上海市浦東新區(qū)2022-2023學年高一下學期期末數(shù)學試題_第1頁
上海市浦東新區(qū)2022-2023學年高一下學期期末數(shù)學試題_第2頁
上海市浦東新區(qū)2022-2023學年高一下學期期末數(shù)學試題_第3頁
上海市浦東新區(qū)2022-2023學年高一下學期期末數(shù)學試題_第4頁
上海市浦東新區(qū)2022-2023學年高一下學期期末數(shù)學試題_第5頁
已閱讀5頁,還剩5頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

上海市浦東新區(qū)2022-2023學年高一下學期期末數(shù)學試題一、填空題1.角2023°是第象限角.2.平面上兩點A(2,1),B(?3,3.已知復數(shù)z=1i,i是虛數(shù)單位,則z的虛部為4.已知sinα=45,且α∈(π25.若1?i是實系數(shù)一元二次方程x2+px+q=0的一個根,則p?q=6.已知向量a=(1,2),b=(2,?2)7.化簡sin(2π?x)tan8.設(shè)向量a、b滿足|a|=2,|b|=39.若θ為銳角,則logsin10.中國傳統(tǒng)扇文化有著極其深厚的底蘊.一般情況下,折扇可看作是從一個圓面中剪下的扇形制作而成,設(shè)扇形的面積為S1,圓面中剩余部分的面積為S2,當S1與S211.已知a=(1,2),b=(1,1),且a與12.在平面直角坐標系中,A(0,0),B(1,2)兩點繞定點P按順時針方向旋轉(zhuǎn)二、單選題13.“θ=2kπ+π4,k∈Z”是“A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件14.下列命題中正確的是()A.終邊重合的兩個角相等 B.銳角是第一象限的角C.第二象限的角是鈍角 D.小于90°的角都是銳角15.下列說法正確的是()A.若|a|=|b|,則B.若|a|=|b|,且aC.平面上所有單位向量,其終點在同一個圓上;D.若a//b,則a與16.已知i為虛數(shù)單位,下列說法中錯誤的是()A.復數(shù)z1對應的向量為OZ1,復數(shù)z2對應的向量為OB.互為共軛復數(shù)的兩個復數(shù)的模相等,且|C.復數(shù)的模實質(zhì)上就是復平面內(nèi)復數(shù)對應的點到原點的距離,也就是復數(shù)對應的向量的模D.若復數(shù)z滿足|z?i|=5,則復數(shù)z對應的點在以(1,0)三、解答題17.已知sinθ=45,cosφ=?18.已知|a|=4,|b|=8,a與(1)求|a(2)當k為何值時,(a19.某實驗室一天的溫度(單位:℃)隨時間t(單位:h)的變化近似滿足函數(shù)關(guān)系:f(t)=10?3cosπ(1)求實驗室這一天的最大溫差;(2)若要求實驗室溫度不高于11°C,則在哪段時間實驗室需要降溫?20.已知△ABC的周長為4(2+1),且(1)求邊長a的值;(2)若S△ABC=3sin21.已知a=(2cosx(1)求函數(shù)y=f(x)的最小正周期;(2)求函數(shù)y=f(x)的單調(diào)減區(qū)間;(3)若函數(shù)y=f(x+φ)(其中φ∈[0,π])是R上的偶函數(shù),求

答案解析部分1.【答案】三【知識點】象限角、軸線角【解析】【解答】∵2023°=5×360°+223°,又223°在第三象限,∴2023°在第三象限.

故答案為:三

【分析】由2023°=5×360°+223°即可判斷.2.【答案】26【知識點】向量的模;平面向量的坐標運算【解析】【解答】由題意得AB→=?5,1,∴AB→=3.【答案】-1【知識點】虛數(shù)單位i及其性質(zhì);復數(shù)代數(shù)形式的乘除運算【解析】【解答】由題意得z=1i=?ii?i=?i,∴z的虛部為?1.4.【答案】24【知識點】二倍角的正切公式;同角三角函數(shù)間的基本關(guān)系【解析】【解答】又題意得cosα=?35,∴tanα=sinαcosα=?435.【答案】-4【知識點】一元二次方程的解集及其根與系數(shù)的關(guān)系【解析】【解答】由題意得1+i也是實系數(shù)一元二次方程x2+px+q=0的一個根,

∴?p=1+i+1?i=2,q=1+i·1?i=2,

∴p=?2,q=2,6.【答案】arccos【知識點】向量的模;數(shù)量積表示兩個向量的夾角【解析】【解答】由題意得a→·b→=1,2·2,?2=2?4=?2,a→=1+22=7.【答案】1【知識點】同角三角函數(shù)間的基本關(guān)系;誘導公式【解析】【解答】sin(2π?x)tan(π+x)cot(?π?x)8.【答案】6【知識點】向量的模;平面向量的數(shù)量積運算【解析】【解答】由題意得a→·b→=a→·b9.【答案】-2【知識點】對數(shù)的性質(zhì)與運算法則;同角三角函數(shù)間的基本關(guān)系【解析】【解答】∵1+cot2θ=1+cos2θsin2θ=10.【答案】(3?【知識點】扇形的弧長與面積【解析】【解答】設(shè)扇形的圓心角為θ,圓的半徑為r,則S1=12θr2,S2=πr2?111.【答案】(?【知識點】平面向量共線(平行)的坐標表示;數(shù)量積表示兩個向量的夾角【解析】【解答】因為a=(1,2),b因為a與a+λb的夾角為銳角,所以a?(a+λ所以1+λ+2(2+λ)>0且2(1+λ)≠2+λ,解得λ>?53且λ≠0,所以λ的取值范圍為故答案為:(?5

【分析】利用已知條件結(jié)合向量的坐標運算和數(shù)量積求向量夾角公式,再結(jié)合向量共線的坐標表示,進而得出實數(shù)λ的取值范圍。12.【答案】?【知識點】直線的點斜式方程;兩條直線的交點坐標;余弦定理【解析】【解答】由題意的定點P在AA'和BB'的中垂線交點上,畫出如下圖:

∵AA'中點坐標為2,2,直線AA'斜率為1,∴AA'中垂線方程為y?2=?1x?2,即x+y?4=0,

同理可得BB'中垂線方程為x=3,

聯(lián)立x+y?4=0x=3,解得定點P3,1,

又BP=B'P=1?32+2?12=5,BB'=4,∴cos13.【答案】A【知識點】正切函數(shù)的周期性【解析】【解答】充分性:θ=2kπ+π4,k∈Z,則tanθ=1,充分性成立,

必要性:若tanθ=1,則θ=kπ+π4,k∈Z,14.【答案】B【知識點】象限角、軸線角;終邊相同的角【解析】【解答】A、與α終邊相同角可以表示為β=α+2kπk∈Z,∴β與α不一定相等,A錯誤;

B、銳角是取值范圍為0,π2的角,是第一象限的角,B正確;

C、第二象限角取值范圍為2kπ+π2,2kπ+πk∈Z,銳角是取值范圍為π215.【答案】B【知識點】向量的模;零向量;單位向量;共線(平行)向量;相等向量與相反向量【解析】【解答】A、若|a|=|b|,只能得到a與b的長度相等,A錯誤;

B、若|a|=|b|,且a與b的方向相同,∴a=b,B正確;

C、只有平面上所有單位向量的起點移到同一點時,其終點在同一個圓上,C錯誤;

D、當a16.【答案】D【知識點】復數(shù)在復平面中的表示;復數(shù)代數(shù)形式的加減運算;復數(shù)的?!窘馕觥俊窘獯稹緼、∵|z1+z2|=|z1?z2|,∴|OZ1→+OZ2→|=|OZ1→?OZ2→|,

∴OZ1→2+2OZ1→·17.【答案】解:因為sinθ=45且θ∈(因為cosφ=?513且?∈(所以sin(θ?φ)=【知識點】兩角和與差的正弦公式;同角三角函數(shù)間的基本關(guān)系【解析】【分析】先根據(jù)θ∈(π2,π),φ∈(π18.【答案】(1)解:∵a∴|a+(2)解:由(a+2b解得:k=?7.【知識點】向量的模;平面向量的數(shù)量積運算;利用數(shù)量積判斷平面向量的垂直關(guān)系【解析】【分析】(1)根據(jù)向量模長計算公式直接求解;

(2)向量垂直其數(shù)量積為0,代入計算即可.19.【答案】(1)解:因為f(又0≤t<24,所以π3≤π當t=2時,sin(π12t+π3于是f(t)故實驗室這一天最高溫度為12°C,最低溫度為8°C,最大溫差為4°C(2)解:依題意,當f(由(1)得f(所以10?2sin(π12又0≤t<24,因此7π6<π故在10時至18時實驗室需要降溫.【知識點】兩角和與差的正弦公式;函數(shù)y=Asin(ωx+φ)的圖象與性質(zhì)【解析】【分析】(1)先化簡f(t)得f(t)=10?2sin(π12t+20.【答案】(1)解:因為sinB+sinC=又△ABC的周長為4(2+1),則將b+c=2a代入上式a+2所以邊長a=4.(2)解:∵S△ABC=3sinA又(1)知b+c=2∴cos因此所求角A的大小是arccos1【知識點】正弦定理的應用;余弦定理的應用【解析】【分析】(1)利用正弦定理將角化邊得到b+c=2a,結(jié)合△ABC周長a+b+c=4(2+1),求出邊長a的值;

(2)利用△ABC面積公式求得bc=6,結(jié)合(1)和角21.【答案】(1)解:因為a=(2所以f=2==sin故y=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論