角形,且是等邊三角形是直徑,故選D【點(diǎn)睛】本題考查了弧與圓心角的關(guān)系,直徑所對的圓周角是90度,勾股定理,等邊三角形的判定,求得的長是解題的關(guān)鍵.3、B【分析】如圖所示,過C作CD⊥AB,交AB于點(diǎn)D,在直角三角形ABC中,由AC與BC的長,利用勾股定理求出AB的長,利用面積法求出CD的長,即為所求的r.【詳解】解:如圖所示,過C作CD⊥AB,交AB于點(diǎn)D,在Rt△ABC中,AC=3cm,BC=4cm,根據(jù)勾股定理得:AB==5(cm),∵S△ABC=BC?AC=AB?CD,∴×3×4=×10×CD,解得:CD=2.4,則r=2.4(cm).故選:B.【點(diǎn)睛】此題考查了切線的性質(zhì),勾股定理,以及三角形面積求法,熟練掌握切線的性質(zhì)是解本題的關(guān)鍵.4、B【分析】畫出圖形,作,交BE于點(diǎn)D.根據(jù)等腰直角三角形的性質(zhì)和勾股定理可求出AD的長,再由AD和AC的長作比較即可判斷①②;由前面所求的AD的長和AB的長,結(jié)合該三角形外接圓的半徑長,即可判斷該外接圓的圓心可在AB上方,也可在AB下方,其與AE的交點(diǎn)即為C點(diǎn),為兩點(diǎn)不唯一,可判斷其不符合題意.【詳解】如圖,,,點(diǎn)C在射線上.作,交BE于點(diǎn)D.∵,∴為等腰直角三角形,∴,∴不存在的三角形ABC,故①不符合題意;∵,,AC=8,而AC>6,∴存在的唯一三角形ABC,如圖,點(diǎn)C即是.∴,使得BC的長唯一成立,故②符合題意;∵,,∴存在兩個點(diǎn)C使的外接圓的半徑等于4,兩個外接圓圓心分別在AB的上、下兩側(cè),如圖,點(diǎn)C和即為使的外接圓的半徑等于4的點(diǎn).故③不符合題意.故選B.【點(diǎn)睛】本題考查等腰直角三角形的判定和性質(zhì),勾股定理,三角形外接圓的性質(zhì).利用數(shù)形結(jié)合的思想是解答本題的關(guān)鍵.5、C【分析】先設(shè)半徑為r,再根據(jù)弧長公式建立方程,解出r即可【詳解】設(shè)半徑為r,則周長為2πr,120°所對應(yīng)的弧長為解得r=3故選C【點(diǎn)睛】本題考查弧長計算,牢記弧長公式是本題關(guān)鍵.6、B【分析】由題意易得,然后根據(jù)三角形外角的性質(zhì)可求解.【詳解】解:由旋轉(zhuǎn)的性質(zhì)可得:,∴;故選B.【點(diǎn)睛】本題主要考查旋轉(zhuǎn)的性質(zhì)及三角形外角的性質(zhì),熟練掌握旋轉(zhuǎn)的性質(zhì)及三角形外角的性質(zhì)是解題的關(guān)鍵.7、C【詳解】解:選項A是軸對稱圖形,不是中心對稱圖形,故A不符合題意;選項B不是軸對稱圖形,是中心對稱圖形,故B不符合題意;選項C既是軸對稱圖形,也是中心對稱圖形,故C符合題意;選項D是軸對稱圖形,不是中心對稱圖形,故D不符合題意;故選C【點(diǎn)睛】本題考查的是軸對稱圖形的識別,中心對稱圖形的識別,掌握“軸對稱圖形與中心對稱圖形的定義”是解本題的關(guān)鍵,軸對稱圖形:把一個圖形沿某條直線對折,直線兩旁的部分能夠完全重合;中心對稱圖形:把一個圖形繞某點(diǎn)旋轉(zhuǎn)后能與自身重合.8、B【分析】由題意以及旋轉(zhuǎn)的性質(zhì)可得為等邊三角形,則BD=2,故CD=BC-BD=2.【詳解】由題意以及旋轉(zhuǎn)的性質(zhì)知AD=AB,∠BAD=60°∴∠ADB=∠ABD∵∠ADB+∠ABD+∠BAD=180°∴∠ADB=∠ABD=60°故為等邊三角形,即AB=AD=BD=2則CD=BC-BD=4-2=2故選:B.【點(diǎn)睛】本題考查了等邊三角形的判定及性質(zhì),等邊三角形的三邊都相等,三個內(nèi)角都相等,并且每一個內(nèi)角都等于,等邊三角形判定的方法有:三邊相等的三角形是等邊三角形(定義);三個內(nèi)角都相等的三角形是等邊三角形;有一個內(nèi)角是60度的等腰三角形是等邊三角形;兩個內(nèi)角為60度的三角形是等邊三角形.二、填空題1、【分析】根據(jù)圓心角為的扇形面積是進(jìn)行解答即可得.【詳解】解:這個扇形的面積.故答案是:.【點(diǎn)睛】本題考查了扇形的面積,解題的關(guān)鍵是掌握扇形的面積公式.2、5【分析】由n邊形的對角線有:條,再把代入計算即可得.【詳解】解:邊形共有條對角線,五邊形共有條對角線.故答案為:5【點(diǎn)睛】本題考查的是多邊形的對角線的條數(shù),掌握n邊形的對角線的條數(shù)是解題的關(guān)鍵.3、20【分析】先利用旋轉(zhuǎn)的性質(zhì)得到∠ADC=∠D=90°,∠DAD′=α,再利用四邊形內(nèi)角和計算出∠BAD‘=70°,然后利用互余計算出∠DAD′,從而得到α的值.【詳解】∵矩形ABCD繞點(diǎn)A順時針旋轉(zhuǎn)到矩形A′B′C′D′的位置,∴∠ADC=∠D=90°,∠DAD′=α,∵∠ABC=90°,∴∠BAD’=180°-∠1=180°-110°=70°,∴∠DAD′=90°-70°=20°,即α=20°.故答案為20.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì):對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;對應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.4、【分析】第四象限點(diǎn)的特征是,所以當(dāng)橫坐標(biāo)只能為2或3,縱坐標(biāo)只能是或,畫出列表圖或樹狀圖,算出滿足條件的情況,進(jìn)一步求得概率即可.【詳解】如下圖:-4-123-4-123∵第四象限點(diǎn)的坐標(biāo)特征是,∴滿足條件的點(diǎn)分別是:,共4種情況,又∵從列表圖知,共有12種等可能性結(jié)果,∴點(diǎn)在第四象限的概率為.故答案為:【點(diǎn)睛】本題主要考察概率的求解,要熟悉樹狀圖或列表圖的要點(diǎn)是解題關(guān)鍵.5、【分析】根據(jù)概率公式計算即可【詳解】共有個球,其中黑色球3個從中任意摸出一球,摸出白色球的概率是.故答案為:【點(diǎn)睛】本題考查了簡單概率公式的計算,熟悉概率公式是解題的關(guān)鍵.6、30【分析】設(shè)袋中紅球有x個,根據(jù)題意用紅球數(shù)除以白球和紅球的總數(shù)等于紅球的頻率列出方程即可求出紅球數(shù).【詳解】解:設(shè)袋中紅球有x個,根據(jù)題意,得:,解并檢驗得:x=30.所以袋中紅球有30個.故答案為:30.【點(diǎn)睛】本題考查了利用頻率估計概率,解決本題的關(guān)鍵是用頻率的集中趨勢來估計概率,這個固定的近似值7、8.4【分析】首先假設(shè)不規(guī)則圖案面積為x,根據(jù)幾何概率知識求解不規(guī)則圖案占長方形的面積大??;繼而根據(jù)折線圖用頻率估計概率,綜合以上列方程求解.【詳解】解:假設(shè)不規(guī)則圖案面積為xm2,由已知得:長方形面積為24m2,根據(jù)幾何概率公式小球落在不規(guī)則圖案的概率為:,當(dāng)事件A試驗次數(shù)足夠多,即樣本足夠大時,其頻率可作為事件A發(fā)生的概率估計值,故由折線圖可知,小球落在不規(guī)則圖案的概率大約為0.35,綜上有:=0.35,解得x=8.4.估計不規(guī)則圖案的面積大約為8.4m2.故答案為:8.4.【點(diǎn)睛】本題考查幾何概率以及用頻率估計概率,并在此基礎(chǔ)上進(jìn)行了題目創(chuàng)新,解題關(guān)鍵在于清晰理解題意,能從復(fù)雜的題目背景當(dāng)中找到考點(diǎn)化繁為簡,創(chuàng)新題目對基礎(chǔ)知識要求極高.三、解答題1、(1);(2).【分析】(1)列出表格展示所有可能的結(jié)果,根據(jù)表格即可知共有12種可能的情況,再找到兩次取出的小球標(biāo)號和為奇數(shù)的情況數(shù),利用概率公式,即可求解;(2)找出兩次取出的小球標(biāo)號和為偶數(shù)的情況數(shù),再利用概率公式,即可求解.(1)解:根據(jù)題意列出表格,如下表:根據(jù)表格可知:共有12種可能的情況,其中兩次取出的小球標(biāo)號和為奇數(shù)的情況有8種,故兩次取出的小球標(biāo)號和為奇數(shù)的概率為;(2)根據(jù)表格可知:兩次取出的小球標(biāo)號和為偶數(shù)的情況有4種.故兩次取出的小球標(biāo)號和為偶數(shù)的概率為.123411+2=3,奇數(shù)1+3=4,偶數(shù)1+4=5,奇數(shù)22+1=3,奇數(shù)2+3=5,奇數(shù)2+4=6,偶數(shù)33+1=4,偶數(shù)3+2=5,奇數(shù)3+4=7,奇數(shù)44+1=5,奇數(shù)4+2=6,偶數(shù)4+3=7,奇數(shù)【點(diǎn)睛】2、(1)①BC⊥CF;證明見詳解;②見詳解;(2)2AE2=4AG2+BE2.證明見詳解.【分析】(1)①如圖所示,BC⊥CF.根據(jù)將線段AE逆時針旋轉(zhuǎn)90°得到線段AF,得出AE=AF,∠EAF=90°,可證△BAE≌△CAF(SAS),得出∠ABE=∠ACF=45°,可得∠ECF=∠ACB+∠ACF=45°+45°=90°即可;②根據(jù)AD⊥BC,BC⊥CF.可得AD∥CF,可證△BDG∽△BCF,可得,得出即可;(2)2AE2=4AG2+BE2,延長BA交CF延長線于H,根據(jù)等腰三角形性質(zhì)可得AD平分∠BAC,可得∠BAD=∠CAD=,可證△BAG∽△BHF,得出HF=2AG,再證△AEC≌△AFH(AAS),得出EC=FH=2AG,利用勾股定理得出,即即可.【詳解】解:(1)①如圖所示,BC⊥CF.∵將線段AE逆時針旋轉(zhuǎn)90°得到線段AF,∴AE=AF,∠EAF=90°,∴∠EAC+∠CAF=90°,∵,,∴∠BAE+∠EAC=90°,∠ABC=∠ACB=45°,∴∠BAE=∠CAF,在△BAE和△CAF中,,∴△BAE≌△CAF(SAS),∴∠ABE=∠ACF=45°,∴∠ECF=∠ACB+∠ACF=45°+45°=90°,∴BC⊥CF;②∵AD⊥BC,BC⊥CF.∴AD∥CF,∴∠BDG=∠BCF=90°,∠BGD=∠BFC,∴△BDG∽△BCF,∴,∵,AD⊥BC,∴BD=DC=,∴,∴,∴,∴BG=GF;(2)2AE2=4AG2+BE2.延長BA交CF延長線于H,∵AD⊥BC,AB=AC,∴AD平分∠BAC,∴∠BAD=∠CAD=,∵BG=GF,AG∥HF,∴∠BAG=∠H=45°,∠AGB=∠HFB,∴△BAG∽△BHF,∴,∴HF=2AG,∵∠ACE=45°,∴∠ACE=∠H,∵∠EAC+∠CAF=90°,∠CAF+∠FAH=90°,∴∠EAC=∠FAH,在△AEC和△AFH中,,∴△AEC≌△AFH(AAS),∴EC=FH=2AG,在Rt△AEF中,根據(jù)勾股定理,在Rt△ECF中,即.【點(diǎn)睛】本題考查圖形旋轉(zhuǎn)性質(zhì),三角形完全判定與性質(zhì),等腰直角三角形性質(zhì),三角形相似判定與性質(zhì),勾股定理,掌握圖形旋轉(zhuǎn)性質(zhì),三角形完全判定與性質(zhì),等腰直角三角形性質(zhì),三角形相似判定與性質(zhì),勾股定理是解題關(guān)鍵.3、(1)見解析(2)152cm2.【分析】(1)左視圖3列,每列小正方形數(shù)目分別為3,2,1;俯視圖有3列,每行小正方形數(shù)目分別為3,2,1,;(2)先數(shù)出各個面小正方形的個數(shù),再乘每個小正方形的面積可計算出表面積.(1)如圖所示:(2)(2×2)×(6×6+2)=4×38=152(cm2).故這個幾何體的表面積是152cm2.【點(diǎn)睛】本題考查作圖-三視圖.在畫圖時一定要將物體的邊緣、棱、頂點(diǎn)都體現(xiàn)出來,看得見的輪廓線都畫成實線,看不見的畫成虛線,不能漏掉.本題畫幾何體的三視圖時應(yīng)注意小正方形的數(shù)目及位置.4、(1)(2,-2)(2)圖見解析,(1,0)(3)【分析】(1)根據(jù)平移的性質(zhì)得出平移后的圖從而得到點(diǎn)的坐標(biāo);(2)根據(jù)位似圖形的性質(zhì)得出對應(yīng)點(diǎn)位置,從而得到點(diǎn)的坐標(biāo);(3)證明是直角三角形,根據(jù)直角三角形外切圓半徑公式計算即可.(1)如圖所示:C1(2,﹣2);故答案為(2,﹣2);(2)如圖所示:C2(1,0);故答案為(1,0);(3)由圖可知:∵,,∴∴是直角三角形,∴能蓋住的最小圓即為外接圓,設(shè)其半徑為R;則【點(diǎn)睛】本題考查作圖—平移變換,作圖—位似變換、三角形外接圓,正確理解位似變換的定義,會進(jìn)行位似變換的作圖是解題的關(guān)鍵.5、(1)(2)【分析】(1)根據(jù)概率公式直角計算即可;(2)畫樹狀圖可知共有6種等可能的結(jié)果,而甲與乙相鄰而坐的結(jié)果有4種,最后用概率公式求解即可.(1)解:∵丙坐了一張座位,∴甲坐在①號座位的概率是.故答案是.(2)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論