難點詳解重慶市興龍湖中學(xué)7年級數(shù)學(xué)下冊第四章三角形綜合練習試卷(含答案詳解)_第1頁
難點詳解重慶市興龍湖中學(xué)7年級數(shù)學(xué)下冊第四章三角形綜合練習試卷(含答案詳解)_第2頁
難點詳解重慶市興龍湖中學(xué)7年級數(shù)學(xué)下冊第四章三角形綜合練習試卷(含答案詳解)_第3頁
難點詳解重慶市興龍湖中學(xué)7年級數(shù)學(xué)下冊第四章三角形綜合練習試卷(含答案詳解)_第4頁
難點詳解重慶市興龍湖中學(xué)7年級數(shù)學(xué)下冊第四章三角形綜合練習試卷(含答案詳解)_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

重慶市興龍湖中學(xué)7年級數(shù)學(xué)下冊第四章三角形綜合練習考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計20分)1、已知三角形的兩邊長分別為和,則下列長度的四條線段中能作為第三邊的是()A. B. C. D.2、一個三角形的兩邊長分別是3和5,則它的第三邊可能為()A.2 B.4 C.8 D.113、已知的三邊長分別為a,b,c,則a,b,c的值可能分別是()A.1,2,3 B.3,4,7C.2,3,4 D.4,5,104、有兩根長度分別為7cm,11cm的木棒,下面為第三根的長度,則可圍成一個三角形框架的是()A.3cm B.4cm C.9cm D.19cm5、如圖,,,,,垂足分別為、,且,,則的長是()A.2 B.3 C.5 D.76、如圖是5×5的正方形網(wǎng)格中,以D,E為頂點作位置不同的格點的三角形與△ABC全等,這樣格點三角形最多可以畫出()A.2個 B.3個 C.4個 D.5個7、下列三角形與下圖全等的三角形是()A. B.C. D.8、已知:如圖,D、E分別在AB、AC上,若AB=AC,AD=AE,∠A=60°,∠B=25°,則∠BDC的度數(shù)是()A.95° B.90° C.85° D.80°9、下列長度的各組線段中,能組成三角形的是()A.1,2,3 B.2,3,5 C.3,4,8 D.3,4,510、將一副三角板按如圖所示的方式放置,使兩個直角重合,則∠AFD的度數(shù)是()A.10° B.15° C.20° D.25°第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計20分)1、如圖,△PBC的面積為5cm2,BP平分∠ABC,AP⊥BP于點P,則△ABC的面積為_____cm2.2、如圖,△ABE≌△ACD,∠A=60°,∠B=20°,則∠DOE的度數(shù)為_____°.3、邊長為1的小正方形組成如圖所示的6×6網(wǎng)格,點A,B,C,D,E,F(xiàn),G,H都在格點上.其中到四邊形ABCD四個頂點距離之和最小的點是_________.4、如圖,直線ED把分成一個和四邊形BDEC,的周長一定大于四邊形BDEC的周長,依據(jù)的原理是____________________________________.5、如圖,已知∠A=60°,∠B=20°,∠C=30°,則∠BDC的度數(shù)為_____.6、如圖,點A、B在直線l上,點C是直線l外一點,可知CA+CB>AB,其依據(jù)是_____.7、如圖,在Rt△ABC中,CD是斜邊AB上的中線,若AB=10,則CD=_______.8、如圖,已知△ABC≌△DEF,∠B=30°,∠F=40°,則∠A的度數(shù)是______.9、如圖,在△中,已知點分別為的中點,若△的面積為,則陰影部分的面積為_________10、如圖,為等腰的高,其中分別為線段上的動點,且,當取最小值時,的度數(shù)為_____.三、解答題(6小題,每小題10分,共計60分)1、證明“全等三角形的對應(yīng)角的平分線相等”.要求:將已有圖形根據(jù)題意補充完整,并據(jù)此寫出己知、求證和證明過程.2、如圖,點B,F(xiàn),C,E在一條直線上,AB=DE,∠B=∠E,BF=CE.求證:AC=DF.3、已知:如圖,線段BE、DC交于點O,點D在線段AB上,點E在線段AC上,AB=AC,AD=AE.求證:∠B=∠C.4、如圖,在中,,,點D是內(nèi)一點,連接CD,過點C作且,連接AD,BE.求證:.5、平行線是平面幾何中最基本、也是非常重要的圖形.在解決某些幾何問題時,若能根據(jù)問題的需要,添加適當?shù)钠叫芯€,往往能使證明順暢、簡潔.請根據(jù)上述思想解決問題:(1)如圖(1),ABCD,試判斷∠B,∠D與∠E的關(guān)系;(2)如圖(2),已知ABCD,在∠ACD的角平分線上取兩個點M、N,使得∠AMN=∠ANM,求證:∠CAM=∠BAN.6、如圖,已知AB=AC,BD=CE,證明△ABE≌△ACD.-參考答案-一、單選題1、C【分析】根據(jù)三角形的三邊關(guān)系可得,再解不等式可得答案.【詳解】解:設(shè)三角形的第三邊為,由題意可得:,即,故選:C.【點睛】本題主要考查了三角形的三邊關(guān)系,解題的關(guān)鍵是掌握三角形兩邊之和大于第三邊;三角形的兩邊差小于第三邊.2、B【分析】根據(jù)三角形的三邊關(guān)系定理:三角形兩邊之和大于第三邊,三角形的兩邊之差小于第三邊,設(shè)第三邊為,可得,再解即可.【詳解】設(shè)第三邊為,由題意得:,.故選:B.【點睛】此題主要考查了三角形的三邊關(guān)系:掌握第三邊大于已知的兩邊的差,而小于兩邊的和是解題的關(guān)鍵.3、C【分析】三角形的三邊應(yīng)滿足兩邊之和大于第三邊,兩邊之差小于第三邊,據(jù)此求解.【詳解】解:A、1+2=3,不能組成三角形,不符合題意;B、3+4=7,不能組成三角形,不符合題意;C、2+3>4,能組成三角形,符合題意;D、4+5<10,不能組成三角形,不符合題意;故選:C.【點睛】本題考查了三角形的三邊關(guān)系,滿足兩條較小邊的和大于最大邊即可.4、C【分析】已知兩邊,則第三邊的長度應(yīng)是大于兩邊的差且小于兩邊的和,這樣就可求出第三邊長的范圍.【詳解】解:依題意得:11﹣7<x<7+11,即4<x<18,9cm適合.故選:C.【點睛】本題考查三角形三邊關(guān)系,是重要考點,掌握相關(guān)知識是解題關(guān)鍵.5、B【分析】根據(jù),,可得∠AEC=∠BDC=90°,∠CAE+∠ACE=90°,再由∠BCD=∠CAE,從而證得△ACE≌△CBD,進而得到CE=BD,AE=CD,即可求解.【詳解】解:∵,,∴∠AEC=∠BDC=90°,∠CAE+∠ACE=90°,∵,∴∠BCD+∠ACE=90°,∴∠BCD=∠CAE,∵,∴△ACE≌△CBD,∴CE=BD,AE=CD,∵,,∴DE=CD-CE=AE-BD=5-2=3.故選:B【點睛】本題主要考查了全等三角形的判定和性質(zhì),熟練掌握全等三角形的判定方法是解題的關(guān)鍵.6、C【分析】觀察圖形可知:DE與AC是對應(yīng)邊,B點的對應(yīng)點在DE上方兩個,在DE下方兩個共有4個滿足要求的點,也就有四個全等三角形.【詳解】根據(jù)題意,運用“SSS”可得與△ABC全等的三角形有4個,線段DE的上方有兩個點,下方也有兩個點,如圖.故選C.【點睛】本題考查三角形全等的判定方法,解答本題的關(guān)鍵是按照順序分析,要做到不重不漏.7、C【分析】根據(jù)已知的三角形求第三個內(nèi)角的度數(shù),由全等三角形的判定定理即可得出答案.【詳解】由題可知,第三個內(nèi)角的度數(shù)為,A.只有兩邊,故不能判斷三角形全等,故此選項錯誤;B.兩邊夾的角度數(shù)不相等,故兩三角形不全等,故此選項錯誤;C.兩邊相等且夾角相等,故能判斷兩三角形全等,故此選項正確;D.兩邊夾的角度數(shù)不相等,故兩三角形不全等,故此選項錯誤.故選:C.【點睛】本題考查全等三角形的判定,掌握全等三角形的判定定理是解題的關(guān)鍵.8、C【分析】根據(jù)SAS證△ABE≌△ACD,推出∠C=∠B,求出∠C的度數(shù),根據(jù)三角形的外角性質(zhì)得出∠BDC=∠A+∠C,代入求出即可.【詳解】解:在△ABE和△ACD中,,∴△ABE≌△ACD(SAS),∴∠C=∠B,∵∠B=25°,∴∠C=25°,∵∠A=60°,∴∠BDC=∠A+∠C=85°,故選C.【點睛】本題主要考查了全等三角形的性質(zhì)與判定,三角形外角的性質(zhì),解題的關(guān)鍵在于能夠熟練掌握全等三角形的性質(zhì)與判定條件.9、D【分析】根據(jù)兩邊之和大于第三邊,兩邊之差小于第三邊判斷即可.【詳解】∵1+2=3,∴A不能構(gòu)成三角形;∵3+2=5,∴B不能構(gòu)成三角形;∵3+4<8,∴C不能構(gòu)成三角形;∵∵3+4>5,∴D能構(gòu)成三角形;故選D.【點睛】本題考查了三角形的三邊關(guān)系定理,熟練掌握性質(zhì)定理是解題的關(guān)鍵.10、B【分析】根據(jù)三角板各角度數(shù)和三角形的外角性質(zhì)可求得∠BFE,再根據(jù)對頂角相等求解即可.【詳解】解:由題意,∠ABC=60°,∠E=45°,∵∠ABC=∠E+∠BFE,∴∠BFE=∠ABC-∠E=60°-45°=15°,∴∠AFD=∠BFE=15°,故選:B.【點睛】本題考查三角板各角的度數(shù)、三角形的外角性質(zhì)、對頂角相等,熟知三角板各角的度數(shù),掌握三角形的外角性質(zhì)是解答的關(guān)鍵.二、填空題1、10【分析】根據(jù)已知條件證得△ABP≌△EBP,根據(jù)全等三角形的性質(zhì)得到AP=PE,得出S△ABP=S△EBP,S△ACP=S△ECP,推出S△ABC=2S△PBC,代入求出即可.【詳解】解:延長AP交BC于E,∵BP平分∠ABC,∴∠ABP=∠EBP,∵AP⊥BP,∴∠APB=∠EPB=90°,在△ABP和△EBP中,,∴△ABP≌△EBP(ASA),∴AP=PE,∴S△ABP=S△EBP,S△ACP=S△ECP,∴S△ABC=2S陰影=10(cm2),故答案為:10.【點睛】本題考查了全等三角形的性質(zhì)和判定,三角形的面積的應(yīng)用,注意:等底等高的三角形的面積相等.2、100【分析】直接利用三角形的外角的性質(zhì)得出∠CEO=80°,再利用全等三角形的性質(zhì)得出答案.【詳解】解:∵∠A=60°,∠B=20°,∴∠CEO=80°,∵△ABE≌△ACD,∴∠B=∠C=20°,∴∠DOE=∠C+∠CEO=100°.故答案為:100.【點睛】此題主要考查了全等三角形的性質(zhì)以及三角形的外角的性質(zhì),求出∠CEO=80°是解題關(guān)鍵.3、E【分析】到四邊形ABCD四個頂點距離之和最小的點是對角線的交點,連接對角線,直接判斷即可.【詳解】如圖所示,連接BD、AC、GA、GB、GC、GD,∵,,∴到四邊形ABCD四個頂點距離之和最小是,該點為對角線的交點,根據(jù)圖形可知,對角線交點為E,故答案為:E.【點睛】本題考查了三角形三邊關(guān)系,解題關(guān)鍵是通過連接輔助線,運用三角形三邊關(guān)系判斷點的位置.4、三角形兩邊之和大于第三邊【分析】表示出和四邊形BDEC的周長,再結(jié)合中的三邊關(guān)系比較即可.【詳解】解:的周長=四邊形BDEC的周長=∵在中∴即的周長一定大于四邊形BDEC的周長,∴依據(jù)是:三角形兩邊之和大于第三邊;故答案為三角形兩邊之和大于第三邊【點睛】本題考查了三角形三邊關(guān)系定理,關(guān)鍵是熟悉三角形兩邊之和大于第三邊的知識點.5、110°【分析】延長BD交AC于點E,根據(jù)三角形的外角性質(zhì)計算,得到答案.【詳解】延長BD交AC于點E,∵∠DEC是△ABE的外角,∠A=60°,∠B=20°,∴∠DEC=∠A+∠B=80°,則∠BDC=∠DEC+∠C=110°,故答案為:110°.【點睛】本題考查了三角形外角的性質(zhì),三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和,作輔助線DE是解題的關(guān)鍵.6、在三角形中,兩邊之和大于第三邊【分析】根據(jù)三角形兩邊之和大于第三邊進行求解即可.【詳解】解:∵點A、B在直線l上,點C是直線l外一點,∴A、B、C可以構(gòu)成三角形,∴由三角形三邊的關(guān)系:在三角形中,兩邊之和大于第三邊可以得到:CA+CB>AB,故答案為:在三角形中,兩邊之和大于第三邊.【點睛】本題主要考查了三角形三邊的關(guān)系,熟知三角形中兩邊之和大于第三邊是解題的關(guān)鍵.7、5【分析】作交CD的延長線于E點,首先根據(jù)ASA證明,得到,,然后根據(jù)證明,得到,即可求出CD的長度.【詳解】解:如圖所示,作交CD的延長線于E點,∵,∴,∵CD是斜邊AB上的中線,∴,∴在和中,∴,∴,,∵,,∴,∴在和中,∴,∴,∴.故答案為:5.【點睛】本題考查了直角三角形的性質(zhì),全等三角形的性質(zhì)和判定,作出輔助線構(gòu)造全等三角形是解題的關(guān)鍵.8、110°【分析】先根據(jù)全等三角形的性質(zhì)得到∠C=∠F=40°,然后根據(jù)三角形內(nèi)角和求∠F的度數(shù).【詳解】解:∵△ABC≌△DEF,∴∠C=∠F=40°,∴∠A=180°﹣∠C﹣∠B=180°﹣40°﹣30°=110°.故答案為:110°.【點睛】本題考查了全等三角形的性質(zhì):全等三角形的對應(yīng)邊相等;全等三角形的對應(yīng)角相等.9、1【分析】根據(jù)三角形的中線把三角形分成兩個面積相等的三角形解答.【詳解】解:∵點E是AD的中點,∴S△ABE=S△ABD,S△ACE=S△ADC,∴S△ABE+S△ACE=S△ABC=×4=2cm2,∴S△BCE=S△ABC=×4=2cm2,∵點F是CE的中點,∴S△BEF=S△BCE=×2=1cm2.故答案為:1.【點睛】本題考查了三角形的面積,主要利用了三角形的中線把三角形分成兩個面積相等的三角形,原理為等底等高的三角形的面積相等.10、【分析】作,且,連接交于M,連接,證明,得到,,當F為與的交點時,即可求出最小值;【詳解】解:如圖1,作,且,連接交于M,連接,是等腰三角形,,,,,,,,在與中,,,∴當F為與的交點時,如圖2,的值最小,此時,,故答案為:.【點睛】本題主要考查了全等三角形的判定與性質(zhì),準確計算是解題的關(guān)鍵.三、解答題1、見解析.【分析】根據(jù)圖形和命題寫出已知求證,根據(jù)全等三角形的性質(zhì)得出∠B=∠B′,AB=A′B′,∠BAC=∠B′A′C′,根據(jù)角平分線的定義得出∠BAD=∠B′A′D′,根據(jù)全等三角形的判定得出△BAD≌△B′A′D′,再根據(jù)全等三角形的性質(zhì)得出答案即可.【詳解】解:如圖,已知:△ABC≌△A′B′C′,AD、A′D′分別是∠BAC和∠B′A′C′的角平分線,求證:AD=A′D′,證明:∵△ABC≌△A′B′C′,∴∠B=∠B′,AB=A′B′,∠BAC=∠B′A′C′,∵AD、A′D′分別是∠BAC和∠B′A′C′的角平分線,∴∠BAD=∠BAC,∠B′A′D′=∠B′A′C′,∴∠BAD=∠B′A′D′,在△BAD和△B′A′D中,,∴△BAD≌△B′A′D′(ASA),∴AD=A′D′.【點睛】本題考查了全等三角形的判定定理和性質(zhì)定理,能求出△BAD≌△B′A′D′是解此題的關(guān)鍵,注意:全等三角形的判定定理有SAS,ASA,AAAS,SSS,兩直角三角形全等還有HL,全等三角形的對應(yīng)邊相等.2、見解析【分析】先由BF=CE說明BC=EF.然后運用SAS證明△ABC≌△DEF,最后運用全等三角形的性質(zhì)即可證明.【詳解】證明:∵BF=CE,∴BC=EF.在△ABC和△DEF中,∴△ABC≌△DEF(SAS).∴AC=DF.【點睛】本題主要考查了全等三角形的判定與性質(zhì),正確證明△ABC≌△DEF是解答本題的關(guān)鍵.3、見解析【分析】只需要利用SAS證明△AEB≌△ADC,即可得到∠B=∠C.【詳解】解:在△AEB和△ADC中,,∴△AEB≌△ADC(SAS),∴∠B=∠C.【點睛】本題主要考查了全等三角形的性質(zhì)與判定,熟知全等三角形的性質(zhì)與判定條件是解題的關(guān)鍵.4、證明見解析.【分析】先根據(jù)角的和差可得,再根據(jù)三角形全等的判定定理證出,然后根據(jù)全等三角形的性質(zhì)即可得證.【詳解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論