中考數(shù)學(xué)-易錯(cuò)易錯(cuò)壓軸勾股定理選擇題專題練習(xí)(附答案)_第1頁
中考數(shù)學(xué)-易錯(cuò)易錯(cuò)壓軸勾股定理選擇題專題練習(xí)(附答案)_第2頁
中考數(shù)學(xué)-易錯(cuò)易錯(cuò)壓軸勾股定理選擇題專題練習(xí)(附答案)_第3頁
中考數(shù)學(xué)-易錯(cuò)易錯(cuò)壓軸勾股定理選擇題專題練習(xí)(附答案)_第4頁
中考數(shù)學(xué)-易錯(cuò)易錯(cuò)壓軸勾股定理選擇題專題練習(xí)(附答案)_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

中考數(shù)學(xué)易錯(cuò)易錯(cuò)壓軸選擇題精選:勾股定理選擇題專題練習(xí)(附答案)(6)一、易錯(cuò)易錯(cuò)壓軸選擇題精選:勾股定理選擇題1.如圖,正方體的棱長為4cm,A是正方體的一個(gè)頂點(diǎn),B是側(cè)面正方形對角線的交點(diǎn).一只螞蟻在正方體的表面上爬行,從點(diǎn)A爬到點(diǎn)B的最短路徑是()A.9 B. C. D.122.如圖,□ABCD中,對角線AC與BD相交于點(diǎn)E,∠AEB=45°,BD=2,將△ABC沿AC所在直線翻折180°到其原來所在的同一平面內(nèi),若點(diǎn)B的落點(diǎn)記為B′,則DB′的長為()A.1 B. C. D.3.直角三角形的面積為,斜邊上的中線為,則這個(gè)三角形周長為()A. B.C. D.4.如圖,在長方形紙片中,,.把長方形紙片沿直線折疊,點(diǎn)落在點(diǎn)處,交于點(diǎn),則的長為()A. B. C. D.5.如圖,在中,cm,cm,點(diǎn)D、E分別在AC、BC上,現(xiàn)將沿DE翻折,使點(diǎn)C落在點(diǎn)處,連接,則長度的最小值()A.不存在 B.等于1cmC.等于2cm D.等于2.5cm6.已知,如圖,,點(diǎn)分別是的角平分線,邊上的兩個(gè)動(dòng)點(diǎn),,,則的最小值是()A.3 B. C.4 D.7.如圖,在四邊形ABCD中,,,,,分別以點(diǎn)A,C為圓心,大于長為半徑作弧,兩弧交于點(diǎn)E,作射線BE交AD于點(diǎn)F,交AC于點(diǎn)O.若點(diǎn)O是AC的中點(diǎn),則CD的長為()A. B.6 C. D.88.“勾股圖”有著悠久的歷史,它曾引起很多人的興趣.1955年希臘發(fā)行了以“勾股圖”為背景的郵票(如圖1),歐幾里得在《幾何原本》中曾對該圖做了深入研究.如圖2,在中,,分別以的三條邊為邊向外作正方形,連結(jié),,,分別與,相交于點(diǎn),.若,則的值為()A. B. C. D.9.如圖,等腰直角△ABC中,∠C=90°,點(diǎn)F是AB邊的中點(diǎn),點(diǎn)D、E分別在AC、BC邊上運(yùn)動(dòng),且∠DFE=90°,連接DE、DF、EF,在此運(yùn)動(dòng)變化過程中,下列結(jié)論:①圖中全等的三角形只有兩對;②△ABC的面積是四邊形CDFE面積的2倍;③CD+CE=2FA;④AD2+BE2=DE2.其中錯(cuò)誤結(jié)論的個(gè)數(shù)有(??)A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)10.如圖,在△ABC和△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點(diǎn)C,D,E在同一條直線上,連接B,D和B,E.下列四個(gè)結(jié)論:①BD=CE,②BD⊥CE,③∠ACE+∠DBC=30°,④.其中,正確的個(gè)數(shù)是()A.1 B.2 C.3 D.411.在中,邊上的中線,則的面積為()A.6 B.7 C.8 D.912.下列四組線段中,可以構(gòu)成直角三角形的是()A.1、、 B.2、3、4 C.1、2、3 D.4、5、613.一個(gè)直角三角形兩邊長分別是和,則第三邊的長是()A. B.或 C.或 D.14.下列命題中,是假命題的是()A.在△ABC中,若∠A:∠B:∠C=1:2:3,則△ABC是直角三角形B.在△ABC中,若a2=(b+c)(b-c),則△ABC是直角三角形C.在△ABC中,若∠B=∠C=∠A,則△ABC是直角三角形D.在△ABC中,若a:b:c=5:4:3,則△ABC是直角三角形15.如圖,有一塊直角三角形紙片,兩直角邊,.現(xiàn)將直角邊沿直線折疊,使它落在斜邊上,且與重合,則等于()A. B. C. D.16.如圖所示,有一個(gè)高18cm,底面周長為24cm的圓柱形玻璃容器,在外側(cè)距下底1cm的點(diǎn)S處有一蜘蛛,與蜘蛛相對的圓柱形容器的上口外側(cè)距開口處1cm的點(diǎn)F處有一只蒼蠅,則急于捕獲蒼蠅充饑的蜘蛛所走的最短路徑的長度是()A.16cm B.18cm C.20cm D.24cm17.如圖,△ABC中,AB=10,BC=12,AC=,則△ABC的面積是().A.36 B. C.60 D.18.已知△ABC的三邊分別是6,8,10,則△ABC的面積是()A.24 B.30 C.40 D.4819.為了慶祝國慶,八年級(jí)(1)班的同學(xué)做了許多拉花裝飾教室,小玲抬來一架2.5米長的梯子,準(zhǔn)備將梯子架到2.4米高的墻上,則梯腳與墻角的距離是()A.0.6米 B.0.7米 C.0.8米 D.0.9米20.已知,為正數(shù),且,如果以,的長為直角邊作一個(gè)直角三角形,那么以這個(gè)直角三角形的斜邊為邊長的正方形的面積為()A.5 B.25 C.7 D.1521.如圖,在Rt△ABC中,∠A=90°,AB=6,AC=8,現(xiàn)將Rt△ABC沿BD進(jìn)行翻折,使點(diǎn)A剛好落在BC上,則CD的長為(

)A.10 B.5 C.4 D.322.如圖,已知數(shù)軸上點(diǎn)表示的數(shù)為,點(diǎn)表示的數(shù)為1,過點(diǎn)作直線垂直于,在上取點(diǎn),使,以點(diǎn)為圓心,以為半徑作弧,弧與數(shù)軸的交點(diǎn)所表示的數(shù)為()A. B. C. D.23.如圖,直角三角形兩直角邊的長分別為3和4,以直角三角形的兩直邊為直徑作半圓,則陰影部分的面積是(

)A.6 B. C.2π D.1224.下列長度的三條線段能組成直角三角形的是()A.9,7,12 B.2,3,4 C.1,2, D.5,11,1225.如圖,正方形ABCD和正方形CEFG邊長分別為a和b,正方形CEFG繞點(diǎn)C旋轉(zhuǎn),給出下列結(jié)論:①BE=DG;②BE⊥DG;③DE2+BG2=2a2+2b2,其中正確結(jié)論有()A.0個(gè) B.1個(gè) C.2個(gè) D.3個(gè)26.如圖,設(shè)正方體ABCD-A1B1C1D1的棱長為1,黑、白兩個(gè)甲殼蟲同時(shí)從點(diǎn)A出發(fā),以相同的速度分別沿棱向前爬行,黑甲殼蟲爬行的路線是AA1→A1D1→…,白甲殼蟲爬行的路線是AB→BB1→…,并且都遵循如下規(guī)則:所爬行的第n+2與第n條棱所在的直線必須既不平行也不相交(其中n是正整數(shù)).那么當(dāng)黑、白兩個(gè)甲殼蟲各爬行完第2017條棱分別停止在所到的正方體頂點(diǎn)處時(shí),它們之間的距離是()A.0 B.1 C. D.27.已知等邊三角形的邊長為a,則它邊上的高、面積分別是()A. B. C. D.28.如圖,是我國古代著名的“趙爽弦圖”的示意圖,此圖是由四個(gè)全等的直角三角形拼接而成,其中AE=10,BE=24,則EF的長是()A.14 B.13 C.14 D.1429.在△ABC中,AB=10,BC=12,BC邊上的中線AD=8,則△ABC邊AB上的高為()A.8 B.9.6 C.10 D.1230.下列說法不能得到直角三角形的()A.三個(gè)角度之比為1:2:3的三角形 B.三個(gè)邊長之比為3:4:5的三角形C.三個(gè)邊長之比為8:16:17的三角形 D.三個(gè)角度之比為1:1:2的三角形【參考答案】***試卷處理標(biāo)記,請不要?jiǎng)h除一、易錯(cuò)易錯(cuò)壓軸選擇題精選:勾股定理選擇題1.B解析:B【分析】將正方體的左側(cè)面與前面展開,構(gòu)成一個(gè)長方形,用勾股定理求出距離即可.【詳解】解:如圖,AB=.故選:B.【點(diǎn)睛】此題求最短路徑,我們將平面展開,組成一個(gè)直角三角形,利用勾股定理求出斜邊就可以了.2.B解析:B【解析】【分析】如圖,連接BB′.根據(jù)折疊的性質(zhì)知△BB′E是等腰直角三角形,則BB′=BE.又B′E是BD的中垂線,則DB′=BB′.【詳解】∵四邊形ABCD是平行四邊形,BD=2,∴BE=BD=1.如圖2,連接BB′.根據(jù)折疊的性質(zhì)知,∠AEB=∠AEB′=45°,BE=B′E.∴∠BEB′=90°,∴△BB′E是等腰直角三角形,則BB′=BE=,又∵BE=DE,B′E⊥BD,∴DB′=BB′=.故選B.【點(diǎn)睛】考查了平行四邊形的性質(zhì)以及等腰直角三角形性質(zhì).此題難度適中,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想的應(yīng)用.3.D解析:D【解析】【分析】根據(jù)直角三角形的性質(zhì)求出斜邊長,根據(jù)勾股定理、完全平方公式計(jì)算即可?!驹斀狻拷猓涸O(shè)直角三角形的兩條直角邊分別為x、y,∵斜邊上的中線為d,∴斜邊長為2d,由勾股定理得,x2+y2=4d2,∵直角三角形的面積為S,∴,則2xy=4S,即(x+y)2=4d2+4S,∴∴這個(gè)三角形周長為:,故選:D.【點(diǎn)睛】本題考查的是勾股定理的應(yīng)用,直角三角形的兩條直角邊長分別是a,b,斜邊長為c,那么a2+b2=c2.4.A解析:A【分析】由已知條件可證△CFE≌△AFD,得到DF=EF,利用折疊知AE=AB=8cm,設(shè)AF=xcm,則DF=(8-x)cm,在Rt△AFD中,利用勾股定理即可求得x的值.【詳解】∵四邊形ABCD是長方形,∴∠B=∠D=900,BC=AD,由翻折得AE=AB=8m,∠E=∠B=900,CE=BC=AD又∵∠CFE=∠AFD∴△CFE≌△AFD∴EF=DF設(shè)AF=xcm,則DF=(8-x)cm在Rt△AFD中,AF2=DF2+AD2,AD=6cm,故選擇A.【點(diǎn)睛】此題是翻折問題,利用勾股定理求線段的長度.5.C解析:C【分析】當(dāng)C′落在AB上,點(diǎn)B與E重合時(shí),AC'長度的值最小,根據(jù)勾股定理得到AB=5cm,由折疊的性質(zhì)知,BC′=BC=3cm,于是得到結(jié)論.【詳解】解:當(dāng)C′落在AB上,點(diǎn)B與E重合時(shí),AC'長度的值最小,∵∠C=90°,AC=4cm,BC=3cm,∴AB=5cm,由折疊的性質(zhì)知,BC′=BC=3cm,∴AC′=AB-BC′=2cm.故選:C.【點(diǎn)睛】本題考查了翻折變換(折疊問題),勾股定理,熟練掌握折疊的性質(zhì)是解題的關(guān)鍵.6.D解析:D【分析】先根據(jù)等腰三角形的性質(zhì)得出是線段垂直平分線,再根據(jù)垂直平分線的性質(zhì)、兩點(diǎn)之間線段最短得出最小值為,最后根據(jù)垂線段最短、直角三角形的性質(zhì)得出BE的最小值即可得.【詳解】如圖,作,交AC于點(diǎn)E,∵AD平分∠BAC,∴∠BAD=∠CAD,是線段垂直平分線(等腰三角形的三線合一)由兩點(diǎn)之間線段最短得:當(dāng)點(diǎn)共線時(shí),最小,最小值為點(diǎn)都是動(dòng)點(diǎn)隨點(diǎn)的運(yùn)動(dòng)而變化由垂線段最短得:當(dāng)時(shí),取得最小值在中,即的最小值為故選:D.【點(diǎn)睛】本題考查了等腰三角形的性質(zhì)、垂直平分線的性質(zhì)、兩點(diǎn)之間線段最短等知識(shí)點(diǎn),利用兩點(diǎn)之間線段最短和垂線段最短確認(rèn)的最小值是解題關(guān)鍵.7.A解析:A【分析】連接FC,根據(jù)基本作圖,可得OE垂直平分AC,由垂直平分線的性質(zhì)得出AF=FC.再根據(jù)ASA證明△FOA≌△BOC,那么AF=BC=3,等量代換得到FC=AF=3,利用線段的和差關(guān)系求出FD=AD-AF=1.然后在直角△FDC中利用勾股定理求出CD的長.【詳解】解:如圖,連接FC,∵點(diǎn)O是AC的中點(diǎn),由作法可知,OE垂直平分AC,∴AF=FC.∵AD∥BC,∴∠FAO=∠BCO.在△FOA與△BOC中,,∴△FOA≌△BOC(ASA),∴AF=BC=6,∴FC=AF=6,F(xiàn)D=AD-AF=8-6=2.在△FDC中,∵∠D=90°,∴CD2+DF2=FC2,∴CD2+22=62,∴CD=.故選:A.【點(diǎn)睛】本題考查了作圖-基本作圖,勾股定理,線段垂直平分線的判定與性質(zhì),全等三角形的判定與性質(zhì),難度適中.求出CF與DF是解題的關(guān)鍵.8.D解析:D【分析】先用已知條件利用SAS的三角形全等的判定定理證出△EAB≌△CAM,之后利用全等三角形的性質(zhì)定理分別可得,,,然后設(shè),繼而可分別求出,,所以;易證Rt△ACB≌Rt△DCG(HL),從而得,然后代入所求數(shù)據(jù)即可得的值.【詳解】解:∵在△EAB和△CAM中,,∴△EAB≌△CAM(SAS),∴,∴,∴,,設(shè),則,,,,∴;∵在Rt△ACB和Rt△DCG中,,Rt△ACB≌Rt△DCG(HL),∴;∴.故選D.【點(diǎn)睛】本題主要考查了勾股定理,三角形全等的判定定理和性質(zhì)定理等知識(shí).9.B解析:B【分析】結(jié)論①錯(cuò)誤,因?yàn)閳D中全等的三角形有3對;結(jié)論②正確,由全等三角形的性質(zhì)可以判斷;結(jié)論③錯(cuò)誤,利用全等三角形和等腰直角三角形的性質(zhì)可以判斷;結(jié)論④正確,利用全等三角形的性質(zhì)以及直角三角形的勾股定理進(jìn)行判斷.【詳解】連接CF,交DE于點(diǎn)P,如下圖所示結(jié)論①錯(cuò)誤,理由如下:圖中全等的三角形有3對,分別為△AFC≌△BFC,△AFD≌△CFE,△CFD≌△BFE.由等腰直角三角形的性質(zhì),可知FA=FC=FB,易得△AFC≌△BFC.∵FC⊥AB,F(xiàn)D⊥FE,∴∠AFD=∠CFE.∴△AFD≌△CFE(ASA).同理可證:△CFD≌△BFE.結(jié)論②正確,理由如下:∵△AFD≌△CFE,∴S△AFD=S△CFE,∴S四邊形CDFE=S△CFD+S△CFE=S△CFD+S△AFD=S△AFC=S△ABC,即△ABC的面積等于四邊形CDFE的面積的2倍.結(jié)論③錯(cuò)誤,理由如下:∵△AFD≌△CFE,∴CE=AD,∴CD+CE=CD+AD=AC=FA.結(jié)論④正確,理由如下:∵△AFD≌△CFE,∴AD=CE;∵△CFD≌△BFE,∴BE=CD.在Rt△CDE中,由勾股定理得:,∴.故選B.【點(diǎn)睛】本題是幾何綜合題,考查了等腰直角三角形、全等三角形和勾股定理等重要幾何知識(shí)點(diǎn),綜合性比較強(qiáng).解決這個(gè)問題的關(guān)鍵在于利用全等三角形的性質(zhì).10.B解析:B【分析】①由AB=AC,AD=AE,利用等式的性質(zhì)得到夾角相等,利用SAS得出三角形ABD與三角形ACE全等,由全等三角形的對應(yīng)邊相等得到BD=CE;②由三角形ABD與三角形ACE全等,得到一對角相等,再利用等腰直角三角形的性質(zhì)及等量代換得到BD垂直于CE;③由等腰直角三角形的性質(zhì)得到∠ABD+∠DBC=45°,等量代換得到∠ACE+∠DBC=45°;④由BD垂直于CE,在直角三角形BDE中,利用勾股定理列出關(guān)系式,等量代換即可作出判斷.【詳解】解:如圖,①∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,∵在△BAD和△CAE中,∴△BAD≌△CAE(SAS),∴BD=CE,故①正確;②∵△BAD≌△CAE,∴∠ABD=∠ACE,∵∠ABD+∠DBC=45°,∴∠ACE+∠DBC=45°,∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=45°+45°=90°,∴∠BDC=90°,∴BD⊥CE,故②正確;③∵△ABC為等腰直角三角形,∴∠ABC=∠ACB=45°,∴∠ABD+∠DBC=45°,∵∠ABD=∠ACE∴∠ACE+∠DBC=45°,故③錯(cuò)誤;④∵BD⊥CE,∴在Rt△BDE中,利用勾股定理得BE2=BD2+DE2,∵△ADE為等腰直角三角形,∴AE=AD,∴DE2=2AD2,∴BE2=BD2+DE2=BD2+2AD2,在Rt△BDC中,,而BC2=2AB2,∴BD2<2AB2,∴故④錯(cuò)誤,綜上,正確的個(gè)數(shù)為2個(gè).故選:B.【點(diǎn)睛】此題考查了全等三角形的判定與性質(zhì),勾股定理,以及等腰直角三角形的性質(zhì),熟練掌握全等三角形的判定與性質(zhì)是解本題的關(guān)鍵.11.B解析:B【分析】本題考查三角形的中線定義,根據(jù)條件先確定ABC為直角三角形,再根據(jù)勾股定理求得,最后根據(jù)求解即可.【詳解】解:如圖,在中,邊上的中線,∵CD=3,AB=6,∴CD=3,AB=6,∴CD=AD=DB,,,∵,∴,∴是直角三角形,∴,又∵,∴,∴,又∵,∴,故選B.【點(diǎn)睛】本題考查三角形中位線的應(yīng)用,熟練運(yùn)用三角形的中線定義以及綜合分析、解答問題的能力,關(guān)鍵要懂得:在一個(gè)三角形中,如果獲知一條邊上的中線等于這一邊的一半,那么就可考慮它是一個(gè)直角三角形,通過等腰三角形的性質(zhì)和內(nèi)角和定理來證明一個(gè)三是直角三角形.12.A解析:A【分析】求出兩小邊的平方和、最長邊的平方,看看是否相等即可.【詳解】A、12+()2=()2∴以1、、為邊組成的三角形是直角三角形,故本選項(xiàng)正確;

B、22+3242∴以2、3、4為邊組成的三角形不是直角三角形,故本選項(xiàng)錯(cuò)誤;

C、

12+2232∴以1、2、3為邊組成的三角形不是直角三角形,故本選項(xiàng)錯(cuò)誤;

D、

42+5262∴以4、5、6為邊組成的三角形不是直角三角形,故本選項(xiàng)錯(cuò)誤;

故選A..【點(diǎn)睛】本題考查了勾股定理的逆定理應(yīng)用,掌握勾股定理逆定理的內(nèi)容就解答本題的關(guān)鍵.13.C解析:C【分析】記第三邊為c,然后分c為直角三角形的斜邊和直角邊兩種情況,利用勾股定理求解即可.【詳解】解:記第三邊為c,若c為直角三角形的斜邊,則;若c為直角三角形的直角邊,則.故選:C.【點(diǎn)睛】本題考查了勾股定理,屬于基本題目,正確分類、熟練掌握勾股定理是解題的關(guān)鍵.14.C解析:C【分析】一個(gè)三角形中有一個(gè)直角,或三邊滿足勾股定理的逆定理則為直角三角形,否則則不是,據(jù)此依次分析各項(xiàng)即可.【詳解】A.△ABC中,若∠B=∠C-∠A,則∠C=∠A+∠B,則△ABC是直角三角形,本選項(xiàng)正確;B.△ABC中,若a2=(b+c)(b-c),則a2=b2-c2,b2=a2+c2,則△ABC是直角三角形,本選項(xiàng)正確;C.△ABC中,若∠A∶∠B∶∠C=3∶4∶5,則∠,故本選項(xiàng)錯(cuò)誤;D.△ABC中,若a∶b∶c=5∶4∶3,則△ABC是直角三角形,本選項(xiàng)正確;故選C.【點(diǎn)睛】本題考查的是直角三角形的判定,利用勾股定理的逆定理判斷一個(gè)三角形是否是直角三角形的一般步驟:①確定三角形的最長邊;②分別計(jì)算出最長邊的平方與另兩邊的平方和;③比較最長邊的平方與另兩邊的平方和是否相等.若相等,則此三角形是直角三角形;否則,就不是直角三角形.15.B解析:B【分析】根據(jù)翻折的性質(zhì)可知:AC=AE=6,CD=DE,設(shè)CD=DE=x,在Rt△DEB中利用勾股定理解決.【詳解】解:在Rt△ABC中,∵AC=6,BC=8,∴AB===10,△ADE是由△ACD翻折,∴AC=AE=6,EB=AB?AE=10?6=4,設(shè)CD=DE=x,在Rt△DEB中,∵,∴,∴x=3,∴CD=3.故答案為:B.【點(diǎn)睛】本題考查翻折的性質(zhì)、勾股定理,利用翻折不變性是解決問題的關(guān)鍵,學(xué)會(huì)轉(zhuǎn)化的思想去思考問題.16.C解析:C【分析】首先畫出圓柱的側(cè)面展開圖,進(jìn)而得到SC=12cm,F(xiàn)C=18-2=16cm,再利用勾股定理計(jì)算出SF長即可.【詳解】將圓柱的側(cè)面展開,蜘蛛到達(dá)目的地的最近距離為線段SF的長,由勾股定理,SF2=SC2+FC2=122+(18-1-1)2=400,SF=20cm,故選C.【點(diǎn)睛】本題考查了平面展開-最短路徑問題,先根據(jù)題意把立體圖形展開成平面圖形后,再確定兩點(diǎn)之間的最短路徑.一般情況是兩點(diǎn)之間,線段最短.在平面圖形上構(gòu)造直角三角形解決問題.17.A解析:A【分析】作于點(diǎn)D,設(shè),得,,結(jié)合題意,經(jīng)解方程計(jì)算得BD,再通過勾股定理計(jì)算得AD,即可完成求解.【詳解】如圖,作于點(diǎn)D設(shè),則∴,∴∵AB=10,AC=∴∴∴∴△ABC的面積故選:A.【點(diǎn)睛】本題考察了直角三角形、勾股定理、一元一次方程的知識(shí),解題的關(guān)鍵是熟練掌握勾股定理的性質(zhì),從而完成求解.18.A解析:A【解析】已知△ABC的三邊分別為6,10,8,由62+82=102,即可判定△ABC是直角三角形,兩直角邊是6,8,所以△ABC的面積為×6×8=24,故選A.19.B解析:B【解析】試題解析:依題意得:梯子、地面、墻剛好形成一直角三角形,梯高為斜邊,利用勾股定理得:梯腳與墻角距離:=0.7(米).故選B.20.C解析:C【分析】本題可根據(jù)兩個(gè)非負(fù)數(shù)相加和為0,則這兩個(gè)非負(fù)數(shù)的值均為0解出x、y的值,然后運(yùn)用勾股定理求出斜邊的長.斜邊長的平方即為正方形的面積.【詳解】依題意得:,∴,斜邊長,所以正方形的面積.故選C.考點(diǎn):本題綜合考查了勾股定理與非負(fù)數(shù)的性質(zhì)點(diǎn)評(píng):解這類題的關(guān)鍵是利用直角三角形,用勾股定理來尋求未知系數(shù)的等量關(guān)系.21.B解析:B【分析】根據(jù)“在Rt△ABC中”和“沿BD進(jìn)行翻折”可知,本題考察勾股定理和翻折問題,根據(jù)勾股定理和翻折的性質(zhì),運(yùn)用方程的方法進(jìn)行求解.【詳解】∵∠A=90°,AB=6,AC=8,∴BC==10,根據(jù)翻折的性質(zhì)可得A′B=AB=6,A′D=AD,∴A′C=10-6=4.設(shè)CD=x,則A′D=8-x,根據(jù)勾股定理可得x2-(8-x)2=42,解得x=5,故CD=5.故答案為:B.【點(diǎn)睛】本題考察勾股定理和翻折問題,根據(jù)勾股定理把求線段的長的問題轉(zhuǎn)化為方程問題是解決本題的關(guān)鍵.22.B解析:B【分析】由數(shù)軸上點(diǎn)表示的數(shù)為,點(diǎn)表示的數(shù)為1,得PA=2,根據(jù)勾股定理得,進(jìn)而即可得到答案.【詳解】∵數(shù)軸上點(diǎn)表示的數(shù)為,點(diǎn)表示的數(shù)為1,∴PA=2,又∵l⊥PA,,∴,∵PB=PC=,∴數(shù)軸上點(diǎn)所表示的數(shù)為:.故選B.【點(diǎn)睛】本題主要考查數(shù)軸上點(diǎn)表示的數(shù)與勾股定理,掌握數(shù)軸上兩點(diǎn)之間的距離求法,是解題的關(guān)鍵.23.A解析:A【分析】分別求出以AB、AC、BC為直徑的半圓及△ABC的面積,再根據(jù)S陰影=S1+S2+S△ABC-S3即可得出結(jié)論.【詳解】解:如圖所示:∵∠BAC=90°,AB=4cm,AC=3cm,BC=5cm,∴以AB為直徑的半圓的面積S1=2π(cm2);以AC為直徑的半圓的面積S2=π(cm2);以BC為直徑的半圓的面積S3=π(cm2);S△ABC=6(cm2);∴S陰影=S1+S2+S△ABC-S3=6(cm2);故選A.【點(diǎn)睛】本題考查的是勾股定理,熟知在任何一個(gè)直角三角形中,兩條直角邊長的平方之和一定等于斜邊長的平方是解答此題的關(guān)鍵.24.C解析:C【分析】利用勾股定理的逆定理:如果三角形兩條邊的平方和等于第三邊的平方,那么這個(gè)三角形就是直角三角形.最長邊所對的角為直角.由此判定即可.【詳解】解:A、因?yàn)?2+72≠122,所以三條線段不能組成直角三角形;B、因?yàn)?2+32≠42,所以三條線段不能組成直角三角形;C、因?yàn)?2+2=22,所以三條線段能組成直角三角形;D、因?yàn)?2+112≠122,所以三條線段不能組成直角三角形.故選C.【點(diǎn)睛】此題考查勾股定理逆定理的運(yùn)用,注意數(shù)據(jù)的計(jì)算.25.D解析:D【解析】分析:由四邊形ABCD與四邊形EFGC都為正方形,得到四條邊相等,四個(gè)角為直角,利用SAS得到三角形BCE與三角形DCG全等,利用全等三角形對應(yīng)邊相等即可得到BE=DG,利用全等三角形對應(yīng)角相等得到∠CBM=∠MDO,利用等角的余角相等及直角的定義得到∠BOD為直角,利用勾股定理求出所求式子的值即可.詳解:①∵四邊形ABCD和EFGC都為正方形,∴CB=CD,CE=CG,∠BCD=∠ECG=90°,∴∠BCD+∠DCE=∠ECG+∠DCE,即∠BCE=∠DCG.在△BCE和△DCG中,CB=CD,∠BCE=∠DCG,CE=CG,∴△BCE≌△DCG,∴BE=DG,故結(jié)論①正確.②如圖所示,設(shè)BE交DC于點(diǎn)M,交DG于點(diǎn)O.由①可知,△BCE≌△DCG,∴∠CBE=∠CDG,即∠CBM=∠MDO.又∵∠BMC=∠DMO,∠MCB=180°-∠CBM-∠BMC,∠DOM=180°-∠CDG-∠MDO,∴∠DOM=∠MCB=90°,∴BE⊥DG.故②結(jié)論正確.③如圖所示,連接BD、EG,由②知,BE⊥DG,則在Rt△ODE中,DE2=OD2+OE2,在Rt△BOG中,BG2=OG2+OB2,在Rt△OBD中,BD2=OD2+OB2,在Rt△OEG中,EG2=OE2+OG2,∴DE2+BG2=(OD2+OE2)+(OB2+OG2)=(OD2+OB2)+(OE2+OG2)=BD2+EG2.在Rt△BCD中,BD2=BC2+CD2=2a2,在Rt△CEG中,EG2=CG2+CE2=2b2,∴BG2+DE2=2a2+2b2.故③結(jié)論正確.故選:D.點(diǎn)睛:本題考查了旋轉(zhuǎn)的性質(zhì)、全等三角形的判定與性質(zhì)、正方形的性質(zhì).26.D解析:D【分析】先確定黑、白兩個(gè)甲殼蟲各爬行完第2017條棱

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論