難點解析人教版8年級數學上冊《軸對稱》章節(jié)訓練練習題(詳解)_第1頁
難點解析人教版8年級數學上冊《軸對稱》章節(jié)訓練練習題(詳解)_第2頁
難點解析人教版8年級數學上冊《軸對稱》章節(jié)訓練練習題(詳解)_第3頁
難點解析人教版8年級數學上冊《軸對稱》章節(jié)訓練練習題(詳解)_第4頁
難點解析人教版8年級數學上冊《軸對稱》章節(jié)訓練練習題(詳解)_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

人教版8年級數學上冊《軸對稱》章節(jié)訓練考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,△ABC與△A′B′C′關于直線MN對稱,P為MN上任一點(A、P、A′不共線),下列結論中錯誤的是(

)A.△AA′P是等腰三角形 B.MN垂直平分AA′、CC′C.△ABC與△A′B′C′面積相等 D.直線AB,A′B′的交點不一定在直線MN上2、在平面直角坐標系中.點P(1,﹣2)關于x軸的對稱點的坐標是()A.(1,2) B.(﹣1,﹣2) C.(﹣1,2) D.(﹣2,1)3、如果一個等腰三角形的周長為17cm,一邊長為5cm,那么腰長為(

)A.5cm B.6cm C.7cm D.5cm或6cm4、2020年初,新冠狀病毒引發(fā)肺炎疫情,全國多家醫(yī)院紛紛派醫(yī)護人員馳援武漢.下面是四家醫(yī)院標志得圖案,其中是軸對稱圖形得是(

)A. B.C. D.5、如圖,是由大小一樣的小正方形組成的網格,△ABC的三個頂點均落在小正方形的頂點上.在網格上能畫出的三個頂點都落在小正方形的頂點上,且與△ABC成軸對稱的三角形共有(

)A.5個 B.4個 C.3個 D.2個第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,屋頂鋼架外框是等腰三角形,其中,立柱,且頂角,則的大小為_______.2、如圖,在△ABC中,∠C=90°,DE是AB的垂直平分線,AD恰好平分∠BAC,若DE=1,則BC的長是_____.3、如圖,等邊三角形ABC的邊長為2,D,E是AC,BC上兩個動點,且AD=CE,AE,BD交于點F,連接CF,則CF長度的最小值為______.4、若等腰三角形的一個底角為,則這個等腰三角形的頂角為_____.5、如圖,平面直角坐標系中有四個點,它們的橫縱坐標均為整數.若在此平面直角坐標系內移動點A,使得這四個點構成的四邊形是軸對稱圖形,并且點A的橫坐標仍是整數,則移動后點A的坐標為________.三、解答題(5小題,每小題10分,共計50分)1、如圖,在中,,;點在上,.連接并延長交于.(1)求證:;(2)求證:;(3)若,與有什么數量關系?請說明理由.2、如圖,已知銳角中,.(1)請尺規(guī)作圖:作的BC邊上的高AD;(不寫作法,保留作圖痕跡)(2)在(1)的條件下,若,,則經過A,C,D三點的圓的半徑_____________.3、如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標系后,△ABC的頂點均在格點上,點C的坐標為(4,﹣1).(1)畫出△ABC的各點縱坐標不變,橫坐標乘﹣1后得到的△;(2)畫出△的各點橫坐標不變,縱坐標乘﹣1后得到的△;(3)點的坐標是;點的坐標是.4、在中,,在的外部作等邊三角形,E為的中點,連接并延長交于點F,連接.(1)如圖1,若,求和的度數;(2)如圖2,的平分線交于點M,交于點N,連接.①補全圖2;②若,求證:.5、(1)已知等腰三角形的兩邊長分別為9cm和15cm,則周長為多少?(2)已知等腰三角形的兩邊長分別為6cm和15cm,則周長為多少?-參考答案-一、單選題1、D【解析】【分析】據對稱軸的定義,△ABC與△A′B′C′關于直線MN對稱,P為MN上任意一點,可以判斷出圖中各點或線段之間的關系.【詳解】解:∵△ABC與△A′B′C′關于直線MN對稱,P為MN上任意一點,∴△AA′P是等腰三角形,MN垂直平分AA′,CC′,這兩個三角形的面積相等,故A、B、C選項正確,直線AB,A′B′關于直線MN對稱,因此交點一定在MN上,故D錯誤,故選:D.【考點】本題主要考查了軸對稱性質的理解和應用,準確分析判斷是解題的關鍵.2、A【解析】【詳解】點P(1,-2)關于x軸的對稱點的坐標是(1,2),故選A.3、D【解析】【分析】此題分為兩種情況:5cm是等腰三角形的底邊長或5cm是等腰三角形的腰長,然后進一步根據三角形的三邊關系進行分析能否構成三角形.【詳解】當5cm是等腰三角形的底邊時,則其腰長是(17?5)÷2=6(cm),能夠組成三角形;當5cm是等腰三角形的腰時,則其底邊是17?5×2=7(cm),能夠組成三角形.故該等腰三角形的腰長為:6cm或5cm.故選:D.【考點】此題考查了等腰三角形的兩腰相等的定義,三角形的三邊關系,熟練掌握等腰三角形的定義是解題的關鍵.4、B【解析】【分析】根據軸對稱圖形的概念對各選項分析判斷即可得解.如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形.【詳解】解:選項B能找到這樣的一條直線,使圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,所以是做軸對稱圖形;選項A、C、D不能找到這樣的一條直線,使圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,所以不是做軸對稱圖形;故選:B.【考點】本題考查了軸對稱圖形的概念,軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.5、A【解析】【分析】認真讀題,觀察圖形,根據圖形特點先確定對稱軸,再根據對稱軸找出相應的三角形.【詳解】解:如圖:與△ABC成軸對稱的三角形有:①△FCD關于CG對稱;②△GAB關于EH對稱;③△AHF關于AD對稱;④△EBD關于BF對稱;⑤△BCG關于AG的垂直平分線對稱.共5個.故選A.【考點】本題考查軸對稱的基本性質,結合了圖形的常見的變化,要根據直角三角形的特點從圖中找到有關的直角三角形再判斷是否為對稱圖形.二、填空題1、30°##30度【解析】【分析】先由等邊對等角得到,再根據三角形的內角和進行求解即可.【詳解】,,,,,故答案為:30°.【考點】本題考查了等腰三角形的性質及三角形的內角和定理,熟練掌握知識點是解題的關鍵.2、3【解析】【分析】根據線段垂直平分線上的點到線段兩端點的距離相等可得AD=BD,再根據等邊對等角的性質求出∠DAB=∠B,然后根據角平分線的定義與直角三角形兩銳角互余求出∠B=30°,再根據直角三角形30°角所對的直角邊等于斜邊的一半求出BD,然后求解即可.【詳解】解:∵AD平分∠BAC,且DE⊥AB,∠C=90°,∴CD=DE=1,∵DE是AB的垂直平分線,∴AD=BD,∴∠B=∠DAB,∵∠DAB=∠CAD,∴∠CAD=∠DAB=∠B,∵∠C=90°,∴∠CAD+∠DAB+∠B=90°,∴∠B=30°,∴BD=2DE=2,∴BC=BD+CD=1+2=3,故答案為3.【考點】本題考查了角平分線的定義和性質,線段垂直平分線上的點到線段兩端點的距離相等的性質,直角三角形30°角所對的直角邊等于斜邊的一半的性質,屬于基礎題,熟記性質是解題的關鍵.3、【解析】【分析】由AD=CE,可知點F的路徑是一段弧,即當點D運動到AC的中點時,CF長度的最小,即點F為△ABC的中心,過B作于,過A點作交于點,則可知,由△ABC是等邊三角形,BC=2,得,進而可知,則CF長度的最小值是.【詳解】解:∵AD=CE,∴點F的路徑是一段弧,∴當點D運動到AC的中點時,CF長度的最小,即點F為△ABC的中心,過B作于,過A點作交于點,∴,∵△ABC是等邊三角形,BC=2,∴,∴.∴CF長度的最小值是.故答案為:.【考點】本題考查等邊三角形的性質,三角形中心的定義,求線段的最小值,解題的關鍵是能夠構造合適的輔助線求解.4、36°【解析】【分析】根據等腰三角形的性質和三角形的內角和即可得到結論.【詳解】∵等腰三角形的一個底角為,∴等腰三角形的頂角,故答案為.【考點】本題考查了等腰三角形的性質,熟練掌握等腰三角形的性質是解題的關鍵.5、(﹣1,1),(﹣2,﹣2),(0,2),(﹣2,﹣3)【解析】【詳解】試題解析:如圖所示:(此時不是四邊形,舍去),故答案為三、解答題1、(1)見解析;(2)見解析;(3)若,則,理由見解析【解析】【分析】(1)首先利用SAS證明,即可得出結論;(2)利用全等三角形的性質和等量代換即可得出,從而有,則結論可證;(3)直接根據等腰三角形三線合一得出,又因為,則結論可證.【詳解】解答:(1)證明:,.在和中,,,;(2)證明:∵,.,,即,,;

(3)若,則.理由如下:,∴BE是中線,

.,.【考點】本題主要考查全等三角形的判定及性質,等腰三角形的性質,掌握全等三角形的判定及性質和等腰三角形的性質是解題的關鍵.2、(1)見解析(2)【解析】【分析】(1)分別以B、C為圓心,大于BC為半徑作弧,兩弧交于點E\,連接AE交BC于D,則AD就是△ABC的高;(2)由AD⊥BC可知,AC是經過A,C,D三點的圓的直徑,根據垂徑定理可知CD=BC=4,由勾股定理可求AC的長,進而可求半徑.(1)解:作圖如圖:(2)解:∵AB=AC,AD⊥BC∴AD是△ABC的中線∴BD=CD=∴AC=∵∠ADC=90°∵AC是經過A,C、D三點的圓的直徑∴半徑r=故答案為:.【考點】本題考查了基本作圖,等腰三角形的性質--“三線合一”,解題的關鍵是熟知等腰三角形的“三線合一”性質.3、(1)見解析

(2)見解析

(3)(﹣4,﹣1);(﹣4,1)【解析】【分析】(1)△ABC的各點縱坐標不變,橫坐標乘-1后的坐標首先寫出,然后在數軸上表示出來,順次連接;(2)△A1B1C1的各點橫坐標不變,縱坐標乘-1后的坐標首先寫出,然后在數軸上表示出來,順次連接;(3)根據(1)(2)即可直接寫出.【詳解】(1)A1的坐標是(-1,-4),B1的坐標是(-5,-4),C1的坐標是(-4,-1),如圖,△A1B1C1為所作;(2)A2的坐標是(-1,4),B2的坐標是(-5,4),C2的坐標是(-4,1),如圖,△A2B2C2為所作;(3)C1的坐標是(﹣4,﹣1),C2的坐標是(﹣4,1).故答案是:(﹣4,﹣1),(﹣4,1).【考點】本題考查了坐標與圖形的變化-軸對稱變換,根據題目的敘述求得△A1B1C1和△A2B2C2的坐標是解題的關鍵.4、(1),;(2)①作圖見解析;②見解析【解析】【分析】(1)結合等腰三角形和等邊三角形的性質,可得∠ABD=∠ADB,從而求解出角度后,再計算∠BDF即可;(2)①根據尺規(guī)作圖作角平分線的方法畫出的平分線即可;②設∠ACM=∠BCM=α,由AB=AC,推出∠ABC=∠ACB=2α,可得∠NAC=∠NCA=α,∠DAN=60°+α,由△ABN≌△ADN(SSS),推出∠ABN=∠ADN=30°,∠BAN=∠DAN=60°+α,∠BAC=60°+2α,在△ABC中,根據∠BAC+∠ACB+∠ABC=180°,構建方程求出α,再證明∠MNB=∠MBN即可解決問題.【詳解】(1)∵,為等邊三角形,∴,,,∵,∴,∴,又∵E為的中點,∴由“三線合一”知,,∴;(2)①如圖所示:利用尺規(guī)作圖的方法得到CP,交于點M,交于點N;②如圖所示,連接,∵平分,∴設,∵,∴,在等邊三角形中,∵為的中點,∴,∴,∴,∴,在和中,∴,∴,,∴,在中,,∴,∴,∴,∴,∴,∴.【考點】本題考查全等三角形的判定和性質,等邊三角形的性質,等腰三角形的判定和性質等知識,解題的關鍵是靈活運用各類圖形的性質進行綜合分析.5、(1)33cm或39cm;(2)36cm.【解析】【分析】(1)根據等腰三角形的特點與三角形的三邊關系求出第三條邊,故可求解;(2)根據等腰三角形的特點與三角形的三邊關系求出第三條邊,故可求解.【詳解】(1)已知等腰三角形的兩邊長分別為9cm和15cm,那么三邊的長可

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論