難點解析-滬科版9年級下冊期末試題附答案詳解_第1頁
難點解析-滬科版9年級下冊期末試題附答案詳解_第2頁
難點解析-滬科版9年級下冊期末試題附答案詳解_第3頁
難點解析-滬科版9年級下冊期末試題附答案詳解_第4頁
難點解析-滬科版9年級下冊期末試題附答案詳解_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

滬科版9年級下冊期末試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、如圖,將△OAB繞點O逆時針旋轉80°得到△OCD,若∠A的度數為110°,∠D的度數為40°,則∠AOD的度數是()A.50° B.60° C.40° D.30°2、下列圖形中,既是中心對稱圖形也是軸對稱圖形的是()A. B. C. D.3、將等邊三角形繞其中心旋轉n時與原圖案完全重合,那么n的最小值是()A.60 B.90 C.120 D.1804、下列說法中正確的是()A.“打開電視,正在播放《新聞聯(lián)播》”是必然事件B.某次抽獎活動中獎的概率為,說明每買100張獎券,一定有一次中獎C.想了解某市城鎮(zhèn)居民人均年收入水平,宜采用抽樣調查D.我區(qū)未來三天內肯定下雪5、下列事件中,是必然事件的是()A.剛到車站,恰好有車進站B.在一個僅裝著白乒乓球的盒子中,摸出黃乒乓球C.打開九年級上冊數學教材,恰好是概率初步的內容D.任意畫一個三角形,其外角和是360°6、圖2是由圖1經過某一種圖形的運動得到的,這種圖形的運動是()A.平移 B.翻折 C.旋轉 D.以上三種都不對7、如圖,PA,PB是⊙O的切線,A,B為切點,PA=4,則PB的長度為()A.3 B.4 C.5 D.68、在中,,,給出條件:①;②;③外接圓半徑為4.請在給出的3個條件中選取一個,使得BC的長唯一.可以選取的是()A.① B.② C.③ D.①或③第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、如圖,在平面直角坐標系xOy中,P為x軸正半軸上一點.已知點,,為的外接圓.(1)點M的縱坐標為______;(2)當最大時,點P的坐標為______.2、在平面直角坐標系中,點關于原點對稱的點的坐標是______.3、如果點與點B關于原點對稱,那么點B的坐標是______.4、如圖,AB為的弦,半徑于點C.若,,則的半徑長為______.5、有四張完全相同的卡片,正面分別標有數字,,,,將四張卡片背面朝上,任抽一張卡片,卡片上的數字記為,再從剩下卡片中抽一張,卡片上的數字記為,則二次函數的對稱軸在軸左側的概率是__________.6、如圖,中,,,,將繞原點O順時針旋轉90°,則旋轉后點A的對應點的坐標是____________.7、在一個不透明的袋子里,有2個白球和2個紅球,它們只有顏色上的區(qū)別,從袋子里隨機摸出兩個球,則摸到兩個都是紅球的概率是_______.三、解答題(7小題,每小題0分,共計0分)1、在直角坐標平面內,三個頂點的坐標分別為、、(正方形網格中每個小正方形的邊長是一個單位長度).(1)將向下平移4個單位長度得到的,則點的坐標是____________;(2)以點B為位似中心,在網格上畫出,使與位似,且位似比為2:1,求點的坐標;(3)若是外接圓,求的半徑.2、如圖,在平面直角坐標系中,經過原點,且與軸交于點,與軸交于點,點在第二象限上,且,則__.3、如圖,四邊形ABCD是正方形.△ABE是等邊三角形,M為對角線BD(不含B,D點)上任意一點,將線段BM繞點B逆時針旋轉60°得到BN,連接EN,AM、CM.請判斷線段AM和線段EN的數量關系,并說明理由.4、元元同學在數學課上遇到這樣一個問題:如圖1,在平面直角坐標系xOy中,OA經過坐標原點O,并與兩坐標軸分別交于B、C兩點,點B的坐標為,點D在上,且,求OA的半徑和圓心A的坐標.元元的做法如下,請你幫忙補全解題過程:解:如圖2,連接BC.作AELOB于E、AF⊥OC于F.∴、(依據是①)∵,∴(依據是②).∵,.∴BC是的直徑(依據是③).∴∵,∴A的坐標為(④)的半徑為⑤5、如圖,是由若干個完全相同的小正方體組成的一個幾何體.從左面、上面觀察如圖所示的幾何體,分別畫出你所看到的平面圖形.6、如圖,在平面直角坐標系中,△ABC的頂點坐標分別為A(﹣1,0),B(﹣4,1),C(﹣2,2).(1)直接寫出點B關于原點對稱的點B′的坐標:;(2)平移△ABC,使平移后點A的對應點A1的坐標為(2,1),請畫出平移后的△A1B1C1;(3)畫出△ABC繞原點O逆時針旋轉90°后得到的△A2B2C2.7、如圖,四邊形ABCD內接于⊙O,AC是直徑,點C是劣弧BD的中點.(1)求證:.(2)若,,求BD.-參考答案-一、單選題1、A【分析】根據旋轉的性質求解再利用三角形的內角和定理求解再利用角的和差關系可得答案.【詳解】解:將△OAB繞點O逆時針旋轉80°得到△OCD,∠A的度數為110°,∠D的度數為40°,故選A【點睛】本題考查的是三角形的內角和定理的應用,旋轉的性質,掌握“旋轉前后的對應角相等”是解本題的關鍵.2、A【分析】根據軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、既是軸對稱圖形,也是中心對稱圖形,故此選項符合題意;B、是軸對稱圖形,不是中心對稱圖形,故此選項不符合題意;C、是中心對稱圖形,不是軸對稱圖形,故此選項不符合題意;D、是中心對稱圖形,不是軸對稱圖形,故此選項不符合題意.故選:A.【點睛】本題考查中心對稱圖形和軸對稱圖形的知識,關鍵是掌握好中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,圖形旋轉180°后與原圖重合.3、C【分析】根據旋轉對稱圖形的概念(把一個圖形繞著一個定點旋轉一個角度后,與初始圖形重合,這種圖形叫做旋轉對稱圖形,這個定點叫做旋轉對稱中心,旋轉的角度叫做旋轉角),找到旋轉角,求出其度數.【詳解】解:等邊三角形繞其中心旋轉n時與原圖案完全重合,因而繞其中心旋轉的最小度數是=120°.故選C.【點睛】本題考查了根據旋轉對稱性,掌握旋轉的性質是解題的關鍵.4、C【分析】根據必然事件,隨機事件的定義,判斷全面調查與抽樣調查,逐項分析判斷即可,根據確定事件和隨機事件的定義來區(qū)分判斷即可,必然事件和不可能事件統(tǒng)稱確定性事件;必然事件:在一定條件下,一定會發(fā)生的事件稱為必然事件;不可能事件:在一定條件下,一定不會發(fā)生的事件稱為不可能事件;隨機事件:在一定條件下,可能發(fā)生也可能不發(fā)生的事件稱為隨機事件.【詳解】A.“打開電視,正在播放《新聞聯(lián)播》”是隨機事件,故該選項不正確,不符合題意;B.某次抽獎活動中獎的概率為,說明每買100張獎券,不一定有一次中獎,故該選項不正確,不符合題意;C.想了解某市城鎮(zhèn)居民人均年收入水平,宜采用抽樣調查,故該選項正確,符合題意;D.我區(qū)未來三天內不一定下雪,故該選項不正確,不符合題意;故選C【點睛】本題考查了必然事件,隨機事件,判斷全面調查與抽樣調查,掌握以上知識是解題的關鍵.5、D【分析】根據必然事件的概念“在一定條件下,有些事件必然會發(fā)生,這樣的事件稱為必然事件”可判斷選項D是必然事件;根據不可能事件的概念“有些事件必然不會發(fā)生,這樣的事件稱為不可能事件”可判斷選項B是不可能事件;根據隨機事件的概念“在一定條件下,可能發(fā)生也可能不發(fā)生的事件,稱為隨機事件”判斷選項A、C是隨機事件,即可得.【詳解】解:A、剛到車站,恰好有車進站是隨機事件;B、在一個僅裝著白乒乓球的盒子中,摸出黃乒乓球是不可能事件;C、打開九年級上冊數學教材,恰好是概率初步的內容是隨機事件;D、任意畫一個三角形,其外角和是360°是必然事件;故選D.【點睛】本題考查了必然事件,解題的關鍵是熟記必然事件的概念,不可能事件的概念和隨機事件的概念.6、C【詳解】解:根據圖形可知,這種圖形的運動是旋轉而得到的,故選:C.【點睛】本題考查了圖形的旋轉,熟記圖形的旋轉的定義(把一個平面圖形繞平面內某一點轉動一個角度,叫做圖形的旋轉)是解題關鍵.7、B【分析】由切線的性質可推出,.再根據直角三角形全等的判定條件“HL”,即可證明,即得出.【詳解】∵PA,PB是⊙O的切線,A,B為切點,∴,,∴在和中,,∴,∴.故選:B【點睛】本題考查切線的性質,三角形全等的判定和性質.熟練掌握切線的性質是解答本題的關鍵.8、B【分析】畫出圖形,作,交BE于點D.根據等腰直角三角形的性質和勾股定理可求出AD的長,再由AD和AC的長作比較即可判斷①②;由前面所求的AD的長和AB的長,結合該三角形外接圓的半徑長,即可判斷該外接圓的圓心可在AB上方,也可在AB下方,其與AE的交點即為C點,為兩點不唯一,可判斷其不符合題意.【詳解】如圖,,,點C在射線上.作,交BE于點D.∵,∴為等腰直角三角形,∴,∴不存在的三角形ABC,故①不符合題意;∵,,AC=8,而AC>6,∴存在的唯一三角形ABC,如圖,點C即是.∴,使得BC的長唯一成立,故②符合題意;∵,,∴存在兩個點C使的外接圓的半徑等于4,兩個外接圓圓心分別在AB的上、下兩側,如圖,點C和即為使的外接圓的半徑等于4的點.故③不符合題意.故選B.【點睛】本題考查等腰直角三角形的判定和性質,勾股定理,三角形外接圓的性質.利用數形結合的思想是解答本題的關鍵.二、填空題1、5(4,0)【分析】(1)根據點M在線段AB的垂直平分線上求解即可;(2)點P在⊙M切點處時,最大,而四邊形OPMD是矩形,由勾股定理求解即可.【詳解】解:(1)∵⊙M為△ABP的外接圓,∴點M在線段AB的垂直平分線上,∵A(0,2),B(0,8),∴點M的縱坐標為:,故答案為:5;(2)過點,,作⊙M與x軸相切,則點M在切點處時,最大,理由:若點是x軸正半軸上異于切點P的任意一點,設交⊙M于點E,連接AE,則∠AEB=∠APB,∵∠AEB是ΔAE的外角,∴∠AEB>∠AB,∵∠APB>∠AB,即點P在切點處時,∠APB最大,∵⊙M經過點A(0,2)、B(0,8),∴點M在線段AB的垂直平分線上,即點M在直線y=5上,∵⊙M與x軸相切于點P,MP⊥x軸,從而MP=5,即⊙M的半徑為5,設AB的中點為D,連接MD、AM,如上圖,則MD⊥AB,AD=BD=AB=3,BM=MP=5,而∠POD=90°,∴四邊形OPMD是矩形,從而OP=MD,由勾股定理,得MD=,∴OP=MD=4,∴點P的坐標為(4,0),故答案為:(4,0).【點睛】本題考查了切線的性質,線段垂直平分線的性質,矩形的判定及勾股定理,正確作出圖形是解題的關鍵.2、(3,4)【分析】關于原點對稱的點,橫坐標與縱坐標都互為相反數.【詳解】:由題意,得點(-3,-4)關于原點對稱的點的坐標是(3,4),故答案為:(3,4).【點睛】本題考查了關于原點對稱的點的坐標,解決本題的關鍵是掌握好對稱點的坐標規(guī)律:關于原點對稱的點,橫坐標與縱坐標都互為相反數.3、【分析】關于原點對稱的點坐標特征為:橫坐標、縱坐標都互為相反數;進而求出點B坐標.【詳解】解:由題意知點B橫坐標為;縱坐標為;故答案為:.【點睛】本題考查了關于原點對稱的點的坐標知識.解題的關鍵在于熟練記憶關于原點對稱的點坐標中相對應的坐標互為相反數.4、5【分析】先根據垂徑定理求出AC的長,設⊙O的半徑為r,再連接OA,在Rt△OAC中利用勾股定理求出r的值即可.【詳解】解:∵⊙O的弦AB=8,半徑OD⊥AB,∴AC=AB=×8=4,設⊙O的半徑為r,則OC=r-CD=r-2,連接OA,在Rt△OAC中,OA2=OC2+AC2,即r2=(r-2)2+42,解得r=5.故答案為:5【點睛】本題考查的是垂徑定理及勾股定理,根據題意作出輔助線,構造出直角三角形,利用勾股定理求解是解答此題的關鍵.5、【分析】根據二次函數的性質,對稱軸為,進而可得同號,根據列表法即可求得二次函數的對稱軸在軸左側的概率【詳解】解:二次函數的對稱軸在軸左側對稱軸為,即同號,列表如下共有12種等可能結果,其中同號的結果有4種則二次函數的對稱軸在軸左側的概率為故答案為:【點睛】本題考查了二次函數圖象的性質,列表法求概率,掌握二次函數的圖象與系數的關系以及列表法求概率是解題的關鍵.6、【分析】如圖(見解析),過點作軸于點,點作軸于點,設,從而可得,先利用勾股定理可得,從而可得,再根據旋轉的性質可得,然后根據三角形全等的判定定理證出,最后根據全等三角形的性質可得,由此即可得出答案.【詳解】解:如圖,過點作軸于點,點作軸于點,設,則,在中,,在中,,,解得,,由旋轉的性質得:,,,,在和中,,,,,故答案為:.【點睛】本題考查了勾股定理、旋轉、點坐標等知識點,畫出圖形,通過作輔助線,正確找出兩個全等三角形是解題關鍵.7、【分析】先用列表法分析所有等可能的結果和摸到兩個都是紅球的結果數,然后根據概率公式求解即可.【詳解】解:記紅球為,白球為,列表得:∵一共有12種情況,摸到兩個都是紅球有2種,∴P(兩個球都是紅球),故答案是.【點睛】本題主要考查了用列表法或畫樹狀圖法求概率,列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件.三、解答題1、(1)(2,-2)(2)圖見解析,(1,0)(3)【分析】(1)根據平移的性質得出平移后的圖從而得到點的坐標;(2)根據位似圖形的性質得出對應點位置,從而得到點的坐標;(3)證明是直角三角形,根據直角三角形外切圓半徑公式計算即可.(1)如圖所示:C1(2,﹣2);故答案為(2,﹣2);(2)如圖所示:C2(1,0);故答案為(1,0);(3)由圖可知:∵,,∴∴是直角三角形,∴能蓋住的最小圓即為外接圓,設其半徑為R;則【點睛】本題考查作圖—平移變換,作圖—位似變換、三角形外接圓,正確理解位似變換的定義,會進行位似變換的作圖是解題的關鍵.2、2+【分析】連接AC,CM,AB,過點C作CH⊥OA于H,設OC=a.利用勾股定理構建方程解決問題即可.【詳解】解:連接AC,CM,AB,過點C作CH⊥OA于H,設OC=a.∵∠AOB=90°,∴AB是直徑,∵A(-4,0),B(0,2),∴,∵∠AMC=2∠AOC=120°,,在Rt△COH中,,,在Rt△ACH中,AC2=AH2+CH2,∴,∴a=2+或2-(因為OC>OB,所以2-舍棄),∴OC=2+,故答案為:2+.【點睛】本題考查圓周角定理,勾股定理,解直角三角形等知識,解題的關鍵是學會利用參數構建方程解決問題.3、AM=EN,理由見解析【分析】根據旋轉性質和等邊三角形的性質可證得∠ABM=∠EBN,BM=BN,AB=BE,根據全等三角形的判定證明△ABM≌△EBN即可得出結論.【詳解】解:AM=EN,理由為:∵△ABE是等邊三角形,∴AB=BE,∠ABE=60°,即∠EBN=∠ABN=60°,∵線段BM繞點B逆時針旋轉60°得到BN,∴BM=BN,∠MBN=60°,即∠ABM+∠ABN=60°,∴∠ABM=∠EBN,在△ABM和△EBN中,,∴△ABM≌△EBN(SAS),∴AM=EN.【點睛】本題考查等邊三角形的性質、旋轉性質、全等三角形的判定與性質,熟練掌握用全等三角形證明線段相等是解答的關鍵.4、垂徑定理,圓周角定理,圓周角定理,(1,),2【分析】根據垂徑定理,圓周角定理依次分析解答.【詳解】解:如圖2,連接BC.作AE⊥OB于E、AF⊥OC于F.∴、(依

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論