




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
四川省華鎣市中考數(shù)學(xué)真題分類(勾股定理)匯編同步測評考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計(jì)14分)1、如圖是由四個(gè)全等的直角三角形和一個(gè)小正方形拼成的一個(gè)大正方形,設(shè)直角三角形的兩直角邊分別是a、b,且,大正方形的面積是9,則小正方形的面積是(
)A.3 B.4 C.5 D.62、如圖所示,圓柱的高AB=3,底面直徑BC=3,現(xiàn)在有一只螞蟻想要從A處沿圓柱表面爬到對角C處捕食,則它爬行的最短距離是()A. B. C. D.3、如圖,在中,,,,為邊上一動(dòng)點(diǎn),于,于,為中點(diǎn),則的最小值為(
).A. B. C. D.4、有一個(gè)邊長為1的正方形,以它的一條邊為斜邊,向外作一個(gè)直角三角形,再分別以直角三角形的兩條直角邊為邊,向外各作一個(gè)正方形,稱為第一次“生長”(如圖1);再分別以這兩個(gè)正方形的邊為斜邊,向外各自作一個(gè)直角三角形,然后分別以這兩個(gè)直角三角形的直角邊為邊,向外各作一個(gè)正方形,稱為第二次“生長”(如圖2)……如果繼續(xù)“生長”下去,它將變得“枝繁葉茂”,請你算出“生長”了2021次后形成的圖形中所有的正方形的面積和是(
)A.1 B.2020 C.2021 D.20225、有一個(gè)直角三角形的兩邊長分別為3和4,則第三邊的長為()A.5 B. C. D.5或6、一個(gè)直角三角形的兩條直角邊邊長分別為6和8,則斜邊上的高為(
)A.4.5 B.4.6 C.4.8 D.57、如圖,正方形的邊長為10,,,連接,則線段的長為(
)A. B. C. D.第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計(jì)16分)1、如圖,CD是△ABC的中線,將△ACD沿CD折疊至,連接交CD于點(diǎn)E,交CB于點(diǎn)F,點(diǎn)F是的中點(diǎn).若的面積為12,,則點(diǎn)F到AC的距離為______.2、勘測隊(duì)按實(shí)際需要構(gòu)建了平面直角坐標(biāo)系,并標(biāo)示了A,B,C三地的坐標(biāo),數(shù)據(jù)如圖(單位:km).筆直鐵路經(jīng)過A,B兩地.(1)A,B間的距離為______km;(2)計(jì)劃修一條從C到鐵路AB的最短公路l,并在l上建一個(gè)維修站D,使D到A,C的距離相等,則C,D間的距離為______km.3、圖,在菱形ABCD中,,是銳角,于點(diǎn)E,M是AB的中點(diǎn),連接MD,若,則的值為______.4、如圖,一架長5米的梯子A1B1斜靠在墻A1C上,B1到墻底端C的距離為3米,此時(shí)梯子的高度達(dá)不到工作要求,因此把梯子的B1端向墻的方向移動(dòng)了1.6米到B處,此時(shí)梯子的高度達(dá)到工作要求,那么梯子的A1端向上移動(dòng)了_____米.5、如圖,在正方形網(wǎng)格中,點(diǎn)A,B,C,D,E是格點(diǎn),則∠ABD+∠CBE的度數(shù)為_____________.
6、如圖,臺(tái)風(fēng)過后,某希望小學(xué)的旗桿在離地某處斷裂,且旗桿頂部落在離旗桿底部8m處,已知旗桿原長16m,你能求出旗桿在離底部________m位置斷裂.7、已知,在中,,,,則的面積為__.8、如圖,已知,那么數(shù)軸上點(diǎn)所表示的數(shù)是________.三、解答題(7小題,每小題10分,共計(jì)70分)1、在△ABC中,,AB=5cm,AC=3cm,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿射線BC以1cm/s的速度移動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒,當(dāng)△ABP為直角三角形時(shí),求t的值.2、如圖,在一次地震中,一棵垂直于地面且高度為16米的大樹被折斷,樹的頂部落在離樹根8米處,即,求這棵樹在離地面多高處被折斷(即求AC的長度)?3、如圖,將一個(gè)長方形紙片ABCD沿對角線AC折疊,點(diǎn)B落在點(diǎn)E處,AE交DC于點(diǎn)F,已知AB=4,BC=2,求折疊后重合部分的面積.4、如圖,點(diǎn)是正方形內(nèi)一點(diǎn),將繞點(diǎn)順時(shí)針旋轉(zhuǎn)到的位置,若,求的度數(shù).5、數(shù)學(xué)中,常對同一個(gè)量(圖形的面積、點(diǎn)的個(gè)數(shù)等)用兩種不同的方法計(jì)算,從而建立相等關(guān)系,我們把這種思想叫“算兩次”.“算兩次”也稱作富比尼原理,是一種重要的數(shù)學(xué)思想,由它可以推導(dǎo)出很多重要的公式.(1)如圖1,是一個(gè)長為,寬為的長方形,沿圖中虛線用剪刀均分成四個(gè)小長方形,然后按圖2的方式拼成一個(gè)正方形.①用“算兩次”的方法計(jì)算圖2中陰影部分的面積:第一次列式為,第二次列式為,因?yàn)閮纱嗡兴闶奖硎镜氖峭粋€(gè)圖形的面積,所以可以得出等式;②在①中,如果,,請直接用①題中的等式,求陰影部分的面積;(2)如圖3,兩個(gè)邊長分別為,,的直角三角形和一個(gè)兩條直角邊都是的直角三角形拼成一個(gè)梯形,用“算兩次”的方法,探究,,之間的數(shù)量關(guān)系.6、已知a,b,c為△ABC的三邊,且滿足a2c2﹣b2c2=a4﹣b4,試判定△ABC的形狀.7、我方偵查員小王在距離東西向公路400米處偵查,發(fā)現(xiàn)一輛敵方汽車在公路上疾駛.他趕緊拿出紅外線測距儀,測得汽車與他相距400米,10秒后,汽車與他相距500米,你能幫小王計(jì)算敵方汽車的速度嗎?-參考答案-一、單選題1、A【解析】【分析】觀察圖形可知,小正方形的面積=大正方形的面積?4個(gè)直角三角形的面積,利用已知(a+b)2=15,大正方形的面積為9,可以得出直角三角形的面積,進(jìn)而求出答案.【詳解】解:∵(a+b)2=15,∴a2+2ab+b2=15,∵大正方形的面積為:a2+b2=9,∴2ab=15?9=6,即ab=3,∴直角三角形的面積為:,∴小正方形的面積為:,故選:A.【考點(diǎn)】此題主要考查了完全平方公式及勾股定理的應(yīng)用,熟練應(yīng)用完全平方公式及勾股定理是解題關(guān)鍵.2、C【解析】【分析】要求最短路徑,首先要把圓柱的側(cè)面展開,利用兩點(diǎn)之間線段最短,然后利用勾股定理即可求解.【詳解】解:把圓柱側(cè)面展開,展開圖如圖所示,點(diǎn)A、C之間的最短距離為線段AC的長.在Rt△ADC中,∠ADC=90°,CD=AB=3,AD為底面半圓弧長,AD=π,∴AC=,故選C.【考點(diǎn)】本題考查了平面展開-最短路徑問題,解題的關(guān)鍵是會(huì)將圓柱的側(cè)面展開,并利用勾股定理解答.3、D【解析】【分析】先根據(jù)矩形的判定得出AEPF是矩形,再根據(jù)矩形的性質(zhì)得出EF,AP互相平分,且EF=AP,再根據(jù)垂線段最短的性質(zhì)就可以得出AP⊥BC時(shí),AP的值最小,即AM的值最小,根據(jù)面積關(guān)系建立等式求出其解即可.【詳解】解:如圖,連接AP,∵AB=3,AC=4,BC=5,∴∠EAF=90°,∵PE⊥AB于E,PF⊥AC于F,∴四邊形AEPF是矩形,∴EF,AP互相平分.且EF=AP,∴EF,AP的交點(diǎn)就是M點(diǎn).∵當(dāng)AP的值最小時(shí),AM的值就最小,∴當(dāng)AP⊥BC時(shí),AP的值最小,即AM的值最?。逜P?BC=AB?AC,∴AP?BC=AB?AC,∵AB=3,AC=4,BC=5,∴5AP=3×4,∴AP=,∴AM=.故選:D.【考點(diǎn)】本題考查了矩形的性質(zhì)的運(yùn)用,勾股定理的運(yùn)用,三角形的面積公式的運(yùn)用,垂線段最短的性質(zhì)的運(yùn)用,解題的關(guān)鍵是求出AP的最小值.4、D【解析】【分析】根據(jù)題意可得每“生長”一次,面積和增加1,據(jù)此即可求得“生長”了2021次后形成的圖形中所有的正方形的面積和.【詳解】解:如圖,由題意得:SA=1,由勾股定理得:SB+SC=1,則“生長”了1次后形成的圖形中所有的正方形的面積和為2,同理可得:“生長”了2次后形成的圖形中所有的正方形面積和為3,“生長”了3次后形成的圖形中所有正方形的面積和為4,……“生長”了2021次后形成的圖形中所有的正方形的面積和是2022,故選:D【考點(diǎn)】本題考查了勾股數(shù)規(guī)律問題,找到規(guī)律是解題的關(guān)鍵.5、D【解析】【分析】分4是直角邊、4是斜邊兩種情況考慮,再根據(jù)勾股定理計(jì)算即可.【詳解】解:當(dāng)4是直角邊時(shí),斜邊==5;當(dāng)4是斜邊時(shí),另一條直角邊=;故選:D.【考點(diǎn)】本題考查的是勾股定理,如果直角三角形的兩條直角邊長分別是a,b,斜邊長為c,那么a2+b2=c2.6、C【解析】【分析】根據(jù)勾股定理求出斜邊的長,再根據(jù)面積法求出斜邊的高.【詳解】解:設(shè)斜邊長為c,高為h.由勾股定理可得:c2=62+82,則c=10,直角三角形面積S=×6×8=×c×h,可得h=4.8,故選:C.【考點(diǎn)】本題考查了勾股定理,利用勾股定理求直角三角形的邊長和利用面積法求直角三角形的高是解決此類題的關(guān)鍵.7、B【解析】【分析】延長DH交AG于點(diǎn)E,利用SSS證出△AGB≌△CHD,然后利用ASA證出△ADE≌△DCH,根據(jù)全等三角形的性質(zhì)求出EG、HE和∠HEG,最后利用勾股定理即可求出HG.【詳解】解:延長DH交AG于點(diǎn)E∵四邊形ABCD為正方形∴AD=DC=BA=10,∠ADC=∠BAD=90°在△AGB和△CHD中∴△AGB≌△CHD∴∠BAG=∠DCH∵∠BAG+∠DAE=90°∴∠DCH+∠DAE=90°∴CH2+DH2=82+62=100=DC2∴△CHD為直角三角形,∠CHD=90°∴∠DCH+∠CDH=90°∴∠DAE=∠CDH,∵∠CDH+∠ADE=90°∴∠ADE=∠DCH在△ADE和△DCH中∴△ADE≌△DCH∴AE=DH=6,DE=CH=8,∠AED=∠DHC=90°∴EG=AG-AE=2,HE=DE-DH=2,∠GEH=180°-∠AED=90°在Rt△GEH中,GH=故選B.【考點(diǎn)】此題考查是正方形的性質(zhì)、全等三角形的判定及性質(zhì)和勾股定理,掌握正方形的性質(zhì)、全等三角形的判定及性質(zhì)和利用勾股定理解直角三角形是解決此題的關(guān)鍵.二、填空題1、【解析】【分析】過點(diǎn)F作FH⊥AC于點(diǎn)H,由翻折的性質(zhì)可知S△AA'D=24,由D為AB的中點(diǎn),則S△AA'B=2S△AA'D=48,得AA'=12,再通過AAS證明△A'BF≌△ECF,得CE=A'B=8,在Rt△CAE中,由勾股定理求出AC的長,最后通過面積法即可求出FH的長.【詳解】解:如圖,過點(diǎn)F作FH⊥AC于點(diǎn)H,根據(jù)翻折的性質(zhì)得:AD=A'D,AA'⊥CD,AE=A'E,∵CD是△ABC的中線,∴CD=BD,∴AD=BD=A'D,∴∠AA'B=90°,又∵S△A'DE=12,∴S△ADE=12,∴S△ADA'=24,又∵D為AB的中點(diǎn),∴S△AA'B=2S△AA'D=48,即×AA′×A′B=48,∴AA'=12,又∵F為A'E的中點(diǎn),∴A'F=EF,在△A'BF與△ECF中,,∴△A'BF≌△ECF(AAS),∴CE=A'B=8,∵AA'=2A'E,A'E=2EF=6,∴EF=3,AF=9,在Rt△CAE中,由勾股定理得:CA==10,在△CAF中,CA?HF=AF?CE,∴HF==,即點(diǎn)F到AC的距離為,故答案為:.【考點(diǎn)】本題主要考查了翻折的性質(zhì),全等三角形的判定與性質(zhì),勾股定理等知識,運(yùn)用等積法求垂線段的長是解題的關(guān)鍵.2、
20
13【解析】【分析】(1)由垂線段最短以及根據(jù)兩點(diǎn)的縱坐標(biāo)相同即可求出AB的長度;(2)根據(jù)A、B、C三點(diǎn)的坐標(biāo)可求出CE與AE的長度,設(shè)CD=x,根據(jù)勾股定理即可求出x的值.【詳解】(1)由A、B兩點(diǎn)的縱坐標(biāo)相同可知:AB∥x軸,∴AB=12﹣(﹣8)=20;(2)過點(diǎn)C作l⊥AB于點(diǎn)E,連接AC,作AC的垂直平分線交直線l于點(diǎn)D,由(1)可知:CE=1﹣(﹣17)=18,AE=12,設(shè)CD=x,∴AD=CD=x,由勾股定理可知:x2=(18﹣x)2+122,∴解得:x=13,∴CD=13.故答案為(1)20;(2)13.【考點(diǎn)】本題考查了勾股定理,解題的關(guān)鍵是根據(jù)A、B、C三點(diǎn)的坐標(biāo)求出相關(guān)線段的長度,本題屬于中等題型.3、【解析】【分析】延長DM交CB的延長線于點(diǎn)首先證明,設(shè),利用勾股定理構(gòu)建方程求出x即可解決問題.【詳解】延長DM交CB的延長線于點(diǎn)H,四邊形ABCD是菱形,,,,,,≌,,,,設(shè),,,,,,或舍棄,,故答案為.【考點(diǎn)】本題考查了菱形的性質(zhì)、勾股定理、線段的垂直平分線的性質(zhì)、全等三角形的判定和性質(zhì)等知識,正確添加輔助線,構(gòu)造全等三角形解決問題是解決本題的關(guān)鍵.4、0.8【解析】【分析】梯子的長是不變的,只要利用勾股定理解出梯子滑動(dòng)前和滑動(dòng)后的所構(gòu)成的兩直角三角形,分別得出AO,A1O的長即可.【詳解】解:在Rt△ABO中,根據(jù)勾股定理知,A1O==4(m),在Rt△ABO中,由題意可得:BO=1.4(m),根據(jù)勾股定理知,AO==4.8(m),所以AA1=AO-A1O=0.8(米).故答案為0.8.【考點(diǎn)】本題考查勾股定理的應(yīng)用,解題關(guān)鍵是從題中抽象出勾股定理這一數(shù)學(xué)模型,畫出準(zhǔn)確的示意圖.領(lǐng)會(huì)數(shù)形結(jié)合的思想的應(yīng)用.5、45°【解析】【分析】取網(wǎng)格點(diǎn)M、N、F,連接AM、AN、BM、MF、BN,根據(jù)網(wǎng)格線可得到∠ABD+∠CBE=∠MAB,再根據(jù)勾股定理的逆定理證明△ABM是直角三角形,且AM=BM,即可得解.【詳解】取網(wǎng)格點(diǎn)M、N、F,連接AM、AN、BM、MF、BN,如圖,根據(jù)網(wǎng)格線可知NB=1=MF,AN=3,AF=2,由網(wǎng)格圖可知∠CBE=∠FAM,∠ABD=∠NAB,則∠ABD+∠CBE=∠MAB,在Rt△ANB中,有,同理可求得:,∵,∴△ABM是直角三角形,且AM=BM,∴∠MAB=45°,即:∠ABD+∠CBE=45°,故答案為:45°.【考點(diǎn)】本題考查了勾股定理即勾股定理的逆定理、等腰直角三角形等知識,求得∠ABD+∠CBE=∠MAB是解答本題的關(guān)鍵.6、6【解析】【分析】設(shè),則,在中,利用勾股定理列方程,即可求解.【詳解】解:如圖,由題意知,,,設(shè),則,在中,,即,解得,因此旗桿在離底部6m位置斷裂.故答案為:6.【考點(diǎn)】本題考查勾股定理的實(shí)際應(yīng)用,讀懂題意,根據(jù)勾股定理列出方程是解題的關(guān)鍵.7、2或14#14或2【解析】【分析】過點(diǎn)B作AC邊的高BD,Rt△ABD中,∠A=45°,AB=4,得BD=AD=4,在Rt△BDC中,BC=4,得CD==5,①△ABC是鈍角三角形時(shí),②△ABC是銳角三角形時(shí),分別求出AC的長,即可求解.【詳解】解:過點(diǎn)作邊的高,中,,,,在中,,,①是鈍角三角形時(shí),,;②是銳角三角形時(shí),,,故答案為:2或14.【考點(diǎn)】本題考查了勾股定理,三角形面積求法,解題關(guān)鍵是分類討論思想.8、【解析】【分析】首先根據(jù)勾股定理得:OB=.即OA=.又點(diǎn)A在數(shù)軸的負(fù)半軸上,則點(diǎn)A對應(yīng)的數(shù)是-.【詳解】解:由圖可知,OC=2,作BC⊥OC,垂足為C,取BC=1,故,∵A在x的負(fù)半軸上,∴數(shù)軸上點(diǎn)A所表示的數(shù)是-.故答案為:-.【考點(diǎn)】此題主要考查了實(shí)數(shù)與數(shù)軸,勾股富士蝗應(yīng)用,熟練運(yùn)用勾股定理,同時(shí)注意根據(jù)點(diǎn)的位置以確定數(shù)的符號.三、解答題1、當(dāng)△ABP為直角三角形時(shí),t=4或.【解析】【分析】當(dāng)△ABP為直角三角形時(shí),分兩種情況:①當(dāng)∠APB為直角時(shí),②當(dāng)∠BAP為直角時(shí),分別求出此時(shí)t的值即可.【詳解】在Rt△ABC中,由勾股定理得:,∴BC=4cm,由題意得:BP=tcm.,①當(dāng)∠APB為直角時(shí),如圖①,點(diǎn)P與點(diǎn)C重合,BP=BC=4cm,∴t=4;②當(dāng)∠BAP為直角時(shí),如圖②,BP=tcm.CP=(t-4)cm,AC=3cm,在Rt△ACP中,,在Rt△BAP中,,即,解得,答:當(dāng)△ABP為直角三角形時(shí),t=4或.【考點(diǎn)】本題考查了勾股定理以及直角三角形的知識,解答本題的關(guān)鍵是掌握勾股定理的應(yīng)用,以及分類討論,否則會(huì)出現(xiàn)漏解.2、這棵樹在離地面6米處被折斷【解析】【分析】設(shè),利用勾股定理列方程求解即可.【詳解】解:設(shè),∵在中,,∴,∴.答:這棵樹在離地面6米處被折斷【考點(diǎn)】本題考查了勾股定理,熟練掌握勾股定理是解答本題的關(guān)鍵.直角三角形兩條直角邊的平方和等于斜邊的平方.當(dāng)題目中出現(xiàn)直角三角形,且該直角三角形的一邊為待求量時(shí),常使用勾股定理進(jìn)行求解.有時(shí)也可以利用勾股定理列方程求解.3、【解析】【分析】先由折疊可知EC=BC=2,進(jìn)而可知AD=CE,通過全等三角形的角角邊判定定理可證明△ADF≌△CEF,由全等可知FE=DF,設(shè)FC為x,則FE=DF=4-x,根據(jù)直角三角形的勾股定理可列方程,從而計(jì)算出CF的長度,通過CF與AD的長度可計(jì)算出重合部分面積.【詳解】解:∵△AEC是由△ABC沿AC折疊后得到的,∴EC=BC=2,且∠E=∠B=90°,在△ADF與△CEF中,,∴△ADF≌△CEF(AAS),設(shè)FC=x,則FE=DF=4-x,在Rt△CEF中,由勾股定理可知:,∴,解得,∴,故折疊后重合部分的面積為.【考點(diǎn)】本題考查圖形折疊的相關(guān)性質(zhì),以及直角三角形的勾股定理的應(yīng)用,以及全等三角形的判定,找到合適的條件,選擇適合的判定方法去證明全等三角形,利用勾股定理和方程思想列方程是解決本題的關(guān)鍵.4、【解析】【分析】連接EE`,如圖,根據(jù)旋轉(zhuǎn)的性質(zhì)得BE=BE'=2,AE=CE'=1,∠EBE`=90°,則可判斷△BEE`為等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)得EE`=BE=2,∠BE`E=45°,在△CEE'中,由于CE`+EE'=CE,根據(jù)勾股定理的逆定理得到△CEE`為直角三角形,即∠EE`C=90°,然后利用∠BE'C=∠BE'E+∠CE'E求解【詳解】連接EE`,如圖,∵△ABE繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到△CBE`∴BE=BE'=2,AE=CE'=1,∠EBE'=90°∴△BEE'為等腰直角三角形∴EE'=BE=2,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025(抵押)反擔(dān)保合同
- 2025杭州市家具買賣合同范本
- 梧州網(wǎng)簽合同范本
- 建筑施工合同范本詳解
- 店鋪臨時(shí)聘用合同范本
- 委托培訓(xùn)員工合同范本
- 國家設(shè)計(jì)服務(wù)合同范本
- 包裝資料銷毀合同范本
- 旅社整體出租合同范本
- 購房帶裝修 合同范本
- 高速天橋拆除方案(3篇)
- 第1課 鴉片戰(zhàn)爭 課件 歷史統(tǒng)編版2024八年級上冊
- 2025年中國冷鏈物流行業(yè)投資前景分析、未來發(fā)展趨勢研究報(bào)告(智研咨詢發(fā)布)
- 2025合作合同范本下載
- 手外傷急救診療流程標(biāo)準(zhǔn)化
- 農(nóng)村土地托管培訓(xùn)課件
- 老年??谱o(hù)士學(xué)習(xí)培訓(xùn)匯報(bào)
- 基孔肯雅熱防控培訓(xùn)課件
- 公司崗位補(bǔ)助管理辦法
- 游戲與兒童發(fā)展課件
- 捐贈(zèng)助學(xué)活動(dòng)方案
評論
0/150
提交評論