高一數(shù)學上下冊知識點總結(jié)_第1頁
高一數(shù)學上下冊知識點總結(jié)_第2頁
高一數(shù)學上下冊知識點總結(jié)_第3頁
高一數(shù)學上下冊知識點總結(jié)_第4頁
高一數(shù)學上下冊知識點總結(jié)_第5頁
已閱讀5頁,還剩25頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

高中高一數(shù)學上下冊知識點必修1各章知識點總結(jié)第一章集合與函數(shù)概念一、集合有關(guān)概念1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。2、集合的中元素的三個特性:1.元素的確定性;2.元素的互異性;3.元素的無序性說明:(1)對于一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。(2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。(3)集合中的元素是平等的,沒有先后順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。(4)集合元素的三個特性使集合本身具有了確定性和整體性。3、集合的表示:{…}如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}1.用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}2.集合的表示方法:列舉法與描述法。注意?。撼S脭?shù)集及其記法:

非負整數(shù)集(即自然數(shù)集)記作:N

正整數(shù)集N*或N+整數(shù)集Z有理數(shù)集Q實數(shù)集R

關(guān)于“屬于”的概念

集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A記作a∈A,相反,a不屬于集合A記作a?A

列舉法:把集合中的元素一一列舉出來,然后用一個大括號括上。

描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的方法。用確定的條件表示某些對象是否屬于這個集合的方法。

①語言描述法:例:{不是直角三角形的三角形}

②數(shù)學式子描述法:例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}

4、集合的分類:

1.有限集含有有限個元素的集合

2.無限集含有無限個元素的集合

3.空集不含任何元素的集合例:{x|x2=-5}

二、集合間的基本關(guān)系

1.“包含”關(guān)系—子集

注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA

2.“相等”關(guān)系(5≥5,且5≤5,則5=5)

實例:設A={x|x2-1=0}B={-1,1}“元素相同”

結(jié)論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B

①任何一個集合是它本身的子集。AíA

②真子集:如果AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)

③如果AíB,BíC,那么AíC

④如果AíB同時BíA那么A=B

3.不含任何元素的集合叫做空集,記為Φ

規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。三、集合的運算

1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.

記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}.

2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集。記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}.

3、交集與并集的性質(zhì):A∩A=A,A∩φ=φ,A∩B=B∩A,A∪A=A,

A∪φ=A,A∪B=B∪A.

4、全集與補集

(1)補集:設S是一個集合,A是S的一個子集(即),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)

(2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。通常用U來表示。

(3)性質(zhì):⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U二、函數(shù)的有關(guān)概念

1.函數(shù)的概念:設A、B是非空的數(shù)集,如果按照某個確定的對應關(guān)系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應,那么就稱f:A→B為從集合A到集合B的一個函數(shù).記作:y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對應的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域.

2如果只給出解析式y(tǒng)=f(x),而沒有指明它的定義域,則函數(shù)的定義域即是指能使這個式子有意義的實數(shù)的集合;3函數(shù)的定義域、值域要寫成集合或區(qū)間的形式.

定義域補充

能使函數(shù)式有意義的實數(shù)x的集合稱為函數(shù)的定義域,求函數(shù)的定義域時列不等式組的主要依據(jù)是:(1)分式的分母不等于零;(2)偶次方根的被開方數(shù)不小于零;(3)對數(shù)式的真數(shù)必須大于零;(4)指數(shù)、對數(shù)式的底必須大于零且不等于1.(5)如果函數(shù)是由一些基本函數(shù)通過四則運算結(jié)合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.(6)指數(shù)為零底不可以等于零(6)實際問題中的函數(shù)的定義域還要保證實際問題有意義.(又注意:求出不等式組的解集即為函數(shù)的定義域。)

構(gòu)成函數(shù)的三要素:定義域、對應關(guān)系和值域

再注意:(1)構(gòu)成函數(shù)三個要素是定義域、對應關(guān)系和值域.由于值域是由定義域和對應關(guān)系決定的,所以,如果兩個函數(shù)的定義域和對應關(guān)系完全一致,即稱這兩個函數(shù)相等(或為同一函數(shù))(2)兩個函數(shù)相等當且僅當它們的定義域和對應關(guān)系完全一致,而與表示自變量和函數(shù)值的字母無關(guān)。相同函數(shù)的判斷方法:①表達式相同;②定義域一致(兩點必須同時具備)

值域補充

(1)、函數(shù)的值域取決于定義域和對應法則,不論采取什么方法求函數(shù)的值域都應先考慮其定義域.(2).應熟悉掌握一次函數(shù)、二次函數(shù)、指數(shù)、對數(shù)函數(shù)及各三角函數(shù)的值域,它是求解復雜函數(shù)值域的基礎(chǔ)。

3.函數(shù)圖象知識歸納

(1)定義:在平面直角坐標系中,以函數(shù)y=f(x),(x∈A)中的x為橫坐標,函數(shù)值y為縱坐標的點P(x,y)的集合C,叫做函數(shù)y=f(x),(x∈A)的圖象.C上每一點的坐標(x,y)均滿足函數(shù)關(guān)系y=f(x),反過來,以滿足y=f(x)的每一組有序?qū)崝?shù)對x、y為坐標的點(x,y),均在C上.即記為C={P(x,y)|y=f(x),x∈A}圖象C一般的是一條光滑的連續(xù)曲線(或直線),也可能是由與任當是奇數(shù)時,正數(shù)的次方根是一個正數(shù),負數(shù)的次方根是一個負數(shù).此時,的次方根用符號表示.式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開方數(shù)(radicand).

當是偶數(shù)時,正數(shù)的次方根有兩個,這兩個數(shù)互為相反數(shù).此時,正數(shù)的正的次方根用符號表示,負的次方根用符號-表示.正的次方根與負的次方根可以合并成±(>0).由此可得:負數(shù)沒有偶次方根;0的任何次方根都是0,

2.分數(shù)指數(shù)冪

正數(shù)的分數(shù)指數(shù)冪的意義,規(guī)定:0的正分數(shù)指數(shù)冪等于0,0的負分數(shù)指數(shù)冪沒有意義

指出:規(guī)定了分數(shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪.

3.實數(shù)指數(shù)冪的運算性質(zhì)

(二)指數(shù)函數(shù)及其性質(zhì)

1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的定義域為R.注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負數(shù)、零和1.

2、指數(shù)函數(shù)的圖象和性質(zhì)

二、對數(shù)函數(shù)

(一)對數(shù)

1.對數(shù)的概念:一般地,如果,那么數(shù)叫做以為底的對數(shù),記作:(—底數(shù),—真數(shù),—對數(shù)式)說明:1注意底數(shù)的限制,3注意對數(shù)的書寫格式.

兩個重要對數(shù):

1常用對數(shù):以10為底的對數(shù);

2自然對數(shù):以無理數(shù)為底的對數(shù)的對數(shù).

對數(shù)式與指數(shù)式的互化

對數(shù)式指數(shù)式

對數(shù)底數(shù)←→冪底數(shù)

對數(shù)←→指數(shù)

真數(shù)←→冪

(二)對數(shù)的運算性質(zhì)

注意:換底公式

(二)對數(shù)函數(shù)

1、對數(shù)函數(shù)的概念:函數(shù),且叫做對數(shù)函數(shù),其中是自變量,函數(shù)的定義域是(0,+∞).

注意:1對數(shù)函數(shù)的定義與指數(shù)函數(shù)類似,都是形式定義,注意辨別。

如:,都不是對數(shù)函數(shù),而只能稱其為對數(shù)型函數(shù).

2對數(shù)函數(shù)對底數(shù)的限制:函數(shù)圖象都在y軸右側(cè)

函數(shù)的定義域為(0,+∞)

圖象關(guān)于原點和y軸不對稱

非奇非偶函數(shù)

向y軸正負方向無限延伸

函數(shù)的值域為R

函數(shù)圖象都過定點(1,0)

自左向右看,

圖象逐漸上升

自左向右看,

圖象逐漸下降

(三)冪函數(shù)

1、冪函數(shù)定義:一般地,形如的函數(shù)稱為冪函數(shù),其中為常數(shù).

2、冪函數(shù)性質(zhì)歸納.

(1)所有的冪函數(shù)在(0,+∞)都有定義,并且圖象都過點(1,1);

(2)時,冪函數(shù)的圖象通過原點,并且在區(qū)間上是增函數(shù).特別地,當時,冪函數(shù)的圖象下凸;當時,冪函數(shù)的圖象上凸;

(3)時,冪函數(shù)的圖象在區(qū)間上是減函數(shù).在第一象限內(nèi),當從右邊趨向原點時,圖象在軸右方無限地逼近軸正半軸,當趨于時,圖象在軸上方無限地逼近軸正半軸.

第三章函數(shù)的應用

一、方程的根與函數(shù)的零點

1、函數(shù)零點的概念:對于函數(shù),把使成立的實數(shù)叫做函數(shù)的零點。

2、函數(shù)零點的意義:函數(shù)的零點就是方程實數(shù)根,亦即函數(shù)的圖象與軸交點的橫坐標。即:方程有實數(shù)根函數(shù)的圖象與軸有交點函數(shù)有零點.

3、函數(shù)零點的求法:

求函數(shù)的零點:

1(代數(shù)法)求方程的實數(shù)根;

2(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點.

4、二次函數(shù)的零點:

二次函數(shù).

1)△>0,方程有兩不等實根,二次函數(shù)的圖象與軸有兩個交點,二次函數(shù)有兩個零點.

2)△=0,方程有兩相等實根(二重根),二次函數(shù)的圖象與軸有一個交點,二次函數(shù)有一個二重零點或二階零點.

3)△<0,方程無實根,二次函數(shù)的圖象與軸無交點,二次函數(shù)無零點高中數(shù)學必修二

第一章

立體幾何初步

特殊幾何體表面積公式(c為底面周長,h為高,'h為斜高,l為母線)第二章

直線與平面的位置關(guān)系

2.1空間點、直線、平面之間的位置關(guān)系

1

平面含義:平面是無限延展的

2

三個公理:

(1)公理1:如果一條直線上的兩點在一個平面內(nèi),那么這條直線在此平面內(nèi).

符號表示為⑤

計算中,通常把兩條異面直線所成的角轉(zhuǎn)化為兩條相交直線所成的角。

2.1.3

2.1.4

空間中直線與平面、平面與平面之間的位置關(guān)系

1、直線與平面有三種位置關(guān)系:

(1)直線在平面內(nèi)

——

有無數(shù)個公共點

第三章

直線與方程

(1)直線的傾斜角

定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°

(2)直線的斜率

①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即tank。斜率反映直線與軸的傾斜程度。

當直線l與x軸平行或重合時,

α=0°,

k

=

tan0°=0;

當直線l與x軸垂直時,

α=

90°,

k

不存在.第四章

圓與方程

1、圓的定義:平面內(nèi)到一定點的距離等于定長的點的集合叫圓,定點為圓心,定長為圓的半徑。

2、圓的方程(3)求圓方程的方法:

一般都采用待定系數(shù)法:先設后求。確定一個圓需要三個獨立條件,若利用圓的標準方程,

需求出a,b,r;若利用一般方程,需要求出D,E,F(xiàn);

另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過原點,以此來確定圓心的位置注意:已知圓上兩點,圓心必在中垂線上;已知兩圓相切,兩圓心與切點共線

圓的輔助線一般為連圓心與切線或者連圓心與弦中點高中數(shù)學必修3知識點算法初步1.1.1

算法的概念

算法的特點:

(1)有限性:一個算法的步驟序列是有限的,必須在有限操作之后停止,不能是無限的.

(2)確定性:算法中的每一步應該是確定的并且能有效地執(zhí)行且得到確定的結(jié)果,而不應當是模棱兩可.

(3)順序性與正確性:算法從初始步驟開始,分為若干明確的步驟,每一個步驟只能有一個確定的后繼步驟,前一步是后一步的前提,只有執(zhí)行完前一步才能進行下一步,并且每一步都準確無誤,才能完成問題.

(4)不唯一性:求解某一個問題的解法不一定是唯一的,對于一個問題可以有不同的算法.

(5)普遍性:很多具體問題,都可以設計合理的算法去解決,如心算、計算器計算都要經(jīng)過有限、事先設計好的步驟加以解決.

1.1.2

程序框圖

(一)程序構(gòu)圖概念:程序框圖又稱流程圖,是一種用規(guī)定圖形、流程線及文字說明來準確、直觀地表示算法的圖形。(二)構(gòu)成程序框的圖形符號及其作用

學習這部分知識的時候,要掌握各個圖形的形狀、作用及使用規(guī)則,畫程序框圖的規(guī)則如下:

1、使用標準的圖形符號。2、框圖一般按從上到下、從左到右的方向畫。3、除判斷框外,大多數(shù)流程圖符號只有一個進入點和一個退出點。判斷框具有超過一個退出點的唯一符號。4、判斷框分兩大類,一類判斷框“是”與“否”兩分支的判斷,而且有且僅有兩個結(jié)果;另一類是多分支判斷,有幾種不同的結(jié)果。5、在圖形符號內(nèi)描述的語言要非常簡練清楚。

(三)、算法的三種基本邏輯結(jié)構(gòu):順序結(jié)構(gòu)、條件結(jié)構(gòu)、循環(huán)結(jié)構(gòu)。1、順序結(jié)構(gòu):順序結(jié)構(gòu)是最簡單的算法結(jié)構(gòu),語句與語句之間,框與框之間是按從上到下的順序進行的,它是由若干個依次執(zhí)行的處理步驟組成的,它是任何一個算法都離不開的一種基本算法結(jié)構(gòu)。順序結(jié)構(gòu)在程序框圖中的體現(xiàn)就是用流程線將程序框自上而

下地連接起來,按順序執(zhí)行算法步驟2、條件結(jié)構(gòu):

條件結(jié)構(gòu)是指在算法中通過對條件的判斷

根據(jù)條件是否成立而選擇不同流向的算法結(jié)構(gòu)。

條件P是否成立而選擇執(zhí)行A框或B框。無論P條件是否成立,只能執(zhí)行A框或B框之一,不可能同時執(zhí)行A框和B框,也不可能A框、B框都不執(zhí)行。一個判斷結(jié)構(gòu)可以有多個判斷框。

3、循環(huán)結(jié)構(gòu):在一些算法中,經(jīng)常會出現(xiàn)從某處開始,按照一定條件,反復執(zhí)行某一處理步驟的情況,這就是循環(huán)結(jié)構(gòu),反復執(zhí)行的處理步驟為循環(huán)體,顯然,循環(huán)結(jié)構(gòu)中一定包含條件結(jié)構(gòu)。循環(huán)結(jié)構(gòu)可細分為兩類:

(1)、一類是當型循環(huán)結(jié)構(gòu),如下左圖所示,它的功能是當給定的條件P成立時,執(zhí)行A框,A框執(zhí)行完畢后,再判斷條件P是否成立,如果仍然成立,再執(zhí)行A框,如此反復執(zhí)行A框,直到某一次條件P不成立為止,此時不再執(zhí)行A框,離開循環(huán)結(jié)構(gòu)。(2)、另一類是直到型循環(huán)結(jié)構(gòu),如下右圖所示,它的功能是先執(zhí)行,然后判斷給定的條件P是否成立,如果P仍然不成立,則繼續(xù)執(zhí)行A框,直到某一次給定的條件P成立為止,此時不再執(zhí)行A框,離開循環(huán)結(jié)構(gòu)注意:1循環(huán)結(jié)構(gòu)要在某個條件下終止循環(huán),這就需要條件結(jié)構(gòu)來判斷。因此,循環(huán)結(jié)構(gòu)中一定包含條件結(jié)構(gòu),但不允許“死循環(huán)”。2在循環(huán)結(jié)構(gòu)中都有一個計數(shù)變量和累加變量。計數(shù)變量用于記錄循環(huán)次數(shù),累加變量用于輸出結(jié)果。計數(shù)變量和累加變量一般是同步執(zhí)行的,累加一次,計數(shù)一次。1.2.1

輸入、輸出語句和賦值語句

3、賦值語句

(1)賦值語句的一般格式

(2)賦值語句的作用是將表達式所代表的值賦給變量;(3)賦值語句中的“=”稱作賦值號,與數(shù)學中的等號的意義是不同的。賦值號的左右兩邊不能對換,它將賦值號右邊的表達式的值賦給賦值號左邊的變量;(4)賦值語句左邊只能是變量名字,而不是表達式,右邊表達式可以是一個數(shù)據(jù)、常量或算式;(5)對于一個變量可以多次賦值。

注意:①賦值號左邊只能是變量名字,而不能是表達式。如:2=X是錯誤的。②賦值號左右不能對換。如“A=B”“B=A”的含義運行結(jié)果是不同的。③不能利用賦值語句進行代數(shù)式的演算。(如化簡、因式分解、解方程等)④賦值號“=”與數(shù)學中的等號意義不同。

分析:在IF—THEN—ELSE語句中,“條件”表示判斷的條件,“語句1”表示滿足條件時執(zhí)行的操作內(nèi)容;“語句2”表示不滿足條件時執(zhí)行的操作內(nèi)容;END

IF表示條件語句的結(jié)束。計算機在執(zhí)行時,首先對IF后的條件進行判斷,如果條件符合,則執(zhí)行THEN后面的語句1;若條件不符合,則執(zhí)行ELSE后面的語句21.3.1輾轉(zhuǎn)相除法與更相減損術(shù)

1、輾轉(zhuǎn)相除法。也叫歐幾里德算法,用輾轉(zhuǎn)相除法求最大公約數(shù)的步驟如下:

(1):用較大的數(shù)m除以較小的數(shù)n得到一個商0S和一個余數(shù)0R;(2):若0R=0,則n為m,n的最大公約數(shù);若0R≠0,則用除數(shù)n除以余數(shù)0R得到一個商1S和一個余數(shù)1R;(3):若1R=0,則1R為m,n的最大公約數(shù);若1R≠0,則用除數(shù)0R除以余數(shù)1R得到一個商2S和一個余數(shù)2R;??

依次計算直至nR=0,此時所得到的1nR即為所求的最大公約數(shù)。

2、更相減損術(shù)

我國早期也有求最大公約數(shù)問題的算法,就是更相減損術(shù)。在《九章算術(shù)》中有更相減損術(shù)求最大公約數(shù)的步驟:可半者半之,不可半者,副置分母?子之數(shù),以少減多,更相減損,求其等也,以等數(shù)約之。翻譯為:(1):任意給出兩個正數(shù);判斷它們是否都是偶數(shù)。若是,用2約簡;若不是,執(zhí)行第二步。(2):以較大的數(shù)減去較小的數(shù),接著把較小的數(shù)與所得的差比較,并以大數(shù)減小數(shù)。繼續(xù)這個操作,直到所得的數(shù)相等為止,則這個數(shù)(等數(shù))就是所求的最大公約數(shù)。3、輾轉(zhuǎn)相除法與更相減損術(shù)的區(qū)別:

(1)都是求最大公約數(shù)的方法,計算上輾轉(zhuǎn)相除法以除法為主,更相減損術(shù)以減法為主,計算次數(shù)上輾轉(zhuǎn)相除法計算次數(shù)相對較少,特別當兩個數(shù)字大小區(qū)別較大時計算次數(shù)的區(qū)別較明顯。

(2)從結(jié)果體現(xiàn)形式來看,輾轉(zhuǎn)相除法體現(xiàn)結(jié)果是以相除余數(shù)為0則得到,而更相減損術(shù)則以減數(shù)與差相等而得到

1.3.2秦九韶算法與排序

1、秦九韶算法概念:

f(x)=anxn+an-1xn-1+….+a1x+a0求值問題

f(x)=anxn+an-1xn-1+….+a1x+a0=(

anxn-1+an-1xn-2+….+a1)x+a0

=((

anxn-2+an-1xn-3+….+a2)x+a1)x+a0

=......=(...(

anx+an-1)x+an-2)x+...+a1)x+a0求多項式的值時,首先計算最內(nèi)層括號內(nèi)依次多項式的值,即v1=anx+an-1

然后由內(nèi)向外逐層計算一次多項式的值,即

v2=v1x+an-2

v3=v2x+an-3

......

vn=vn-1x+a0

這樣,把n次多項式的求值問題轉(zhuǎn)化成求n個一次多項式的值的問題。

第二章

統(tǒng)計

2.1.1簡單隨機抽樣

1.總體和樣本

在統(tǒng)計學中

,

把研究對象的全體叫做總體.把每個研究對象叫做個體.把總體中個體的總數(shù)叫做總體容量.

為了研究總體的有關(guān)性質(zhì),一般從總體中隨機抽取一部分研究,我們稱它為樣本.其中個體的個數(shù)稱為樣本容量.

2.簡單隨機抽樣,也叫純隨機抽樣。就是從總體中不加任何分組、劃類、排隊等,完全隨

機地抽取調(diào)查單位。特點是:每個樣本單位被抽中的可能性相同(概率相等),樣本的每個單位完全獨立,彼此間無一定的關(guān)聯(lián)性和排斥性。簡單隨機抽樣是其它各種抽樣形式的基礎(chǔ)。通常只是在總體單位之間差異程度較小和數(shù)目較少時,才采用這種方法。

3.簡單隨機抽樣常用的方法:

(1)抽簽法;⑵隨機數(shù)表法;⑶計算機模擬法;⑷使用統(tǒng)計軟件直接抽取。

在簡單隨機抽樣的樣本容量設計中,主要考慮:①總體變異情況;②允許誤差范圍;③概率保證程度4.抽簽法:

(1)給調(diào)查對象群體中的每一個對象編號;

(2)準備抽簽的工具,實施抽簽

(3)對樣本中的每一個個體進行測量或調(diào)查

5.隨機數(shù)表法:例:利用隨機數(shù)表在所在的班級中抽取10位同學參加某項活動。

2.1.2系統(tǒng)抽樣

1.系統(tǒng)抽樣(等距抽樣或機械抽樣):

把總體的單位進行排序,再計算出抽樣距離,然后按照這一固定的抽樣距離抽取樣本。第一個樣本采用簡單隨機抽樣的辦法抽取。

K(抽樣距離)=N(總體規(guī)模)/n(樣本規(guī)模)

前提條件:總體中個體的排列對于研究的變量來說,應是隨機的,即不存在某種與研究變量相關(guān)的規(guī)則分布。可以在調(diào)查允許的條件下,從不同的樣本開始抽樣,對比幾次樣本的特點。如果有明顯差別,說明樣本在總體中的分布承某種循環(huán)性規(guī)律,且這種循環(huán)和抽樣距離重合。

2.系統(tǒng)抽樣,即等距抽樣是實際中最為常用的抽樣方法之一。因為它對抽樣框的要求較低,實施也比較簡單。更為重要的是,如果有某種與調(diào)查指標相關(guān)的輔助變量可供使用,總體單元按輔助變量的大小順序排隊的話,使用系統(tǒng)抽樣可以大大提高估計精度。

2.1.3分層抽樣

1.分層抽樣(類型抽樣):

先將總體中的所有單位按照某種特征或標志(性別、年齡等)劃分成若干類型或?qū)哟?,然后再在各個類型或?qū)哟沃胁捎煤唵坞S機抽樣或系用抽樣的辦法抽取一個子樣本,最后,將這些子樣本合起來構(gòu)成總體的樣本。

兩種方法:

(1).先以分層變量將總體劃分為若干層,再按照各層在總體中的比例從各層中抽取。

(2).先以分層變量將總體劃分為若干層,再將各層的元素按分層的順序整齊排列,最后用系統(tǒng)抽樣的方法抽取樣本。

2.分層抽樣是把異質(zhì)性較強的總體分成一個個同質(zhì)性較強的子總體,再抽取不同的子總體中的樣本分別代表該子總體,所有的樣本進而代表總體。分層標準:(1)以調(diào)查所要分析和研究的主要變量或相關(guān)的變量作為分層的標準。

(2)以保證各層內(nèi)部同質(zhì)性強、各層之間異質(zhì)性強、突出總體內(nèi)在結(jié)構(gòu)的變量作為分層變量。

(3)以那些有明顯分層區(qū)分的變量作為分層變量。

3.分層的比例問題:

(1)按比例分層抽樣:根據(jù)各種類型或?qū)哟沃械膯挝粩?shù)目占總體單位數(shù)目的比重來抽取子樣本的方法。

(2)不按比例分層抽樣:有的層次在總體中的比重太小,其樣本量就會非常少,此時采用該方法,主要是便于對不同層次的子總體進行專門研究或進行相互比較。如果要用樣本資料推斷總體時,則需要先對各層的數(shù)據(jù)資料進行加權(quán)處理,調(diào)整樣本中各層的比例,使數(shù)據(jù)恢復到總體中各層實際的比例結(jié)構(gòu)。

2.2.2用樣本的數(shù)字特征估計總體的數(shù)字特征.3用樣本估計總體時,如果抽樣的方法比較合理,那么樣本可以反映總體的信息,但從樣本得到的信息會有偏差。在隨機抽樣中,這種偏差是不可避免的。

雖然我們用樣本數(shù)據(jù)得到的分布、均值和標準差并不是總體的真正的分布、均值和標準差,而只是一個估計,但這種估計是合理的,特別是當樣本量很大時,它們確實反映了總體的信息。

4.(1)如果把一組數(shù)據(jù)中的每一個數(shù)據(jù)都加上或減去同一個共同的常數(shù),標準差不變

(2)如果把一組數(shù)據(jù)中的每一個數(shù)據(jù)乘以一個共同的常數(shù)k,標準差變?yōu)樵瓉淼膋倍

(3)一組數(shù)據(jù)中的最大值和最小值對標準差的影響,區(qū)間)1、概念:

(1)回歸直線方程

(2)回歸系數(shù)

2.回歸直線方程的應用

(1)描述兩變量之間的依存關(guān)系;利用直線回歸方程即可定量描述兩個變量間依存的數(shù)量關(guān)系

(2)利用回歸方程進行預測;把預報因子(即自變量x)代入回歸方程對預報量(即因變量Y)進行估計,即可得到個體Y值的容許區(qū)間。

(3)利用回歸方程進行統(tǒng)計控制規(guī)定Y值的變化,通過控制x的范圍來實現(xiàn)統(tǒng)計控制的目標。如已經(jīng)得到了空氣中NO2的濃度和汽車流量間的回歸方程,即可通過控制汽車流量來控制空氣中NO2的濃度。

4.應用直線回歸的注意事項

(1)做回歸分析要有實際意義;

(2)回歸分析前,最好先作出散點圖;

(3)回歸直線不要外延。第三章

3.1.1

—3.1.2隨機事件的概率及概率的意義

1、基本概念:

(1)必然事件:在條件S下,一定會發(fā)生的事件,叫相對于條件S的必然事件;

(2)不可能事件:在條件S下,一定不會發(fā)生的事件,叫相對于條件S的不可能事件;

(3)確定事件:必然事件和不可能事件統(tǒng)稱為相對于條件S的確定事件;

(4)隨機事件:在條件S下可能發(fā)生也可能不發(fā)生的事件,叫相對于條件S的隨機事件;

(5)頻數(shù)與頻率:在相同的條件S下重復n次試驗,觀察某一事件A是否出現(xiàn),稱n次試驗中事件A出現(xiàn)的次數(shù)nA為事件A出現(xiàn)的頻數(shù);稱事件A出現(xiàn)的比例fn(A)=nnA為事件A出現(xiàn)的概率:對于給定的隨機事件A,如果隨著試驗次數(shù)的增加,事件A發(fā)生的頻率fn(A)穩(wěn)定在某個常數(shù)上,把這個常數(shù)記作P(A),稱為事件A的概率。

(6)頻率與概率的區(qū)別與聯(lián)系:隨機事件的頻率,指此事件發(fā)生的次數(shù)nA與試驗總次數(shù)n的比值nnA,它具有一定的穩(wěn)定性,總在某個常數(shù)附近擺動,且隨著試驗次數(shù)的不斷增多,這種擺動幅度越來越小。我們把這個常數(shù)叫做隨機事件的概率,概率從數(shù)量上反映了隨機事件發(fā)生的可能性的大小。頻率在大量重復試驗的前提下可以近似地作為這個事件的概率3.1.3

概率的基本性質(zhì)

1、基本概念:(1)事件的包含、并事件、交事件、相等事件

(2)若A∩B為不可能事件,即A∩B=ф,那么稱事件A與事件B互斥;

(3)若A∩B為不可能事件,A∪B為必然事件,那么稱事件A與事件B互為對立事件;

(4)當事件A與B互斥時,滿足加法公式:P(A∪B)=

P(A)+

P(B);若事件A與B為對立事件,則A∪B為必然事件,所以P(A∪B)=

P(A)+

P(B)=1,于是有P(A)=1—P(B)

2、概率的基本性質(zhì):

1)必然事件概率為1,不可能事件概率為0,因此0≤P(A)≤1;

2)當事件A與B互斥時,滿足加法公式:P(A∪B)=

P(A)+

P(B);

3)若事件A與B為對立事件,則A∪B為必然事件,所以P(A∪B)=

P(A)+

P(B)=1,于是有P(A)=1—P(B);

4)互斥事件與對立事件的區(qū)別與聯(lián)系,互斥事件是指事件A與事件B在一次試驗中不會同時發(fā)生,其具體包括三種不同的情形:(1)事件A發(fā)生且事件B不發(fā)生;(2)事件A不發(fā)生且事件B發(fā)生;(3)事件A與事件B同時不發(fā)生,而對立事件是指事件A

與事件B有且僅有一個發(fā)生,其包括兩種情形;(1)事件A發(fā)生B不發(fā)生;(2)事件B發(fā)生事件A不發(fā)生,對立事件互斥事件的特殊情形。

3.2.1

—3.2.2古典概型及隨機數(shù)的產(chǎn)生

1、(1)古典概型的使用條件:試驗結(jié)果的有限性和所有結(jié)果的等可能性。

(2)古典概型的解題步驟;

①求出總的基本事件數(shù);②求出事件A所包含的基本事件數(shù),然后利用公式P(A)=3.3.1—3.3.2幾何概型及均勻隨機數(shù)的產(chǎn)生

1、基本概念:

(1)幾何概率模型:如果每個事件發(fā)生的概率只與構(gòu)成該事件區(qū)域的長度(面積或體積)成比例,則稱這樣的概率模型為幾何概率模型;

(2)幾何概型的概率公式:

P(A)=(3)幾何概型的特點:1)試驗中所有可能出現(xiàn)的結(jié)果(基本事件)有無限多個;2)每個基本事件出現(xiàn)的可能性相等高中數(shù)學必修4知識點高中數(shù)學必修5知識點1、正弦定理:在中,、、分別為角、、的對邊,為的外接圓的半徑,則有.2、正弦定理的變形公式:=1\*GB3①,,;=2\*GB3②,,;=3\*GB3③;=4\*GB3④.3、三角形面積公式:.4、余弦定理:在中,有,,.5、余弦定理的推論:,,.6、設、、是的角、、的對邊,則:=1\*GB3①若,則;=2\*GB3②若,則;=3\*GB3③若,則.7、數(shù)列:按照一定順序排列著的一列數(shù).8、數(shù)列的項:數(shù)列中的每一個數(shù).9、有窮數(shù)列:項數(shù)有限的數(shù)列.10、無窮數(shù)列:項數(shù)無限的數(shù)列.11、遞增數(shù)列:從第2項起,每一項都不小于它的前一項的數(shù)列.12、遞減數(shù)列:從第2項起,每一項都不大于它的前一項的數(shù)列.13、常數(shù)列:各項相等的數(shù)列.14、擺動數(shù)列:從第2項起,有些項大于它的前一項,有些項小于它的前一項的數(shù)列.15、數(shù)列的通項公式:表示數(shù)列的第項與序號之間的關(guān)系的公式.16、數(shù)列的遞推公式:表示任一項與它的前一項(或前幾項)間的關(guān)系的公式.17、如果一個數(shù)列從第2項起,每一項與它的前一項的差等于同一個常數(shù),則這個數(shù)列稱為等差數(shù)列,這個常數(shù)稱為等差數(shù)列的公差.18、由三個數(shù),,組成的等差數(shù)列可以看成最簡單的等差數(shù)列,則稱為與的等差中項.若,則稱為與的等差中項.19、若等差數(shù)列的首項是,公差是,則.20、通項公式的變形:=1\*GB3①;=2\*GB3②;=3\*GB3③;=4\*GB3④;=5\*GB3⑤.21、若是等差數(shù)列,且(、、、),則;若是等差數(shù)列,且(、、),則.22、等差數(shù)列的前項和的公式:=1\*GB3①;=2\*GB3②.23、等

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論