




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
學校________________班級____________姓名____________考場____________準考證號學校________________班級____________姓名____________考場____________準考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共2頁河北美術學院《海報設計專題設計》2024-2025學年第一學期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共30個小題,每小題1分,共30分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在計算機視覺的圖像去噪任務中,假設要去除一張受到嚴重噪聲污染的圖像中的噪聲。以下關于圖像去噪方法的描述,正確的是:()A.中值濾波能夠有效地去除椒鹽噪聲,但會使圖像變得模糊B.均值濾波在去除噪聲的同時能夠很好地保留圖像的細節(jié)信息C.小波變換去噪方法計算復雜度高,不適合處理大規(guī)模圖像D.所有的圖像去噪方法都能夠完全恢復出原始的無噪圖像2、計算機視覺在農(nóng)業(yè)領域的應用中,例如對農(nóng)作物的生長監(jiān)測。假設要通過圖像分析評估農(nóng)作物的健康狀況,以下哪種特征可能對判斷病蟲害的存在較為敏感?()A.農(nóng)作物的顏色和紋理B.農(nóng)作物的高度和形狀C.農(nóng)田的土壤濕度D.農(nóng)田的地理位置3、計算機視覺中的光流估計用于計算圖像中像素的運動信息。假設我們要分析一個視頻中物體的運動速度和方向,以下哪種光流估計算法在復雜場景下能夠提供更準確的結果?()A.Lucas-Kanade算法B.Horn-Schunck算法C.Farneback算法D.DeepFlow算法4、假設要構建一個能夠對衛(wèi)星圖像進行地物分類的計算機視覺系統(tǒng),用于國土資源調查和環(huán)境監(jiān)測。由于衛(wèi)星圖像的分辨率較高且覆蓋范圍廣,以下哪種處理方式可能是必要的?()A.圖像分塊處理B.多尺度分析C.特征選擇和降維D.以上都是5、計算機視覺中的視覺注意力機制用于聚焦圖像中的重要區(qū)域。以下關于視覺注意力機制的說法,不正確的是()A.視覺注意力機制可以根據(jù)圖像的特征和任務需求動態(tài)地選擇關注的區(qū)域B.注意力機制能夠提高模型的效率和性能,減少對無關信息的處理C.視覺注意力機制在圖像分類、目標檢測和圖像生成等任務中得到了廣泛應用D.視覺注意力機制的引入會增加模型的復雜度和計算量,降低模型的訓練速度6、在計算機視覺中,圖像生成是創(chuàng)建新的圖像內(nèi)容。以下關于圖像生成的說法,錯誤的是()A.可以通過生成對抗網(wǎng)絡(GAN)、變分自編碼器(VAE)等模型進行圖像生成B.圖像生成可以用于藝術創(chuàng)作、數(shù)據(jù)增強和虛擬場景構建等任務C.生成的圖像質量和真實性在不斷提高,但仍然存在一些缺陷和不完美之處D.圖像生成可以完全根據(jù)用戶的任意想象生成任何內(nèi)容,不受任何限制7、在計算機視覺的圖像融合任務中,將多幅圖像合成為一幅更完整、更有信息的圖像。假設要將一張白天拍攝的風景圖像和一張夜晚拍攝的同一地點的圖像進行融合,以下關于圖像融合方法的描述,哪一項是不正確的?()A.可以基于像素級的融合策略,將兩幅圖像的像素值進行加權或組合B.特征級融合方法先提取圖像的特征,然后進行融合,能夠更好地保留圖像的語義信息C.圖像融合的效果只取決于融合算法的選擇,與輸入圖像的質量和內(nèi)容無關D.多模態(tài)圖像融合需要考慮不同圖像的特點和互補性,以獲得更理想的融合結果8、圖像分割是將圖像細分為不同的區(qū)域或對象。假設我們需要對醫(yī)學圖像中的腫瘤進行精確分割,以輔助醫(yī)生進行診斷和治療。在這種對精度要求很高的應用中,以下哪種圖像分割方法可能更合適?()A.基于閾值的圖像分割B.基于邊緣檢測的圖像分割C.基于區(qū)域生長的圖像分割D.基于深度學習的語義分割算法,如U-Net9、在計算機視覺的三維重建任務中,假設要從一組二維圖像恢復出物體的三維結構。以下關于三維重建方法的描述,正確的是:()A.基于立體視覺的方法需要多視角的圖像,并且對相機的標定精度要求不高B.結構光方法能夠快速準確地獲取物體表面的三維信息,但對環(huán)境光敏感C.從運動中恢復結構(SfM)方法只適用于靜態(tài)場景,無法處理動態(tài)物體D.所有的三維重建方法都能夠生成高精度的、完整的物體三維模型10、計算機視覺中的圖像超分辨率技術用于提高圖像的分辨率。假設要將一張低分辨率的圖像恢復成高分辨率圖像,以下關于圖像超分辨率方法的描述,正確的是:()A.基于插值的圖像超分辨率方法能夠生成清晰逼真的高分辨率圖像B.深度學習中的生成對抗網(wǎng)絡(GAN)在圖像超分辨率任務中無法發(fā)揮作用C.圖像超分辨率的效果不受原始低分辨率圖像的質量和內(nèi)容的限制D.結合先驗知識和深度學習的方法可以改善圖像超分辨率的效果11、在計算機視覺的車牌識別任務中,需要從車輛圖像中準確提取車牌號碼。假設車牌存在傾斜、變形和光照不均等問題。以下哪種車牌識別方法在應對這些挑戰(zhàn)時表現(xiàn)更為出色?()A.基于字符分割的車牌識別B.基于模板匹配的車牌識別C.基于深度學習的車牌識別D.基于特征提取的車牌識別12、計算機視覺在安防監(jiān)控領域有廣泛應用。假設要通過監(jiān)控攝像頭實時檢測人群中的異常行為,以下關于實時性和準確性的平衡,哪一項是最為關鍵的?()A.優(yōu)先保證實時性,即使準確性略有降低B.優(yōu)先保證準確性,允許一定的延遲C.不考慮實時性和準確性,只要能檢測出異常行為即可D.完全無法平衡實時性和準確性,只能根據(jù)具體情況選擇其一13、計算機視覺中的語義分割旨在為圖像中的每個像素分配一個類別標簽。假設要對醫(yī)學影像中的腫瘤區(qū)域進行語義分割,以下關于模型評估指標的選擇,哪一項是最為關鍵的?()A.準確率,即正確分類的像素比例B.召回率,即正確分割出腫瘤像素的比例C.F1分數(shù),綜合考慮準確率和召回率D.平均交并比(MIoU),衡量分割結果與真實標簽的重合程度14、在計算機視覺的圖像去噪任務中,假設要去除一張受到嚴重噪聲污染的圖像中的噪聲,同時盡可能保留圖像的細節(jié)和邊緣信息。以下哪種去噪方法可能更適合?()A.中值濾波,用鄰域中值代替像素值B.均值濾波,用鄰域平均值代替像素值C.基于深度學習的圖像去噪模型,如DnCNND.不進行任何去噪處理,保留原始噪聲圖像15、在計算機視覺的圖像語義分割任務中,假設要處理具有多尺度特征的圖像,例如同時包含大物體和小物體的場景。以下關于處理多尺度特征的方法描述,正確的是:()A.使用單一尺度的特征提取網(wǎng)絡可以應對多尺度問題,通過調整網(wǎng)絡參數(shù)即可B.采用多尺度輸入圖像,分別進行處理后再融合結果,能夠有效解決多尺度問題,但計算量大C.空洞卷積在處理多尺度特征時會引入大量的噪聲,降低分割精度D.圖像語義分割中多尺度問題無法解決,只能盡量避免處理這類圖像16、在計算機視覺的場景理解任務中,假設要理解一個室內(nèi)場景的布局和物體關系。以下關于利用深度學習模型的方法,哪一項是不太恰當?shù)??()A.使用卷積神經(jīng)網(wǎng)絡(CNN)提取圖像特征B.運用循環(huán)神經(jīng)網(wǎng)絡(RNN)處理場景的序列信息C.直接使用未經(jīng)訓練的神經(jīng)網(wǎng)絡,期望其自動學習場景理解D.結合CNN和RNN,構建端到端的場景理解模型17、在計算機視覺中,以下哪種方法常用于圖像的目標檢測中的遮擋處理?()A.上下文信息B.跟蹤歷史C.多視角融合D.以上都是18、當進行圖像的顯著性檢測時,假設要從一張復雜的圖像中突出顯示出人們視覺上最關注的區(qū)域,例如在一張風景圖像中突出顯示出一座顯眼的山峰。以下哪種方法在計算圖像的顯著性時可能更準確?()A.基于頻率域分析的方法,計算圖像的頻譜特征B.基于對比度的方法,比較區(qū)域與周圍的差異C.隨機選擇圖像中的部分區(qū)域作為顯著性區(qū)域D.不進行任何計算,主觀判斷顯著性區(qū)域19、對于圖像的邊緣檢測任務,假設要準確檢測出圖像中物體的邊緣,同時抑制噪聲的影響。以下哪種邊緣檢測算子可能表現(xiàn)更好?()A.Sobel算子B.Roberts算子C.Prewitt算子D.隨機生成邊緣檢測結果20、在計算機視覺的研究中,數(shù)據(jù)集的質量和規(guī)模對模型的訓練和性能評估至關重要。以下關于數(shù)據(jù)集的描述,不準確的是()A.大規(guī)模、多樣化和標注準確的數(shù)據(jù)集有助于訓練出泛化能力強的模型B.一些公開的數(shù)據(jù)集如ImageNet、COCO等為計算機視覺研究提供了重要的基準C.數(shù)據(jù)集的構建需要耗費大量的時間和人力,但可以通過數(shù)據(jù)增強技術來減少對原始數(shù)據(jù)的需求D.數(shù)據(jù)集一旦構建完成,就不需要再進行更新和擴展,能夠一直滿足研究的需求21、計算機視覺中的動作識別旨在識別視頻中的人物動作。假設我們要對一段包含復雜背景和多人交互的視頻進行動作識別,以下哪種特征表示可能對提高識別準確率有幫助?()A.基于光流的特征B.基于圖像直方圖的特征C.基于像素值的原始特征D.基于圖像邊緣的特征22、計算機視覺在無人駕駛飛行器(UAV)中的應用可以輔助飛行和導航。假設一架UAV需要依靠視覺信息避開障礙物,以下關于UAV計算機視覺應用的描述,正確的是:()A.僅依靠單目視覺就能準確估計障礙物的距離和速度B.視覺信息在UAV飛行中的作用有限,主要依靠其他傳感器如GPSC.多目視覺和深度學習算法的結合可以為UAV提供更準確的環(huán)境感知和障礙物避讓能力D.UAV的飛行速度和姿態(tài)對視覺系統(tǒng)的性能沒有影響23、在計算機視覺的醫(yī)學圖像分析中,例如對腫瘤的檢測和分割。假設醫(yī)學圖像的質量較差,存在噪聲和偽影,以下哪種預處理方法可能有助于提高后續(xù)分析的準確性?()A.圖像平滑B.圖像銳化C.圖像二值化D.圖像翻轉24、在計算機視覺中,人臉檢測和識別是重要的應用方向。以下關于人臉檢測和識別的說法,不正確的是()A.人臉檢測旨在確定圖像或視頻中是否存在人臉,并定位人臉的位置B.人臉識別是在檢測到人臉的基礎上,對人臉的身份進行識別和驗證C.深度學習方法在人臉檢測和識別中取得了巨大的成功,但仍然存在一些挑戰(zhàn),如光照變化和姿態(tài)變化D.人臉檢測和識別技術已經(jīng)非常成熟,不存在任何錯誤率和安全隱患25、圖像分類是計算機視覺中的常見任務之一。對于圖像分類模型的訓練,以下說法錯誤的是()A.需要大量有標注的圖像數(shù)據(jù)來學習不同類別的特征B.卷積神經(jīng)網(wǎng)絡(CNN)在圖像分類任務中表現(xiàn)出色C.模型的訓練過程是不斷調整參數(shù)以最小化預測誤差的過程D.圖像分類模型一旦訓練完成,就無法再對新的類別進行學習和分類26、在計算機視覺的圖像超分辨率任務中,假設要將一張低分辨率圖像恢復為高分辨率圖像。以下關于圖像超分辨率方法的描述,正確的是:()A.基于插值的方法簡單快速,但恢復出的圖像細節(jié)不夠清晰B.基于深度學習的方法能夠生成逼真的高分辨率圖像,但需要大量的訓練數(shù)據(jù)和計算資源C.圖像超分辨率技術可以無限制地提高圖像的分辨率,不受硬件限制D.所有的圖像超分辨率方法都能夠完全恢復出原始高分辨率圖像的所有信息27、在計算機視覺的視覺跟蹤與定位任務中,實時跟蹤物體并確定其在空間中的位置。假設要在一個室內(nèi)環(huán)境中跟蹤一個移動的機器人并確定其位置,以下關于視覺跟蹤與定位方法的描述,正確的是:()A.基于標志物的跟蹤與定位方法在標志物被遮擋時仍能準確工作B.視覺里程計方法能夠獨立實現(xiàn)高精度的長期跟蹤與定位C.同時使用多個相機進行觀測不能提高跟蹤與定位的性能D.環(huán)境的光照變化和動態(tài)障礙物對視覺跟蹤與定位的結果影響較小28、計算機視覺中的圖像修復旨在恢復圖像中缺失或損壞的部分。假設一張珍貴的老照片有部分區(qū)域損壞,需要進行修復以還原其完整的內(nèi)容。以下哪種圖像修復方法在處理這種情況時能夠生成更自然和逼真的結果?()A.基于擴散的圖像修復B.基于紋理合成的圖像修復C.基于深度學習的圖像修復D.基于樣例的圖像修復29、計算機視覺中的姿態(tài)估計任務是估計人體或物體在三維空間中的姿態(tài)。假設要估計一個人體模特的姿態(tài)。以下關于姿態(tài)估計的描述,哪一項是不正確的?()A.可以通過關鍵點檢測和關節(jié)角度計算來估計人體姿態(tài)B.深度學習中的卷積神經(jīng)網(wǎng)絡可以直接預測人體姿態(tài)的參數(shù)C.姿態(tài)估計在虛擬現(xiàn)實和增強現(xiàn)實等應用中具有重要作用D.姿態(tài)估計的結果總是非常準確,不受人體遮擋和復雜動作的影響30、計算機視覺中的視頻壓縮是為了減少視頻數(shù)據(jù)的存儲空間和傳輸帶寬。假設要對一段高清視頻進行壓縮,同時保持較好的視覺質量。以下關于視頻壓縮方法的描述,正確的是:()A.幀內(nèi)壓縮通過去除圖像內(nèi)部的冗余信息實現(xiàn)壓縮,對圖像質量影響較小B.幀間壓縮利用相鄰幀之間的相似性進行壓縮,但會引入明顯的失真C.運動估計在幀間壓縮中不重要,對壓縮效率提升作用不大D.視頻壓縮的碼率越低,壓縮效果越好,視覺質量也越高二、應用題(本大題共5個小題,共25分)1、(本題5分)設計一個系統(tǒng),利用計算機視覺檢測學校操場的使用情況。2、(本題5分)使用目標跟蹤算法,對田徑比賽中的跨欄動作進行分析和評估。3、(本題5分)通過圖像分類算法,對不同種類的花卉圖像進行準確分類。4、(本題5分)運用圖像識別技術,檢測物流倉庫中包裹的標簽信息。5、(本題5分)使用深度學習模型,對歷史文物圖像進行年代和風格的鑒定。三、簡答題(本大題共5個小題,共25分)1、(本題5分)計算機視覺
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年上半年重慶城市職業(yè)學院招聘事業(yè)單位人員7人模擬試卷帶答案詳解
- 行政管理工具合同審核執(zhí)行表記錄工具標準
- 2025年甘肅省嘉峪關市市場監(jiān)督管理局公益性崗位招聘20人考前自測高頻考點模擬試題及答案詳解(必刷)
- 江西省部分學校2024-2025學年高二上學期10月教學質量檢測地理試題(解析版)
- 老師的那句話影響了我寫人作文7篇
- 2025江西撫州市崇仁縣縣屬國有企業(yè)招聘員工有關事項模擬試卷完整參考答案詳解
- 員工入職培訓與能力評估模板
- 2025福建龍凈環(huán)保股份有限公司電控廠招聘模擬試卷完整答案詳解
- 2025江西吉安永新縣薪火人力資源服務有限公司招聘4人模擬試卷完整答案詳解
- 2025昆明市盤龍職業(yè)高級中學烹飪教師招聘(1人)模擬試卷及答案詳解(有一套)
- 高校周邊網(wǎng)吧調查報告
- IPD項目-TR6-評審要素表
- 2022年南京師范大學泰州學院教師招聘考試真題
- 全國教師教學創(chuàng)新團隊申報書(范例)
- 秦皇島職業(yè)技術學院工作人員招聘考試真題2022
- 信息安全實訓系統(tǒng)用戶手冊
- 2023年成人學位英語高頻詞匯
- 樊登讀書會市級分會運營手冊OK
- 車輛裝卸運輸規(guī)定(2篇)
- GB/T 11376-2020金屬及其他無機覆蓋層金屬的磷化膜
- 衛(wèi)生醫(yī)療機構消毒培訓教學課件
評論
0/150
提交評論