考點(diǎn)解析四川遂寧市第二中學(xué)7年級數(shù)學(xué)下冊第四章三角形專題測評練習(xí)題(含答案解析)_第1頁
考點(diǎn)解析四川遂寧市第二中學(xué)7年級數(shù)學(xué)下冊第四章三角形專題測評練習(xí)題(含答案解析)_第2頁
考點(diǎn)解析四川遂寧市第二中學(xué)7年級數(shù)學(xué)下冊第四章三角形專題測評練習(xí)題(含答案解析)_第3頁
考點(diǎn)解析四川遂寧市第二中學(xué)7年級數(shù)學(xué)下冊第四章三角形專題測評練習(xí)題(含答案解析)_第4頁
考點(diǎn)解析四川遂寧市第二中學(xué)7年級數(shù)學(xué)下冊第四章三角形專題測評練習(xí)題(含答案解析)_第5頁
已閱讀5頁,還剩28頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

四川遂寧市第二中學(xué)7年級數(shù)學(xué)下冊第四章三角形專題測評考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計(jì)20分)1、如圖,若MB=ND,∠MBA=∠NDC,下列條件中不能判定的是()A.AM=CN B. C.AB=CD D.∠M=∠N2、如圖,和全等,且,對應(yīng).若,,,則的長為()A.4 B.5 C.6 D.無法確定3、已知:如圖,∠BAD=∠CAE,AB=AD,∠B=∠D,則下列結(jié)論正確的是()A.AC=DE B.∠ABC=∠DAE C.∠BAC=∠ADE D.BC=DE4、如圖,點(diǎn)A在DE上,點(diǎn)F在AB上,△ABC≌△EDC,若∠ACE=50°,則∠DAB=()A.40° B.45° C.50° D.55°5、下列各組圖形中,是全等形的是()A.兩個(gè)含30°角的直角三角形B.一個(gè)鈍角相等的兩個(gè)等腰三角形C.邊長為5和6的兩個(gè)等腰三角形D.腰對應(yīng)相等的兩個(gè)等腰直角三角形6、如圖,在5×5的正方形網(wǎng)格中,△ABC的三個(gè)頂點(diǎn)都在格點(diǎn)上,則與△ABC有一條公共邊且全等(不與△ABC重合)的格點(diǎn)三角形(頂點(diǎn)都在格點(diǎn)上的三角形)共有()A.3個(gè) B.4個(gè) C.5個(gè) D.6個(gè)7、如圖,已知∠BAC=∠ABD=90°,AD和BC相交于O.在①AC=BD;②BC=AD;③∠C=∠D;④OA=OB.條件中任選一個(gè),可使△ABC≌△BAD.可選的條件個(gè)數(shù)為()A.1 B.2 C.3. D.48、一把直尺與一塊三角板如圖放置,若,則()A.120° B.130° C.140° D.150°9、如圖,在△ABC和△BAD中,AC=BD,要使△ABC≌△BAD,則需要添加的條件是()A.∠BAD=∠ABC B.∠BAC=∠ABD C.∠DAC=∠CBD D.∠C=∠D10、下列長度的三條線段能組成三角形的是()A.348 B.4410 C.5610 D.5611第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計(jì)20分)1、如圖,直線ED把分成一個(gè)和四邊形BDEC,的周長一定大于四邊形BDEC的周長,依據(jù)的原理是____________________________________.2、在中,,則的取值范圍是_______.3、如圖,已知∠A=60°,∠B=20°,∠C=30°,則∠BDC的度數(shù)為_____.4、在平面直角坐標(biāo)系中,點(diǎn)B(0,4),點(diǎn)A為x軸上一動點(diǎn),連接AB.以AB為邊作等腰Rt△ABE,(B、A、E按逆時(shí)針方向排列,且∠BAE為直角),連接OE.當(dāng)OE最小時(shí),點(diǎn)E的縱坐標(biāo)為______.5、如圖,△ABC中,∠B=20°,D是BC延長線上一點(diǎn),且∠ACD=60°,則∠A的度數(shù)是____________度.6、如圖,在Rt△ABC中,∠C=90°,兩銳角的角平分線交于點(diǎn)P,點(diǎn)E、F分別在邊BC、AC上,且都不與點(diǎn)C重合,若∠EPF=45°,連接EF,當(dāng)AC=6,BC=8,AB=10時(shí),則△CEF的周長為_____.7、已知a,b,c是的三邊長,滿足,c為奇數(shù),則______.8、如圖,,則的長為________.9、如圖,PA=PB,請你添加一個(gè)適當(dāng)?shù)臈l件:___________,使得△PAD≌△PBC.10、在△ABC中,三邊為、、,如果,,,那么的取值范圍是_____.三、解答題(6小題,每小題10分,共計(jì)60分)1、如圖,點(diǎn)E在AB上,AC=AD,∠CAB=∠DAB,△ACE與△ADE全等嗎?△ACB與△ADB呢?請說明理由.2、已知∠ACD=90°,MN是過點(diǎn)A的直線,AC=DC,且DB⊥MN于點(diǎn)B,如圖易證BD+ABCB,過程如下:解:過點(diǎn)C作CE⊥CB于點(diǎn)C,與MN交于點(diǎn)E∵∠ACB+∠BCD=90°,∠ACB+∠ACE=90°,∴∠BCD=∠ACE.∵DB⊥MN,∴∠ABC+∠CBD=90°,CE⊥CB,∴∠ABC+∠CEA=90°,∴∠CBD=∠CEA.又∵AC=DC,∴△ACE≌△DCB(AAS),∴AE=DB,CE=CB,∴△ECB為等腰直角三角形,∴BECB.又∵BE=AE+AB,∴BE=BD+AB,∴BD+ABCB.(1)當(dāng)MN繞A旋轉(zhuǎn)到如圖(2)位置時(shí),BD、AB、CB滿足什么樣關(guān)系式,請寫出你的猜想,并給予證明.(2)當(dāng)MN繞A旋轉(zhuǎn)到如圖(3)位置時(shí),BD、AB、CB滿足什么樣關(guān)系式,請直接寫出你的結(jié)論.3、如圖所示,在△ABC中,AD⊥BC于D,CE⊥AB于E,AD與CE交于點(diǎn)F,且AD=CD.(1)求證:△ABD≌△CFD;(2)已知BC=9,AD=6,求AF的長.4、如圖,是的中線,分別過點(diǎn)、作及其延長線的垂線,垂足分別為、.(1)求證:;(2)若的面積為8,的面積為6,求的面積.5、人教版初中數(shù)學(xué)教科書八年級上冊第36、37頁告訴我們作一個(gè)角等于已知角的方法:已知:∠AOB.求作:∠A′O′B′,使∠A′O′B′=∠AOB.作圖:(1)以O(shè)為圓心,任意長為半徑畫弧,分別交OA、OB于點(diǎn)C、D;(2)畫一條射線O′A′,以點(diǎn)O′為圓心,OC長為半徑畫弧,交O′A′于點(diǎn)C′;(3)以點(diǎn)C′為圓心,CD長為半徑畫弧,與第2步中所畫的弧相交于點(diǎn)D′;(4)過點(diǎn)D′畫射線O′B′,則∠A′O′B′=∠AOB.請你根據(jù)以上材料完成下列問題:(1)完成下面證明過程(將正確答案寫在相應(yīng)的橫線上).證明:由作圖可知,在△O′C′D′和△OCD中,,∴△O′C′D′≌,∴∠A′O′B'=∠AOB.(2)這種作一個(gè)角等于已知角的方法依據(jù)是.(填序號)①AAS;②ASA;③SSS;④SAS6、如圖,中,,點(diǎn)P在AB上,點(diǎn)Q在線段AC的延長線上,,PQ與BC相交于點(diǎn)D.點(diǎn)F在BC上,過點(diǎn)P作BC的垂線,垂足為E,.(1)求證:.(2)請猜測:線段BE、DE、CD數(shù)量關(guān)系為____________.-參考答案-一、單選題1、A【分析】根據(jù)兩個(gè)三角形全等的判定定理,有AAS、SSS、ASA、SAS四種.逐條驗(yàn)證.【詳解】解:A、根據(jù)條件AM=CN,MB=ND,∠MBA=∠NDC,不能判定△ABM≌△CDN,故A選項(xiàng)符合題意;B、AM∥CN,得出∠MAB=∠NCD,符合AAS,能判定△ABM≌△CDN,故B選項(xiàng)不符合題意;C、AB=CD,符合SAS,能判定△ABM≌△CDN,故C選項(xiàng)不符合題意;D、∠M=∠N,符合ASA,能判定△ABM≌△CDN,故D選項(xiàng)不符合題意.故選:A.【點(diǎn)睛】本題重點(diǎn)考查了三角形全等的判定定理,兩個(gè)三角形全等共有四個(gè)定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,本題是一道較為簡單的題目.2、A【分析】全等三角形對應(yīng)邊相等,對應(yīng)角相等,根據(jù)題中信息得出對應(yīng)關(guān)系即可.【詳解】∵和全等,,對應(yīng)∴∴AB=DF=4故選:A.【點(diǎn)睛】本題考查了全等三角形的概念及性質(zhì),應(yīng)注意①對應(yīng)邊、對應(yīng)角是對兩個(gè)三角形而言的,指兩條邊、兩個(gè)角的關(guān)系,而對邊、對角是指同一個(gè)三角形的邊和角的位置關(guān)系②可以進(jìn)一步推廣到全等三角形對應(yīng)邊上的高相等,對應(yīng)角的平分線相等,對應(yīng)邊上的中線相等,周長及面積相等③全等三角形有傳遞性.3、D【分析】根據(jù)已知條件利用ASA證明可得AC=AE,BC=DE,進(jìn)而逐一進(jìn)行判斷.【詳解】解:∵∠BAD=∠CAE,∴∠BAD-∠CAD=∠CAE-∠CAD,即∠BAC=∠DAE,所以B、C選項(xiàng)錯(cuò)誤;在和中,,∴(ASA),∴AC=AE,BC=DE.所以A選項(xiàng)錯(cuò)誤;D選項(xiàng)正確.故選:D.【點(diǎn)睛】本題考查了全等三角形的判定與性質(zhì),解決本題的關(guān)鍵是掌握全等三角形的判定與性質(zhì).4、C【分析】首先根據(jù)△ABC≌△EDC得到∠E=∠BAC,然后由三角形外角的性質(zhì)求解即可.【詳解】解:∵△ABC≌△EDC,∴∠E=∠BAC,∵∠DAC=∠E+∠ACE,∴∠DAB+∠BAC=∠E+∠ACE,∴∠DAB=∠ACE=50°,故選:C.【點(diǎn)睛】此題考查了三角形全等的性質(zhì),三角形外角的性質(zhì),解題的關(guān)鍵是熟練掌握三角形全等的性質(zhì),三角形外角的性質(zhì).5、D【分析】根據(jù)兩個(gè)三角形全等的條件依據(jù)三角形全等判定方法SSS,SAS,AAS,SAS,HL逐個(gè)判斷得結(jié)論.【詳解】解:A、兩個(gè)含30°角的直角三角形,缺少對應(yīng)邊相等,故選項(xiàng)A不全等;B、一個(gè)鈍角相等的兩個(gè)等腰三角形.缺少對應(yīng)邊相等,故選項(xiàng)B不全等;C、腰為5底為6的三角形和腰為6底為5的三角形不全等,故選項(xiàng)C不全等;D、腰對應(yīng)相等,頂角是直角的兩個(gè)三角形滿足“邊角邊”,故選項(xiàng)D是全等形.故選:D.【點(diǎn)睛】本題主要考查了三角形全等的判定方法;需注意:判定兩個(gè)三角形全等時(shí),必須有邊的參與,還要找準(zhǔn)對應(yīng)關(guān)系.6、C【分析】根據(jù)全等三角形的性質(zhì)及判定在圖中作出符合條件的三角形即可得出結(jié)果.【詳解】解:如圖所示:與BC邊重合且與全等的三角形有:,,,與AC邊重合且與全等的三角形有:,與AB邊重合且與全等的三角形有:,共有5個(gè)三角形,故選:C.【點(diǎn)睛】題目主要考查全等三角形的判定和性質(zhì),熟練掌握全等三角形的判定和性質(zhì)定理是解題關(guān)鍵.7、D【分析】先得到∠BAC=∠ABD=90°,若添加AC=BD,則可根據(jù)“SAS”判斷△ABC≌△BAD;若添加BC=AD,則可利用“HL”證明Rt△ABC≌Rt△BAD,若添加∠C=∠D,則可利用“AAS”證明△ABC≌△BAD;若添加OA=OB,可先根據(jù)“ASA”證明△AOC≌△BOD得∠C=∠D,則可利用“AAS”證明△ABC≌△BAD.【詳解】解:在△ABC和△BAD中,∴△ABC≌△BAD故選AC=BD可使△ABC≌△BAD.∵∠BAC=∠ABD=90°,∴△ABC和△BAD均為直角三角形在Rt△ABC和Rt△BAD中,∴Rt△ABC≌Rt△BAD故選BC=AD可使△ABC≌△BAD.在△ABC和△BAD中,∴△ABC≌△BAD故選∠C=∠D可使△ABC≌△BAD.∵OA=OB∴∵∠BAC=∠ABD=90°,∴在△AOC和△BOD中,∴△AOC≌△BOD∴在△ABC和△BAD中,∴△ABC≌△BAD故選OA=OB可使△ABC≌△BAD.∴可選的條件個(gè)數(shù)有4個(gè)故選:D【點(diǎn)睛】本題考查了全等三角形的判定:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”、“HL”.8、B【分析】由BC∥ED,得到∠2=∠CBD,由三角形外角的性質(zhì)得到∠CBD=∠1+∠A=130°,由此即可得到答案.【詳解】解:如圖所示,由題意得:∠A=90°,BC∥EF,∴∠2=∠CBD,又∵∠CBD=∠1+∠A=130°,∴∠2=130°,故選B.【點(diǎn)睛】本題主要考查了三角形外角的性質(zhì),平行線的性質(zhì),熟知相關(guān)知識是解題的關(guān)鍵.9、B【分析】利用全等三角形的判定方法對各選項(xiàng)進(jìn)行判斷.【詳解】解:∵AC=BD,而AB為公共邊,A、當(dāng)∠BAD=∠ABC時(shí),“邊邊角”不能判斷△ABC≌△BAD,該選項(xiàng)不符合題意;B、當(dāng)∠BAC=∠ABD時(shí),根據(jù)“SAS”可判斷△ABC≌△BAD,該選項(xiàng)符合題意;C、當(dāng)∠DAC=∠CBD時(shí),由三角形內(nèi)角和定理可推出∠D=∠C,“邊邊角”不能判斷△ABC≌△BAD,該選項(xiàng)不符合題意;D、同理,“邊邊角”不能判斷△ABC≌△BAD,該選項(xiàng)不符合題意;故選:B.【點(diǎn)睛】本題考查了全等三角形的判定,判定兩個(gè)三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個(gè)三角形全等,判定兩個(gè)三角形全等時(shí),必須有邊的參與,若有兩邊一角對應(yīng)相等時(shí),角必須是兩邊的夾角.10、C【分析】根據(jù)三角形的任意兩邊之和大于第三邊對各選項(xiàng)分析判斷求解即可.【詳解】解:A.∵3+4<8,∴不能組成三角形,故本選項(xiàng)不符合題意;B.∵4+4<10,∴不能組成三角形,故本選項(xiàng)不符合題意;C.∵5+6>10,∴能組成三角形,故本選項(xiàng)符合題意;D.∵5+6=11,∴不能組成三角形,故本選項(xiàng)不符合題意;故選:C.【點(diǎn)睛】本題考查了三角形的三邊關(guān)系,熟記三角形的任意兩邊之和大于第三邊是解決問題的關(guān)鍵.二、填空題1、三角形兩邊之和大于第三邊【分析】表示出和四邊形BDEC的周長,再結(jié)合中的三邊關(guān)系比較即可.【詳解】解:的周長=四邊形BDEC的周長=∵在中∴即的周長一定大于四邊形BDEC的周長,∴依據(jù)是:三角形兩邊之和大于第三邊;故答案為三角形兩邊之和大于第三邊【點(diǎn)睛】本題考查了三角形三邊關(guān)系定理,關(guān)鍵是熟悉三角形兩邊之和大于第三邊的知識點(diǎn).2、【分析】由構(gòu)成三角形的條件計(jì)算即可.【詳解】∵中∴∴.故答案為:.【點(diǎn)睛】本題考查了由構(gòu)成三角形的條件判斷第三條邊的取值范圍,在一個(gè)三角形中,任意兩邊之和大于第三邊,任意兩邊之差小于第三邊.3、110°【分析】延長BD交AC于點(diǎn)E,根據(jù)三角形的外角性質(zhì)計(jì)算,得到答案.【詳解】延長BD交AC于點(diǎn)E,∵∠DEC是△ABE的外角,∠A=60°,∠B=20°,∴∠DEC=∠A+∠B=80°,則∠BDC=∠DEC+∠C=110°,故答案為:110°.【點(diǎn)睛】本題考查了三角形外角的性質(zhì),三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和,作輔助線DE是解題的關(guān)鍵.4、-2【分析】過E作EF⊥x軸于F,由三垂直模型,得EF=OA,AF=OB,設(shè)A(a,0),可求得E(a+4,a),點(diǎn)E在直線y=x-4上,當(dāng)OE⊥CD時(shí),OE最小,據(jù)此求出坐標(biāo)即可.【詳解】解:如圖,過E作EF⊥x軸于F,∵∠AOB=∠EFA=∠BAE=90°,∴∠ABO+∠OAB=90°,∠EAF+∠OAB=90°,∴∠ABO=∠EAF,∵AB=AE,∴△ABO≌△EAF,∴EF=OA,AF=OB=4,取點(diǎn)C(4,0),點(diǎn)D(0,-4),∴∠OCD=45°,∵CF=4-OF,OA=4-OF,∴CF=OA=EF,∴∠ECF=45°,∴點(diǎn)E在直線CD上,當(dāng)OE⊥CD時(shí),OE最小,此時(shí)△EFO和△ECO為等腰Rt△,∴OF=EF=2,此時(shí)點(diǎn)E的坐標(biāo)為:(2,-2).故答案為:-2【點(diǎn)睛】本題考查了全等三角形的判定與性質(zhì),解題關(guān)鍵是確定點(diǎn)E運(yùn)動的軌跡,確定點(diǎn)E的位置.5、40【分析】直接根據(jù)三角形外角的性質(zhì)可得結(jié)果.【詳解】解:∵∠B=20°,∠ACD=60°,∠ACD是△ABC的外角,∴∠ACD=∠B+∠A,∴,故答案為:.【點(diǎn)睛】本題考查了三角形外角的性質(zhì),熟知三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和是解本題的關(guān)鍵6、4【分析】根據(jù)題意過點(diǎn)P作PM⊥BC于M,PN⊥AC于N,PK⊥AB于K,在EB上取一點(diǎn)J,使得MJ=FN,連接PJ,進(jìn)而利用全等三角形的性質(zhì)證明EF=EM+EN,即可得出結(jié)論.【詳解】解:如圖,過點(diǎn)P作PM⊥BC于M,PN⊥AC于N,PK⊥AB于K,在EB上取一點(diǎn)J,使得MJ=FN,連接PJ.∵BP平分∠BC,PA平分∠CAB,PM⊥BC,PN⊥AC,PK⊥AB,∴PM=PK,PK=PN,∴PM=PN,∵∠C=∠PMC=∠PNC=90°,∴四邊形PMCN是矩形,∴四邊形PMCN是正方形,∴CM=PM,∴∠MPN=90°,在△PMJ和△PNF中,,∴△PMJ≌△PNF(SAS),∴∠MPJ=∠FPN,PJ=PF,∴∠JPF=∠MPN=90°,∵∠EPF=45°,∴∠EPF=∠EPJ=45°,在△PEF和△PEJ中,,∴△PEF≌△PEJ(SAS),∴EF=EJ,∴EF=EM+FN,∴△CEF的周長=CE+EF+CF=CE+EM+CF+FN=2EM=2PM,∵S△ABC=?BC?AC=(AC+BC+AB)?PM,∴PM=2,∴△ECF的周長為4,故答案為:4.【點(diǎn)睛】本題考查角平分線的性質(zhì)定理,正方形的判定,全等三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造全等三角形解決問.7、7【分析】絕對值與平方的取值均0,可知,,可得a、b的值,根據(jù)三角形三邊關(guān)系求出c的取值范圍,進(jìn)而得到c的值.【詳解】解:,由三角形三邊關(guān)系可得為奇數(shù)故答案為:7.【點(diǎn)睛】本題考查了絕對值、平方的非負(fù)性,三角形的三邊關(guān)系等知識點(diǎn).解題的關(guān)鍵是確定所求邊長的取值范圍.8、3【分析】根據(jù),可得到,再由,可得,從而得到,即可求解.【詳解】解:∵,∴,∵,∴,即,∴,∴.故答案為:3【點(diǎn)睛】本題主要考查了全等三角形的判定和性質(zhì),熟練掌握全等三角形的判定和性質(zhì)定理是解題的關(guān)鍵.9、∠D=∠C或∠PAD=∠PBC或∠DBC=∠CAD或PD=PC或AC=BD.【分析】已有∠P是公共角和邊PA=PB,根據(jù)全等三角全等的條件,利用AAS需要添加∠D=∠C,根據(jù)ASA需要添加∠PAD=∠PBC或∠DBC=∠CAD,根據(jù)邊角邊需要添加PD=PC或PC=PD.填入一個(gè)即可.【詳解】解:∵PA=PB,∠P是公共角,∴根據(jù)AAS可以添加∠D=∠C,,在△PAD和△PBC中,∵PA=PB,∠P是公共角,∠D=∠C,∴△PAD≌△PBC(AAS).根據(jù)ASA可以添加∠PAD=∠PBC,在△PAD和△PBC中,∵PA=PB,∠P是公共角,∠PAD=∠PBC,∴△PAD≌△PBC(ASA).根據(jù)ASA可以添加∠DBC=∠CAD,∴180°-∠DBC=180°-∠CAD,即∠PAD=∠PBC,在△PAD和△PBC中,∵PA=PB,∠P是公共角,∠PAD=∠PBC,∴△PAD≌△PBC(ASA).根據(jù)SAS可添加PD=PC在△PAD和△PBC中,∵PA=PB,∠P是公共角,PD=PC,∴△PAD≌△PBC(SAS).根據(jù)SAS可添加BD=AC,∵PA=PB,BD=AC,∴PA+AC=PB+BD即PC=PD,在△PAD和△PBC中,∵PA=PB,∠P是公共角,PD=PC,∴△PAD≌△PBC(SAS).故答案為:∠D=∠C或∠PAD=∠PBC或∠DBC=∠CAD或PD=PC或AC=BD.【點(diǎn)睛】本題考查三角形全等添加條件,掌握三角形全等判定方法與定理是解題關(guān)鍵.10、4<x<28【分析】根據(jù)三角形三邊的關(guān)系:兩邊之和大于第三邊,兩邊之差小于第三邊解答即可;【詳解】解:由題意得:解得:4<x<28.故答案為:4<x<28【點(diǎn)睛】本題考查了三角形三邊的關(guān)系,熟練掌握三角形三邊的關(guān)系是解題的關(guān)鍵.三、解答題1、△ACB≌△ADB;△ACE≌△ADE.理由見解析【分析】先利用“SAS”直接判斷△ACB≌△ADB;同理利用“SAS”可判斷△ACE≌△ADE.【詳解】解:△ACE與△ADE全等,△ACB與△ADB全等.理由如下:在△ACB和△ADB中,,∴△ACB≌△ADB(SAS);在△ACE和△ADE中,,∴△ACE≌△ADE(SAS).【點(diǎn)睛】本題考查了全等三角形的判定:熟練掌握全等三角形的5種判定方法,若已知兩邊對應(yīng)相等,則找它們的夾角或第三邊;若已知兩角對應(yīng)相等,則必須再找一組對邊對應(yīng)相等,且要是兩角的夾邊,若已知一邊一角,則找另一組角,或找這個(gè)角的另一組對應(yīng)鄰邊.2、(1)AB-BD=CB,證明見解析.(2)BD-AB=CB,證明見解析.【分析】(1)仿照圖(1)的解題過程即可解答.過點(diǎn)C作CE⊥CB于點(diǎn)C,與MN交于點(diǎn)E,根據(jù)同角(等角)的余角相等可證∠BCD=∠ACE及∠CAE=∠D,由ASA可證△ACE≌△DCB,然后由全等三角形的對應(yīng)邊相等可得:AE=DB,CE=CB,從而確定△ECB為等腰直角三角形,由勾股定理可得:BE=CB,由BE=AB-AE,可得BE=AB-BD,即AB-BD=CB;(2)解題思路同(1),過點(diǎn)C作CE⊥CB于點(diǎn)C,與MN交于點(diǎn)E,根據(jù)等角的余角相等及等式的性質(zhì)可證∠BCD=∠ACE及∠CAE=∠D,由ASA可證△ACE≌△DCB,然后由全等三角形的對應(yīng)邊相等可得:AE=DB,CE=CB,從而確定△ECB為等腰直角三角形,由勾股定理可得:BE=CB,由BE=AE-AB,可得BE=BD-AB,即BD-AB=CB.【詳解】解:(1)AB-BD=CB.證明:如圖(2)過點(diǎn)C作CE⊥CB于點(diǎn)C,與MN交于點(diǎn)E,∵∠ACD=90°,∠ECB=90°,∴∠ACE=90°-∠DCE,∠BCD=90°-∠ECD,∴∠BCD=∠ACE.∵DB⊥MN,∴∠CAE=90°-∠AFC,∠D=90°-∠BFD,∵∠AFC=∠BFD,∴∠CAE=∠D,在△ACE和△DCB中,∴△ACE≌△DCB(ASA),∴AE=DB,CE=CB,∴△ECB為等腰直角三角形,∴BE=CB.又∵BE=AB-AE,∴BE=AB-BD,∴AB-BD=CB.(2)BD-AB=CB.如圖(3)過點(diǎn)C作CE⊥CB于點(diǎn)C,與MN交于點(diǎn)E,∵∠ACD=90°,∠BCE=90°,∴∠ACE=90°+∠ACB,∠BCD=90°+∠ACB,∴∠BCD=∠ACE.∵DB⊥MN,∴∠CAE=90°-∠AFC,∠D=90°-∠BFD,∵∠AFC=∠BFD,∴∠CAE=∠D,在△ACE和△DCB中,∴△ACE≌△DCB(ASA),∴AE=DB,CE=CB,∴△ECB為等腰直角三角形,∴BE=CB.又∵BE=AE-AB,∴BE=BD-AB,∴BD-AB=CB.【點(diǎn)睛】本題考查了三角形全等的判定和性質(zhì),等腰直角三角形的判定和性質(zhì)等.注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的性質(zhì)是全等三角形的對應(yīng)邊相等,對應(yīng)角相等.3、(1)證明見解析;(2)AF=3【分析】(1)利用同角的余角相等,證明∠BAD=∠

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論