廣西南寧市馬山縣金倫中學4+N高中聯(lián)合體2024-2025學年數(shù)學高二下期末統(tǒng)考試題含解析_第1頁
廣西南寧市馬山縣金倫中學4+N高中聯(lián)合體2024-2025學年數(shù)學高二下期末統(tǒng)考試題含解析_第2頁
廣西南寧市馬山縣金倫中學4+N高中聯(lián)合體2024-2025學年數(shù)學高二下期末統(tǒng)考試題含解析_第3頁
廣西南寧市馬山縣金倫中學4+N高中聯(lián)合體2024-2025學年數(shù)學高二下期末統(tǒng)考試題含解析_第4頁
廣西南寧市馬山縣金倫中學4+N高中聯(lián)合體2024-2025學年數(shù)學高二下期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

廣西南寧市馬山縣金倫中學4+N高中聯(lián)合體2024-2025學年數(shù)學高二下期末統(tǒng)考試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知甲口袋中有個紅球和個白球,乙口袋中有個紅球和個白球,現(xiàn)從甲,乙口袋中各隨機取出一個球并相互交換,記交換后甲口袋中紅球的個數(shù)為,則()A. B. C. D.2.已知某射擊運動員,每次擊中目標的概率都是0.8,則該射擊運動員射擊4次,至少擊中3次的概率為()A.0.85 B.0.8192 C.0.8 D.0.753.已知函數(shù)為內(nèi)的奇函數(shù),且當時,,記,則間的大小關(guān)系是()A. B.C. D.4.命題p:x∈R,ax2﹣2ax+1>0,命題q:指數(shù)函數(shù)f(x)=ax(a>0且a≠1)為減函數(shù),則P是q的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件5.定義在(0,+∞)上的函數(shù)f(x)的導數(shù)滿足x2<1,則下列不等式中一定成立的是()A.f()+1<f()<f()﹣1 B.f()+1<f()<f()﹣1C.f()﹣1<f()<f()+1 D.f()﹣1<f()<f()+16.若集合,函數(shù)的定義域為集合B,則A∩B等于()A.(0,1)B.[0,1)C.(1,2)D.[1,2)7.已知集合,則集合的子集個數(shù)為()A.3 B.4 C.7 D.88.已知雙曲線的左、右焦點分別為、,過作垂直于實軸的弦,若,則的離心率為()A. B. C. D.9.已知點F是拋物線C:y2=8x的焦點,M是C上一點,F(xiàn)M的延長線交y軸于點N,若M是FN的中點,則M點的縱坐標為()A.2 B.4 C.±2 D.±410.在二維空間中,圓的一維測度(周長)l=2πr,二維測度(面積)S=πr2;在三維空間中,球的二維測度(表面積)S=4πr2,三維測度(體積)V=4A.4πr4 B.3πr411.下列選項中,說法正確的是()A.命題“”的否定是“”B.命題“為真”是命題“為真”的充分不必要條件C.命題“若,則”是假命題D.命題“在中,若,則”的逆否命題為真命題12.某居民小區(qū)有兩個相互獨立的安全防范系統(tǒng)和,系統(tǒng)和系統(tǒng)在任意時刻發(fā)生故障的概率分別為和,若在任意時刻恰有一個系統(tǒng)不發(fā)生故障的概率為,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若隨機變量,且,則__________.14.________.15.在名男生和名女生中各選出名參加一個演唱小組,共有__________種不同的選擇方案.16.設(shè)隨機變量的分布列(其中),則___.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知是拋物線的焦點,是拋物線上一點,且.(1)求拋物線的方程;(2)直線與拋物線交于兩點,若(為坐標原點),則直線是否會過某個定點?若是,求出該定點坐標,若不是,說明理由.18.(12分)已知是正實數(shù))的展開式的二項式系數(shù)之和為128,展開式中含項的系數(shù)為84.(1)求的值;(2)求的展開式中有理項的系數(shù)和.19.(12分)已知命題方程表示雙曲線,命題點在圓的內(nèi)部.若為假命題,也為假命題,求的取值范圍.20.(12分)某校為“中學數(shù)學聯(lián)賽”選拔人才,分初賽和復賽兩個階段進行,規(guī)定:分數(shù)不小于本次考試成績中位數(shù)的具有復賽資格,某校有900名學生參加了初賽,所有學生的成績均在區(qū)間內(nèi),其頻率分布直方圖如圖.(1)求獲得復賽資格應劃定的最低分數(shù)線;(2)從初賽得分在區(qū)間的參賽者中,利用分層抽樣的方法隨機抽取7人參加學校座談交流,那么從得分在區(qū)間與各抽取多少人?(3)從(2)抽取的7人中,選出4人參加全市座談交流,設(shè)表示得分在中參加全市座談交流的人數(shù),學校打算給這4人一定的物質(zhì)獎勵,若該生分數(shù)在給予500元獎勵,若該生分數(shù)在給予800元獎勵,用Y表示學校發(fā)的獎金數(shù)額,求Y的分布列和數(shù)學期望。21.(12分)已知橢圓的離心率為,是橢圓上一點.(1)求橢圓的標準方程;(2)過橢圓右焦點的直線與橢圓交于兩點,是直線上任意一點.證明:直線的斜率成等差數(shù)列.22.(10分)已知函數(shù).(I)解不等式:;(II)若函數(shù)的最大值為,正實數(shù)滿足,證明:

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

先求出的可能取值及取各個可能取值時的概率,再利用可求得數(shù)學期望.【詳解】的可能取值為.表示從甲口袋中取出一個紅球,從乙口袋中取出一個白球,故.表示從甲、乙口袋中各取出一個紅球,或從甲、乙口袋中各取出一個白球,故.表示從甲口袋中取出一個白球,從乙口袋中取出一個紅球,故.所以.故選A.求離散型隨機變量期望的一般方法是先求分布列,再求期望.如果離散型隨機變量服從二項分布,也可以直接利用公式求期望.2、B【解析】

因為某射擊運動員,每次擊中目標的概率都是,則該射擊運動員射擊4次看做4次獨立重復試驗,則至少擊中3次的概率3、D【解析】

根據(jù)奇函數(shù)解得,設(shè),求導計算單調(diào)性和奇偶性,根據(jù)性質(zhì)判斷大小得到答案.【詳解】根據(jù)題意得,令.則為內(nèi)的偶函數(shù),當時,,所以在內(nèi)單調(diào)遞減又,故,選D.本題考查了函數(shù)的奇偶性單調(diào)性,比較大小,構(gòu)造函數(shù)是解題的關(guān)鍵.4、B【解析】

根據(jù)充分條件和必要條件的定義分別進行判斷即可.【詳解】命題p:?x∈R,ax2﹣2ax+1>0,解命題p:①當a≠0時,△=4a2﹣4a=4a(a﹣1)<0,且a>0,∴解得:0<a<1,②當a=0時,不等式ax2﹣2ax+1>0在R上恒成立,∴不等式ax2﹣2ax+1>0在R上恒成立,有:0≤a<1;命題q:指數(shù)函數(shù)f(x)=ax(a>0且a≠1)為減函數(shù),則0<a<1;所以當0≤a<1;推不出0<a<1;當0<a<1;能推出0≤a<1;故P是q的必要不充分條件.故選:B.本題主要考查充分條件和必要條件的判斷,考查了二次型函數(shù)恒成立的問題,考查了指數(shù)函數(shù)的單調(diào)性,屬于基礎(chǔ)題.5、D【解析】

構(gòu)造函數(shù)g(x)=f(x),利用導數(shù)可知函數(shù)在(0,+∞)上是減函數(shù),則答案可求.【詳解】由x2f′(x)<1,得f′(x),即得f′(x)0,令g(x)=f(x),則g′(x)=f′(x)0,∴g(x)=f(x)在(0,+∞)上為單調(diào)減函數(shù),∴f()+2<f()+3<f()+4,則f()<f()+1,即f()﹣1<f();f()<f()+1.綜上,f()﹣1<f()<f()+1.故選:D.本題考查利用導數(shù)研究函數(shù)的單調(diào)性,正確構(gòu)造函數(shù)是解題的關(guān)鍵,是中檔題.6、D【解析】試題分析:,,所以??键c:1.函數(shù)的定義域;2.集合的運算。7、D【解析】分析:先求出集合B中的元素,從而求出其子集的個數(shù).詳解:由題意可知,集合B={z|z=x+y,x∈A,y∈A}={0,1,2},則B的子集個數(shù)為:23=8個,故選D.點睛:本題考察了集合的子集個數(shù)問題,若集合有n個元素,其子集有2n個,真子集有2n-1個,非空真子集有2n-2個.8、C【解析】

由題意得到關(guān)于a,c的齊次式,然后求解雙曲線的離心率即可.【詳解】由雙曲線的通徑公式可得,由結(jié)合雙曲線的對稱性可知是等腰直角三角形,由直角三角形的性質(zhì)有:,即:,據(jù)此有:,,解得:,雙曲線中,故的離心率為.本題選擇C選項.雙曲線的離心率是雙曲線最重要的幾何性質(zhì),求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出a,c,代入公式;②只需要根據(jù)一個條件得到關(guān)于a,b,c的齊次式,結(jié)合b2=c2-a2轉(zhuǎn)化為a,c的齊次式,然后等式(不等式)兩邊分別除以a或a2轉(zhuǎn)化為關(guān)于e的方程(不等式),解方程(不等式)即可得e(e的取值范圍).9、C【解析】

求出拋物線的焦點坐標,推出M的坐標,然后求解,得到答案.【詳解】由題意,拋物線的焦點,是上一點,的延長線交軸于點,若為的中點,如圖所示,可知的橫坐標為1,則的縱坐標為,故選C.本題主要考查了拋物線的簡單性質(zhì)的應用,著重考查了推理與運算能力,屬于基礎(chǔ)題.10、B【解析】

根據(jù)所給的示例及類比推理的規(guī)則得出,高維度的測度的導數(shù)是低一維的測度,從而得到W'【詳解】由題知,S'=l,V'=S所以W=3πr4,故選本題主要考查學生的歸納和類比推理能力。11、C【解析】對于A,命題“”的否定是“”,故錯誤;對于B,命題“為真”是命題“為真”的必要不充分條件,故錯誤;對于C,命題“若,則”在時,不一定成立,故是假命題,故正確;對于D,“在中,若,則或”為假命題,故其逆否命題也為假命題,故錯誤;故選C.12、B【解析】試題分析:記“系統(tǒng)發(fā)生故障、系統(tǒng)發(fā)生故障”分別為事件、,“任意時刻恰有一個系統(tǒng)不發(fā)生故障”為事件,則,解得,故選B.考點:對立事件與獨立事件的概率.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由條件求得,可得正態(tài)分布曲線的圖象關(guān)于直線對稱.求得的值,根據(jù)對稱性,即可求得答案.【詳解】隨機變量,且,可得,正態(tài)分布曲線的圖象關(guān)于直線對稱.,故答案為:.本題考查了正態(tài)分布曲線的特點及曲線所表示的意義,考查了分析能力和計算能力,屬于基礎(chǔ)題.14、【解析】分析:根據(jù),即可求出原函數(shù),再根據(jù)定積分的計算法則計算即可.詳解:,故答案為:.點睛:本題考查了定積分的計算,關(guān)鍵是求出原函數(shù),屬于基礎(chǔ)題.15、【解析】

根據(jù)分步計數(shù)原理計算可得.【詳解】從名女生中選出二人,有種選法,從5名男生中選出二人,有種選法,所以根據(jù)分步計數(shù)原理可得,從名男生和名女生中各選出名參加一個演唱小組,共有種不同的選法.故答案為:30.本題考查了分步計數(shù)原理,屬于基礎(chǔ)題.16、【解析】

根據(jù)概率和為列方程,解方程求得的值.【詳解】依題意,解得.故填本小題主要考查隨機變量分布列概率和為,考查方程的思想,屬于基礎(chǔ)題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)見解析【解析】

(1)由拋物線的定義知得值即可求解(2)設(shè)的方程為:,代入,消去得的二次方程,向量坐標化結(jié)合韋達定理得,則定點可求【詳解】(1)由拋物線的定義知,拋物線的方程為:(2)設(shè)的方程為:,代入有,設(shè),則,,的方程為:,恒過點,本題考查拋物線方程,直線與拋物線的位置關(guān)系,韋達定理的應用,向量運算,準確計算是關(guān)鍵,是中檔題18、(1)2,7;(2)1.【解析】

(1)由二項式系數(shù)和求得,然后再根據(jù)展開式中含項的系數(shù)為84求得.(2)由(1)先求出二項式中的有理項,結(jié)合題意可得展開式中的有理項,進而得到所求.【詳解】(1)由題意可知,解得.故二項式展開式的通項為,令得含項的系數(shù)為,由題意得,又,∴.(2)由(1)得展開式的通項為,∴展開式中的有理項分別為,,,∴的展開式中有理項的系數(shù)和為1.(1)本題考查二項展開式通項的應用,這也是解決二項式問題的重要思路.二項式定理的應用主要是對二項展開式正用、逆用,要充分利用二項展開式的特點和式子間的聯(lián)系.(2)解題時要把“二項式系數(shù)的和”與“各項系數(shù)和”,“奇(偶)數(shù)項系數(shù)和與奇(偶)次項系數(shù)和”嚴格地區(qū)別開來.19、【解析】【試題分析】先分別確定命題“方程表示雙曲線”中的的取值范圍和“命題點在圓的內(nèi)部”中的取值范圍,再依據(jù)建立不等式組求解:解:因為方程,表示雙曲線,故,所以或,因為點在圓的內(nèi)部,故,解得:,所以,由為假命題,也為假命題知假、真,所以的取值范圍為:.20、(1)本次考試復賽資格最低分數(shù)線應劃為100分;(2)5人,2人;(3)元.【解析】

(1)求獲得復賽資格應劃定的最低分數(shù)線,即是求考試成績中位數(shù),只需滿足中位數(shù)兩側(cè)的頻率之和均為0.5即可;(2)先確定得分在區(qū)間與的頻率之比,即可求解;(3)先確定的可能取值,再求出其對應的概率,即可求出分布列和期望.【詳解】(1)由題意知的頻率為:,的頻率為:所以分數(shù)在的頻率為:,從而分數(shù)在的,假設(shè)該最低分數(shù)線為由題意得解得.故本次考試復賽資格最低分數(shù)線應劃為100分。(2)在區(qū)間與,,在區(qū)間的參賽者中,利用分層抽樣的方法隨機抽取7人,分在區(qū)間與各抽取5人,2人,結(jié)果是5人,2人.(3)的可能取值為2,3,4,則:,從而Y的分布列為Y260023002000(元).本題主要考查頻率分布直方圖求中位數(shù),以及分層抽樣和超幾何分布等問題,熟記相關(guān)概念,即可求解,屬于常考題型.21、(1);(2)證明見解析.【解析】分析:(1)由橢圓的離心率為,以及點M在橢圓上,結(jié)合a,b,c關(guān)系列出方程組求解即可;(2)分過橢圓右焦點的直線斜率不存在和存在兩種情況,進行整理即可.詳解:(1);(2)因為右焦點,當直線的斜率不存在時其方程為,因此,設(shè),則,所以且,所以,,因此,直線和的斜率是成等差數(shù)列.當直線的斜率存在時其方程設(shè)為,由得,,所以,因此,,,,,所以,,又因為,所以有,因此,直線和的斜率是成等差數(shù)列,綜上可知直線和的斜率是成等差數(shù)列.點睛:本題考查直線和圓錐曲線的位置關(guān)系,考查數(shù)學轉(zhuǎn)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論