2024-2025學(xué)年北京市通州區(qū)高一年級(jí)下冊(cè)期中考試數(shù)學(xué)試題(含答案)_第1頁(yè)
2024-2025學(xué)年北京市通州區(qū)高一年級(jí)下冊(cè)期中考試數(shù)學(xué)試題(含答案)_第2頁(yè)
2024-2025學(xué)年北京市通州區(qū)高一年級(jí)下冊(cè)期中考試數(shù)學(xué)試題(含答案)_第3頁(yè)
2024-2025學(xué)年北京市通州區(qū)高一年級(jí)下冊(cè)期中考試數(shù)學(xué)試題(含答案)_第4頁(yè)
2024-2025學(xué)年北京市通州區(qū)高一年級(jí)下冊(cè)期中考試數(shù)學(xué)試題(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩4頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024-2025學(xué)年北京市通州區(qū)高一下學(xué)期期中考試

數(shù)學(xué)試題

一、單選題:本題共10小題,每小題5分,共50分。在每小題給出的選項(xiàng)中,只有一項(xiàng)是符合題目要求

的。

1.已知向量五=(1,一2),b=(4,1),貝展4=()

A.2B.4C.6D.9

2.如圖,在平行四邊形48CD中,連結(jié)8。,下列運(yùn)算正確的是()

AD

A.AB+RD=DXB.BX+BC=RD

C.AB-AD=~BDD.JD-BA=DA

3.若復(fù)數(shù)z滿足>z=l-2i,則在復(fù)平面內(nèi),復(fù)數(shù)z對(duì)應(yīng)的點(diǎn)所在象限是()

A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限

4.將一顆質(zhì)地均勻的骰子先后拋擲2次,則出現(xiàn)向上的點(diǎn)數(shù)之和大于8的概率為()

1515

'%B.&C.-D.-

5.在I34BC中,角4B,C的對(duì)邊分別是a,b,c,已知a=2,b=,后,c=4,則cosB=()

53715

A-§ByC.-D.-

6.已知平面向量出b,則“a=另或胃=-*是“同=同”的()

A.充分不必要條件B.必要不充分條件

C.充分必要條件D.既不充分也不必要條件

7.已知平面向量?jī)?yōu)3是不共線的兩個(gè)向量,AB=a+2b,AC=4a-4b,CD=-a+2,b,貝!|()

A.A,B,C三點(diǎn)共線B.A,B,。三點(diǎn)共線

C.A,C,D三點(diǎn)共線D.B,C,。三點(diǎn)共線

8.一個(gè)盒子里裝有除顏色外完全相同的四個(gè)小球,其中黑球有兩個(gè),編號(hào)為1、2;紅球有兩個(gè),編號(hào)為

3,4.從盒中不放回的依次取出兩個(gè)球,力表示事件“第一次取出的是紅球”,B表示事件“取出的兩球同

色”,C表示事件“取出的兩球不同色”,則下列說(shuō)法正確的是()

人.2與8互斥:6.4與0互斥C.PQ4UB)屋D.P(4C)=1

9.在團(tuán)ABC中,角4B,C的對(duì)邊分別是a,b,c,則下列說(shuō)法正確的個(gè)數(shù)為()

①若acosA=bcosB,則回ABC一定為等腰三角形

②若前?同>0,則團(tuán)ABC一定為銳角三角形

③若c=2,則回ABC面積的最大值為VI

A.0B.1C.2D.3

10.在I3A8C中,角4B,C的對(duì)邊分別是a,b,c,已知b=sin4=3cosBsinC,貝帆ABC面積的最

大值為()

35113

A*B.[C.蘭D.7

88164

二、填空題:本題共5小題,每小題5分,共25分。

11.在13ABe中,角4B,C的對(duì)邊分別是a,b,c,已知a=3,A=\sinB=貝!.

43

12.已知復(fù)數(shù)Z]=m+(zn-l)i,z2-2-2i,若Zi+z2為純虛數(shù),則實(shí)數(shù)m.

13.為銘記歷史、緬懷先烈,增強(qiáng)愛(ài)國(guó)主義情懷,某學(xué)校開(kāi)展共青團(tuán)知識(shí)競(jìng)賽活動(dòng).在最后一輪晉級(jí)比賽

中,甲、乙兩名同學(xué)回答一道有關(guān)團(tuán)史的問(wèn)題,每名同學(xué)回答正確與否互不影響.已知甲回答正確的概率

為甲、乙兩人都回答正確的概率是拷甲、乙同學(xué)都回答這個(gè)問(wèn)題,則乙回答正確的概率為;

甲、乙兩名同學(xué)中至少有1名同學(xué)回答正確的概率為.

14.我國(guó)漢代數(shù)學(xué)家趙爽為了證明勾股定理,創(chuàng)制了一幅“弦圖”,后人稱為“趙爽弦圖”,它是由四個(gè)

全等的直角三角形與一個(gè)小正方形拼成的一個(gè)大正方形,如圖所示.若|荏|=2,虧,AF=^AE,則向量

比在加上的投影向量的模為;設(shè)瓦?=灑DC=b^若荏=48+N],則4+〃=.

15.在銳角回力BC中,AC=y/~5,BC=3,且tan4—]=若點(diǎn)用為平面內(nèi)一點(diǎn),且就=近+

cosAcosB

2瓦?QeR),給出下列四個(gè)結(jié)論:

①|(zhì)畫(huà)=4;

②回48M的面積為3;

③忸的最小值為當(dāng)2;

④若BC=CM,貝版的值為一牛或牛.

其中所有正確結(jié)論的序號(hào)是.

三、解答題:本題共6小題,共75分。解答應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟。

16.(本小題12分)

在團(tuán)ABC中,A,B,C所對(duì)的邊分別為a,b,c,已知a=5,b=2.

(1)若cosC=3求c及團(tuán)ABC的面積;

(2)若,5b—2csinB=0,求C,

17.(本小題12分)

已知平面向量R,b,其中|初=2,|方|=,2且N與3的夾角為%

(1)求1-Q+E)的值;

(2)求|2五—同的值;

⑶若向量(kN-1)與位+人母互相垂直,求實(shí)數(shù)k的個(gè)數(shù).

18.(本小題12分)

甲、乙兩名射擊運(yùn)動(dòng)員進(jìn)行射擊比賽,甲的中靶概率為0.8,乙的中靶概率為0.9,甲、乙射擊中靶與否互

不影響.甲、乙每次射擊中靶與否也互不影響.

(1)甲、乙各射擊1次,兩人都脫靶的概率;

(2)甲射擊2次恰有1次中靶的概率;

(3)甲、乙各射擊2次,記“4次射擊中至少有1次中靶”為事件M,記“4次射擊中至多有1次中靶”為事件

M判斷M與N是否相互獨(dú)立.(結(jié)論不要求證明)

19.(本小題13分)

設(shè)復(fù)數(shù)z=a+bi(a,bG7?).

(1)若z=i(2+i),求a、b的值.

(2)若z與復(fù)數(shù)zi=2+i是互為共輾復(fù)數(shù),求z『i;

(3)當(dāng)bHO時(shí),右z+』=t(teR),求|z|.

20.(本小題13分)

在團(tuán)ABC中,角4,B,C所對(duì)的邊分別為a,b,c,a=7,A=^.

(1)再?gòu)南旅娼o出的條件①、條件②、條件③這三個(gè)條件中選擇一個(gè)作為已知,使得回4BC存在,求團(tuán)

ABC的面積;

條件①:6=10;

條件②:c=8;

條件③:cosB=一;.

(2)若方?前>0,求團(tuán)A8C周長(zhǎng)的取值范圍.

注:如果選擇的條件不符合要求,第(1)問(wèn)得0分;如果選擇多個(gè)符合要求的條件分別解答,按第一個(gè)解答

計(jì)分.

21.(本小題13分)

如圖,已知正方形48CD的邊長(zhǎng)為2,圓。內(nèi)切于正方形4BCD,點(diǎn)E,F為切點(diǎn),點(diǎn)P為劣弧那上的一點(diǎn),

過(guò)P作PGJ.OE,垂足為G,過(guò)P作PN1OF,交OF于交圓。于N,設(shè)乙POE為9.

⑴若8屋,求3??赤的值;

(2)設(shè)巾=詼?德,n=CO-CM.

①求TH-71的最小值;

②求JTO1的最大值.

參考答案

1.71

2.5

3.C

4.B

5.C

6.A

7.D

8.D

9.B

10.0

11.72

12.-2

”2.二

3'12

2

14.4;——/—0.4

15.②③④

16.(1)因?yàn)?<C<兀,cost*=,所以sinC=V1—cos2C=J1—(3)=fl

由余弦定理可得c?=a2+b2—2abeosC,

所以02=52+22-2X5X2X|=25+4-16=13,所以C=AA13,

11Q

所以團(tuán)ABC的面積為四sinC=^x5x2x|=3;

(2)由—2csinB=0,可得,^sinB—2sinCsinB=0,

又因?yàn)?<8<兀,所以sinB力0,所以sinC=苧,

又0<C<7T,所以C=1或C=".

17.(1)由|則=2,\b\=42,且d與3的夾角為[得N?另=2x,lx,=2,

4Z

所以N-(a+b)+a-b=6.

(2)123—31=4a2+b2-4a-b=J4x22+(72)2-4x2=VTo.

⑶由向量(k4—為與C+kE)互相垂直,

得(kW—尤)-(a+kb)^ka2-kb2+(fc2-1)a-2fc2+2k-2?0,

解得人=節(jié)生,所以k的值有2個(gè).

18.(1)設(shè)甲1次中靶為事件4乙1次中靶為事件B,

設(shè)甲1次脫靶為事件&,乙1次脫靶為事件&,

兩人都脫靶為事件4/1,且當(dāng)相互獨(dú)立,

由題意得PQ4)=0.8,P(B)=0.9,

則甲1次脫靶的概率為P(4)=1-P(A)=1—0.8=0.2,

乙1次脫靶的概率為P(BJ=1-P⑻=1-0,9=0.1,

故兩人都脫靶的概率為PQ4/1)=0.2x0.1=0.02.

(2)由題意得甲射擊2次恰有1次中靶可以分類如下,

第一次中靶,第二次脫靶,第一次脫靶,第二次中靶,

而第一次中靶,第二次脫靶的概率為0.8x(l-0.8)=0.16,

第一次脫靶,第二次中靶的概率為(1-0.8)x0.8=0.16,

由分類加法計(jì)數(shù)原理得恰有1次中靶的概率為0.16+0.16=0.32.

(3)不獨(dú)立,證明如下,

由題意得記“4次射擊中至少有1次中靶”為事件M,

則事件M的對(duì)立事件Mi為“4次射擊中全部脫靶”,

得到P(Mi)=(1-0.8)x(1-0.8)x(1-0.9)x(1-0.9)=0.0004,

故P(M)=1-P(MJ=1-0.0004=0,9996,

而記“4次射擊中至多有1次中靶”為事件N,

可分類為4次射擊中全部脫靶,甲1次中靶,乙全部脫靶或甲全部脫靶,乙1次中靶,

而4次射擊中全部脫靶的概率為0.0004,

甲1次中靶,乙全部脫靶的概率為廢X0.8x(1-0.8)x(l-0.9)X(1-0.9)=0.0032,

乙1次中靶,甲全部脫靶的概率為戲x(1-0.8)x(1-0.8)x0.9x(1-0.9)=0.0072,

由分類加法計(jì)數(shù)原理得P(N)=0.0004+0,0032+0,0072=0.0108,

而MN表示4次射擊中恰好1次中靶,可分類如下,

為甲1次中靶,乙全部脫靶或甲全部脫靶,乙1次中靶,

得到P(MN)=0.0032+0.0072=0.0104,

則P(MN)KP(M)-P(N),不滿足獨(dú)立事件的定義,故M與N不獨(dú)立.

19.(1)因?yàn)閦=i(2+i)=—1+2i=a+bi{a,bGR),故a=-1,b=2.

(2)因?yàn)閦與復(fù)數(shù)zi=2+i是互為共鈍復(fù)數(shù),則z=2-i,故z?Z]=(2-i)(2+i)=4+1=5.

7

(3)因?yàn)閎40,z+|=t(teR),

則'=。+萬(wàn)+磊=。+兒+五篝超而(a+2a\+b2b\.

由J(-都+射川

(a2+b2-2)h

故人券=0,

a2+b2

因?yàn)閎W0,故小+卜2=2,所以|z|=Va2+b2=V-2.

20.(1)選條件①:b=10,由正弦定理得芻=3,

、'smBsinA

即當(dāng)=},解得sinB=*>l,

smBV_37

2

故B無(wú)解,所以團(tuán)ABC不存在;

選條件②:c=8,由余弦定理得a?=+c2-26CCOS4,

則49=b2+64-8/7,解得b=3或b=5,

當(dāng)6=3時(shí),SBABC—|fecsinX=|x3x8x^=6-\/~3;

當(dāng)6=5時(shí),SMBC=\bcsmA=gx5x8x?=10<3.

選條件③:cosB=—<0,則sinB=V1—cos2B—號(hào)國(guó)

7X學(xué)

由正弦定理得葛白,貝防=asinB

sinX吏二8,

T

又sinC=sin(A+8)=sin/cosB+cos/sinB

£1

+4V3_3V3

-2X-X

(-2"7~~

1等

所以X7X8X

-2

(2)由4B?BC=QC?(一COSB)>0,則cosBV0,則B為鈍角,

因?yàn)?=所以

則回ABC的周長(zhǎng)為a+b+c=7+^^sinB+岑^sinC=7+晉包[sinB+sing+B)]

=7+尹廣(sinB+苧cosB+gsiriB)—7+14sin(B+巳),

因?yàn)锽C&豹,所以B+仁得片),則sin(B+9e停學(xué),

所以7+14sin(B+ge(14,7+7門),

即團(tuán)ABC周長(zhǎng)的取值范圍為(14,7+773).

21.(1)

因?yàn)檎叫芜呴L(zhǎng)為2,則內(nèi)切圓。的半徑為1,如圖所示,以圓心為原點(diǎn),以。E為%軸,以。F為y軸,建立

平面直角坐標(biāo)系.

當(dāng)6=狎,貝UP(cos,sin》O(0,0),N(—cos?sin,C(l,l),

可得沆=(1,1),OlV=(-cos1,sing),則雙-W=-cosg+sing=-?+:=匕

ooooZZZ

(2)

如(1)建立坐標(biāo)系,則此時(shí)。(0,0),C(l,l),G(cos0,0),M(0,sin。),

可得C。=(—1,—1),CG—(cosO—1,-1),CM—(—1,sin。-1),

可知zn

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論