




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
甘肅省合作市中考數(shù)學真題分類(勾股定理)匯編專項測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計14分)1、如圖是一個三級臺階,它的每一級的長、寬、高分別為20dm、3dm、2dm,A和B是這個臺階上兩個相對的端點,點A處有一只螞蟻,想到點B處去吃可口的食物,則螞蟻沿著臺階面爬行到點B的最短路程為(
)A.20dm B.25dm C.30dm D.35dm2、如圖,長方形中,,,將此長方形折疊,使點與點重合,折痕為,則的長為(
)A.12 B.8 C.10 D.133、如圖,長方形紙片ABCD中,AB=3cm,AD=9cm,將此長方形紙片折疊,使點D與點B重合,點C落在點H的位置,折痕為EF,則△ABE的面積為(
)A.6cm2 B.8cm2 C.10cm2 D.12cm24、如圖,在△ABC中,AB=2,∠ABC=60°,∠ACB=45°,D是BC的中點,直線l經(jīng)過點D,AE⊥l,BF⊥l,垂足分別為E,F(xiàn),則AE+BF的最大值為()A. B.2 C.2 D.35、《九章算術》中的“折竹抵地”問題:今有竹高一丈,末折抵地,去根六尺.問折高者幾何?意思是:一根竹子,原高一丈(一丈=10尺),一陣風將竹子折斷,其竹梢恰好抵地,抵地處離竹子底部6尺遠,問折斷處離地面的高度是多少?設折斷處離地面的高度為尺,則可列方程為(
)A. B.C. D.6、已知直角三角形紙片的兩條直角邊長分別為m和n(m<n),過銳角頂點把該紙片剪成兩個三角形,若這兩個三角形都為等腰三角形,則()A.m2+2mn+n2=0 B.m2﹣2mn+n2=0 C.m2+2mn﹣n2=0 D.m2﹣2mn﹣n2=07、如圖,在由邊長為1的7個正六邊形組成的網(wǎng)格中,點A,B在格點上.若再選擇一個格點C,使△ABC是直角三角形,且每個直角三角形邊長均大于1,則符合條件的格點C的個數(shù)是(
)A.2 B.4 C.5 D.6第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計16分)1、如圖,在一次綜合實踐活動中,小明將一張邊長為的正方形紙片,沿著邊上一點與點的連線折疊,點是點的對應點,延長交于點,經(jīng)測量,,則的面積為______.2、云頂滑雪公園是北京2022年冬奧會7個雪上競賽場館中唯一利用現(xiàn)有雪場改造而成的.下圖左右兩幅圖分別是公園內(nèi)云頂滑雪場U型池的實景圖和示意圖,該場地可以看作是從一個長方體中挖去了半個圓柱而成,它的橫截面圖中半圓的半徑為,其邊緣,點E在上,.一名滑雪愛好者從點A滑到點E,他滑行的最短路線長為_________m.3、對角線互相垂直的四邊形叫做“垂美”四邊形,現(xiàn)有如圖所示的“垂美”四邊形ABCD,對角線AC、BD交于點O.若AD=3,BC=5,則____________.4、已知Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,則Rt△ABC的面積等于_________cm2.5、如圖,在中,,,,現(xiàn)將沿進行翻折,使點剛好落在上,則__________.6、如圖,CD是△ABC的中線,將△ACD沿CD折疊至,連接交CD于點E,交CB于點F,點F是的中點.若的面積為12,,則點F到AC的距離為______.7、有一個水池,水面是一個邊長為10尺的正方形,在水池正中央有一根蘆葦,它高出水面1尺.如果把這根蘆葦拉向水池一邊的中點,它的頂端恰好到達池邊的水面,這根蘆葦?shù)拈L度為_____尺.8、如圖,鐵路MN和公路PQ在O點處交匯,公路PQ上A處點距離O點240米,距離MN120米,如果火車行駛時,周圍兩百米以內(nèi)會受到噪音的影響,那么火車在鐵路MN上沿ON方向,以144千米/時的速度行駛時,A處受噪音影響的時間是_______s三、解答題(7小題,每小題10分,共計70分)1、如圖,將RtABC紙片沿AD折疊,使直角頂點C與AB邊上的點E重合,若AB=10cm,AC=6cm,求線段BD的長.2、臺風是一種自然災害,它以臺風中心為圓心在周圍上百千米的范圍內(nèi)形成極端氣候,有極強的破壞力,如圖,有一臺風中心沿東西方向由行駛向,已知點為海港,并且點與直線上的兩點,的距離分別為,,又,以臺風中心為圓心周圍250km以內(nèi)為受影響區(qū)域.(1)求的度數(shù);(2)海港受臺風影響嗎?為什么?3、已知m>0,若3m+2,4m+8,5m+8是一組勾股數(shù),求m的值.4、設直角三角形的兩條直角邊長及斜邊上的高分別為a,b及h,求證:.5、已知a,b,c為△ABC的三邊,且滿足a2c2﹣b2c2=a4﹣b4,試判定△ABC的形狀.6、如圖,CE⊥AB于點E,BD⊥AC于點D,AB=AC.(1)求證:△ABD≌△ACE.(2)連接BC,若AD=6,CD=4,求△ABC的面積.7、我國古代的數(shù)學名著《九章算術》中記載“今有竹高一丈八,末折抵地,去本6尺.問:折者高幾何?”譯文:一根竹子,原高一丈八,蟲傷有病,一陣風將竹子折斷,其竹梢恰好著地,著地處離原竹子根部6尺遠.問:折處離地還有多高的竹子?(1丈=10尺)-參考答案-一、單選題1、B【解析】【分析】先將圖形平面展開,再用勾股定理根據(jù)兩點之間線段最短進行解答.【詳解】三級臺階平面展開圖為長方形,長為20dm,寬為(2+3)×3dm,則螞蟻沿臺階面爬行到B點最短路程是此長方形的對角線長.可設螞蟻沿臺階面爬行到B點最短路程為xdm,由勾股定理得:x2=202+[(2+3)×3]2=252,解得x=25.故選B.【考點】本題考查了平面展開——最短路徑問題,用到臺階的平面展開圖,只要根據(jù)題意判斷出長方形的長和寬即可解答.2、D【解析】【分析】設BE為x,則AE為25-x,在由勾股定理有,即可求得BE=13.【詳解】設BE為x,則DE為x,AE為25-x∵四邊形為長方形∴∠EAB=90°∴在中由勾股定理有即化簡得解得故選:D.【考點】本題考查了折疊問題求折痕或其他邊長,主要可根據(jù)折疊前后兩圖形的全等條件,把某個直角三角形的三邊都用同一未知量表示出來,并根據(jù)勾股定理建立方程,進而可以求解.3、A【解析】【分析】根據(jù)折疊的條件可得:,在中,利用勾股定理就可以求解.【詳解】將此長方形折疊,使點與點重合,,,根據(jù)勾股定理得:,解得:..故選:A.【考點】本題考查了利用勾股定理解直角三角形,掌握直角三角形兩直角邊的平方和等于斜邊的平方是解題的關鍵.4、A【解析】【分析】把要求的最大值的兩條線段經(jīng)過平移后形成一條線段,然后再根據(jù)垂線段最短來進行計算即可.【詳解】解:如圖,過點C作CK⊥l于點K,過點A作AH⊥BC于點H,在Rt△AHB中,∵∠ABC=60°,AB=2,∴BH=1,AH=,在Rt△AHC中,∠ACB=45°,∴AC=,∵點D為BC中點,∴BD=CD,在△BFD與△CKD中,,∴△BFD≌△CKD(AAS),∴BF=CK,延長AE,過點C作CN⊥AE于點N,可得AE+BF=AE+CK=AE+EN=AN,在Rt△ACN中,AN<AC,當直線l⊥AC時,最大值為,綜上所述,AE+BF的最大值為.故選:A.【考點】本題主要考查了全等三角形的判定定理和性質定理及平移的性質,構建全等三角形是解答此題的關鍵.5、D【解析】【分析】先畫出三角形,根據(jù)勾股定理和題目設好的未知數(shù)列出方程.【詳解】解:如圖,根據(jù)題意,,,設折斷處離地面的高度是x尺,即,根據(jù)勾股定理,,即.故選:D.【考點】本題考查勾股定理的方程思想,解題的關鍵是根據(jù)題意利用勾股定理列出方程.6、C【解析】【分析】如圖,根據(jù)等腰三角形的性質和勾股定理可得m2+m2=(n-m)2,整理即可求解【詳解】m2+m2=(n﹣m)2,2m2=n2﹣2mn+m2,m2+2mn﹣n2=0.故選C.7、D【解析】【分析】分三種情況討論,當∠A=90°,或∠B=90°,或∠C=90°時,分別畫出符合條件的圖形,即可解答.【詳解】解:分三種情況討論,當∠A=90°,或∠B=90°,或∠C=90°如圖符合條件的格點C的個數(shù)是6個故選:D.【考點】本題考查正多邊形和圓的性質、直角三角形的判定與性質、直徑所對的圓周角是90°等知識,是基礎考點,掌握相關知識是解題關鍵.二、填空題1、##【解析】【分析】根據(jù)題意,,進而求得,勾股定理求得,即可求得的面積.【詳解】解:折疊,,,,∵四邊形是正方形∴中..故答案為:【考點】本題考查了折疊的性質,勾股定理,掌握勾股定理是解題的關鍵.2、【解析】【分析】根據(jù)題意可得,AD=12m,DE=CD﹣CE=24﹣4=20m,線段AE即為滑行的最短路線長.在Rt△ADE中,根據(jù)勾股定理即可求出滑行的最短路線長.【詳解】解:如圖,根據(jù)題意可知:AD==12,DE=CD﹣CE=24﹣4=20,線段AE即為滑行的最短路線長.在Tt△ADE中,根據(jù)勾股定理,得AE=(m).故答案為:【考點】本題考查了平面展開﹣最短路徑問題,解決本題的關鍵是掌握圓柱的側面展開圖是矩形,利用勾股定理求最短距離.3、34【解析】【分析】在Rt△COB和Rt△AOB中,根據(jù)勾股定理得BO2+CO2=CB2,OD2+OA2=AD2,進一步得BO2+CO2+OD2+OA2=9+25,再根據(jù)AB2=BO2+AO2,CD2=OC2+OD2,最后求得AB2+CD2=34.【詳解】解:∵BD⊥AC,∴∠COB=∠AOB=∠AOD=∠COD=90°,在Rt△COB和Rt△AOB中,根據(jù)勾股定理得,BO2+CO2=CB2,OD2+OA2=AD2,∴BO2+CO2+OD2+OA2=9+25,∵AB2=BO2+AO2,CD2=OC2+OD2,∴AB2+CD2=34;故答案為:34.【考點】本題考查勾股定理的應用,熟練掌握勾股定理在實際問題中的應用,從題中抽象出勾股定理這一數(shù)學模型是解題關鍵.4、24【解析】【分析】利用勾股定理,可得:a2+b2=c2=100,即(a+b)2﹣2ab=100,可得ab=48,即可得出面積.【詳解】解:∵∠C=90°,∴a2+b2=c2=100,∴(a+b)2﹣2ab=100,∴196﹣2ab=100,∴ab=48,∴S△ABC==24cm2;故答案為:24.【考點】本題考查勾股定理、完全平方公式的變形求值、三角形面積計算的運用,熟知勾股定理是解題的關鍵.5、【解析】【詳解】解:設CD=x,則AD=A′D=4-x.在直角三角形ABC中,BC==5.則A′C=BC-AB=BC-A′B=5-3=2.在直角三角形A′DC中:AD2+AC2=CD2.即:(4-x)2+22=x2.解得:x=.故答案為:2.56、【解析】【分析】過點F作FH⊥AC于點H,由翻折的性質可知S△AA'D=24,由D為AB的中點,則S△AA'B=2S△AA'D=48,得AA'=12,再通過AAS證明△A'BF≌△ECF,得CE=A'B=8,在Rt△CAE中,由勾股定理求出AC的長,最后通過面積法即可求出FH的長.【詳解】解:如圖,過點F作FH⊥AC于點H,根據(jù)翻折的性質得:AD=A'D,AA'⊥CD,AE=A'E,∵CD是△ABC的中線,∴CD=BD,∴AD=BD=A'D,∴∠AA'B=90°,又∵S△A'DE=12,∴S△ADE=12,∴S△ADA'=24,又∵D為AB的中點,∴S△AA'B=2S△AA'D=48,即×AA′×A′B=48,∴AA'=12,又∵F為A'E的中點,∴A'F=EF,在△A'BF與△ECF中,,∴△A'BF≌△ECF(AAS),∴CE=A'B=8,∵AA'=2A'E,A'E=2EF=6,∴EF=3,AF=9,在Rt△CAE中,由勾股定理得:CA==10,在△CAF中,CA?HF=AF?CE,∴HF==,即點F到AC的距離為,故答案為:.【考點】本題主要考查了翻折的性質,全等三角形的判定與性質,勾股定理等知識,運用等積法求垂線段的長是解題的關鍵.7、13【解析】【分析】找到題中的直角三角形,設水深為x尺,根據(jù)勾股定理解答.【詳解】解:設水深為尺,則蘆葦長為尺,根據(jù)勾股定理得:,解得:,蘆葦?shù)拈L度(尺,答:蘆葦長13尺.故答案為:13.【考點】本題考查正確運用勾股定理.善于觀察題目的信息是解題以及學好數(shù)學的關鍵.8、8【解析】【分析】過點A作AC⊥ON,根據(jù)題意可知AC的長與200米相比較,發(fā)現(xiàn)受到影響,然后過點A作AD=AB=200米,求出BD的長即可得出居民樓受噪音影響的時間.【詳解】解:如圖:過點A作AC⊥ON,AB=AD=200米,∵公路PQ上A處點距離O點240米,距離MN120米,∴AC=120米,當火車到B點時對A處產(chǎn)生噪音影響,此時AB=200米,∵AB=200米,AC=120米,∴由勾股定理得:BC=160米,CD=160米,即BD=320米,∵144千米/小時=40米/秒,∴影響時間應是:320÷40=8秒.故答案為:8.【考點】本題考查勾股定理的應用.根據(jù)題意構建直角三角形是解題關鍵.三、解答題1、5【解析】【分析】利用勾股定理先求出的值,根據(jù)折疊的性質可得出,,,設,列方程求解即可.【詳解】解:由題意可知:,,則,,,設,則,∴解方程得:因此,的長為所以,【考點】本題考查的知識點是勾股定理的應用,根據(jù)題意構造直角三角形是解此題的關鍵.2、(1)90°;(2)受臺風影響,理由見解析【解析】【分析】(1)利用勾股定理的逆定理得出△ABC是直角三角形,進而得出∠ACB的度數(shù);(2)利用三角形面積得出CD的長,進而得出海港C是否受臺風影響.【詳解】解:(1)∵AC=300km,BC=400km,AB=500km,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°;(2)海港C受臺風影響,理由:過點C作CD⊥AB,∵△ABC是直角三角形,∴AC×BC=CD×AB,∴300×400=500×CD,∴CD=240(km),∵以臺風中心為圓心周圍250km以內(nèi)為受影響區(qū)域,∴海港C受臺風影響.【考點】本題考查的是勾股定理在實際生活中的運用,解答此類題目的關鍵是構造出直角三角形,再利用勾股定理解答.3、m=1【解析】【分析】根據(jù)勾股數(shù)定義:滿足a2+b2=c2的三個正整數(shù),稱為勾股數(shù)可得:(3m+2)2+(4m+8)2=(5m+8)2,再解方程即可.【詳解】解:m>0,3m+2,4m+8,5m+8是一組勾股數(shù),(3m+2)2+(4m+8)2=(5m+8)2,解得:m=1.【考點】此題主要考查了勾股數(shù),關鍵是掌握勾股數(shù)定義.4、見解析【解析】【分析】設斜邊為c,根據(jù)勾股定理
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年玉溪市鮮花訂購合同示例
- 臨活用工合同范本
- 清水房修建合同范本
- 建筑簡易計稅合同范本
- 機械監(jiān)控采購合同范本
- 夫妻購房擔保合同范本
- 2025賽事贊助合同模板
- 自助牛排采購合同范本
- 課室租賃合同范本
- 上海租賃房子合同范本
- 2025年云南省高校大學《輔導員》招聘考試題庫及答案
- 消費品市場2025年消費者對綠色包裝認知及需求調(diào)研可行性研究報告
- 臺球廳消防知識培訓課件
- 充電樁運維服務協(xié)議
- 2025至2030中國防砸安全鞋行業(yè)運營態(tài)勢與投資前景調(diào)查研究報告
- 2025年醫(yī)療器械倉庫管理培訓試題及答案
- 2024年湖南省古丈縣事業(yè)單位公開招聘工作人員考試題含答案
- 水費收繳使用管理辦法
- 卵巢性索間質腫瘤課件
- 2025甘肅行政執(zhí)法資格考試模擬卷及答案(題型)
- 2025-2026年秋季第一學期學校德育工作安排表:德潤心田、智啟未來、行塑棟梁
評論
0/150
提交評論