




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學年北京南尚樂中學高三數(shù)學理測試題含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1.對于函數(shù),下列結(jié)論正確的一個是A.有極小值,且極小值點
B.有極大值,且極大值點
C.有極小值,且極小值點
D.有極大值,且極大值點
參考答案:C略2.已知Sn是等差數(shù)列{an}的前n項和,若a7=9a3,則=()A.9 B.5 C. D.參考答案:A【考點】等差數(shù)列的性質(zhì).【專題】計算題;轉(zhuǎn)化思想;綜合法;等差數(shù)列與等比數(shù)列.【分析】利用等差數(shù)列的通項及求和公式,即可得出結(jié)論.【解答】解:∵等差數(shù)列{an},a7=9a3,∴a1+6d=9(a1+2d),∴a1=﹣d,∴==9,故選:A.【點評】本題考查等差數(shù)列的通項及求和公式,考查學生的計算能力,屬于中檔題.3.函數(shù)的圖象可能是(
)A.
B.
C.
D.參考答案:D令,因為,所以為奇函數(shù),排除選項;因為時,,所以排除選項,選D.
4.已知拋物線上一點M(1,m)到其焦點的距離為5,則拋物線的準線方程為(
)A.
x=8
B.
x=-8
C.
x=4
D.x=-4
參考答案:D略5.已知,則(
)A.
B.
C.
D.參考答案:D6.在邊長為2的正方形ABCD中,E,F分別為BC和
DC的中點,則(
)
A.
B.
C.
D.參考答案:C試題分析:將所求利用正方形的邊對應(yīng)的向量表示,然后利用正方形的性質(zhì)解答.邊長為2的正方形ABCD中,E,F(xiàn)分別為BC和DC的中點,所以故選:C考點:平面向量數(shù)量積運算7.某班的全體學生參加消防安全知識競賽,成績的頻率分布直方圖如圖,數(shù)據(jù)的分組依次為:[20,40),[40,60),[60,80),[80,100].若低于60分的人數(shù)是15,則該班的學生人數(shù)是A.45
B.50
C.55
D.60參考答案:B8.已知函數(shù)的導函數(shù)為,且滿足關(guān)系式,則的值等于(
)A.2
B.
C.
D.參考答案:D9.若X=-2是函數(shù)的極值點,則的極小值為(
)A.-1
B.-2e-3
C.5e-3
D.1參考答案:A,則,則,,令,得或,當或時,,當時,,則極小值為.10.執(zhí)行如圖所示的程序框圖,若輸出的S=88,則判斷框內(nèi)應(yīng)填入的條件是()A.k>7 B.k>6 C.k>5 D.k>4參考答案:C【考點】程序框圖.【專題】算法和程序框圖.【分析】分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是累加并輸入S的值,條件框內(nèi)的語句是決定是否結(jié)束循環(huán),模擬執(zhí)行程序即可得到答案.【解答】解:程序在運行過程中各變量值變化如下表:
K
S
是否繼續(xù)循環(huán)循環(huán)前1
0第一圈2
2
是第二圈3
7
是第三圈4
18
是第四圈5
41
是第五圈6
88
否故退出循環(huán)的條件應(yīng)為k>5?故答案選C.【點評】算法是新課程中的新增加的內(nèi)容,也必然是新高考中的一個熱點,應(yīng)高度重視.程序填空也是重要的考試題型,這種題考試的重點有:①分支的條件②循環(huán)的條件③變量的賦值④變量的輸出.其中前兩點考試的概率更大.此種題型的易忽略點是:不能準確理解流程圖的含義而導致錯誤.二、填空題:本大題共7小題,每小題4分,共28分11.函數(shù)的圖像在點處的切線方程為▲.
參考答案:【知識點】利用導數(shù)研究曲線上某點切線方程.B113x-y-2=0
解析:;故f′(1)=2+1=3;故函數(shù)的圖象在點A(1,1)處的切線方程為:y﹣1=3(x﹣1);即3x﹣y﹣2=0;故答案為:3x﹣y﹣2=0.【思路點撥】由題意求導,從而可知切線的斜率,從而寫出切線方程.12.如圖,在四邊形ABCD中,=λ(λ∈R),||=||=2,|-|=2,且△BCD是以BC為斜邊的直角三角形,則·的值為_____.參考答案:-413.數(shù)列中,,,則
.參考答案:2由已知條件得14.已知是定義在上的奇函數(shù),則的值域為
.參考答案:15.在三棱柱ABC﹣A1B1C1中側(cè)棱垂直于底面,∠ACB=90°,∠BAC=30°,BC=1,且三棱柱ABC﹣A1B1C1的體積為3,則三棱柱ABC﹣A1B1C1的外接球的表面積為
.參考答案:16π【考點】球的體積和表面積.【分析】根據(jù)棱柱的體積公式求得棱柱的側(cè)棱長,再利用三棱柱的底面是直角三角形可得外接球的球心為上、下底面直角三角形斜邊中點連線的中點O,從而求得外接球的半徑R,代入球的表面積公式計算.【解答】解:∵三棱柱ABC﹣A1B1C1中側(cè)棱垂直于底面,設(shè)側(cè)棱長為H,又三棱柱的底面為直角三角形,BC=1,∠BAC=30°,∴AC=,AB=2,∴三棱柱的體積V=××H=3,∴H=2,△ABC的外接圓半徑為AB=1,三棱柱的外接球的球心為上、下底面直角三角形斜邊中點連線的中點O,如圖:∴外接球的半徑R==2,∴外接球的表面積S=4π×22=16π.故答案為:16π.16.求值:=.參考答案:1【考點】兩角和與差的正切函數(shù).【專題】三角函數(shù)的求值.【分析】由條件利用兩角和的正切公式求得要求式子的值.【解答】解:===1,故答案為:1.【點評】本題主要考查兩角和的正切公式的應(yīng)用,屬于基礎(chǔ)題.17.已知變量x,y滿足約束條件,則目標函數(shù)z=3x﹣y+3的最大值是
.參考答案:9【考點】簡單線性規(guī)劃.【專題】計算題;數(shù)形結(jié)合法;不等式的解法及應(yīng)用.【分析】先根據(jù)約束條件畫出可行域,再求出可行域中各角點的坐標,將各點坐標代入目標函數(shù)的解析式,分析后易得目標函數(shù)z=x+y+1的最大值【解答】解:不等式組表示的平面區(qū)域如圖所示,三個頂點坐標為A(0,1),B(2,0),C(0.5,3).由z的幾何意義可知,當z過B時最大,所以zmax=3×2﹣0+3=9;故答案為:9.【點評】本題考查了簡單線性規(guī)劃問題,首先正確畫出平面區(qū)域,然后根據(jù)目標函數(shù)的幾何意義求最值.也可以利用“角點法”解之.三、解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說明,證明過程或演算步驟18.設(shè).(1)求的解集;(2)若不等式對任意實數(shù)恒成立,求實數(shù)的取值范圍.參考答案:(1);(2)
試題解析:(1)由得:或或,
考點:解絕對值不等式,絕對值的性質(zhì),不等式恒成立.19.(本小題滿分10分)已知等比數(shù)列前項和為,且滿足,(Ⅰ)求數(shù)列的通項公式;(Ⅱ)求的值。參考答案:(1)法一:解得得,,通項公式為……5分法二:,通項公式為…5分(2)
……6分
則
………12分20.已知橢圓C:的離心率,左、右焦點分別為F1,F(xiàn)2,拋物線的焦點F恰好是該橢圓的一個頂點.(1)求橢圓C的方程;(2)已知圓M:的切線與橢圓相交于A、B兩點,那么以AB為直徑的圓是否經(jīng)過定點?如果是,求出定點的坐標;如果不是,請說明理由,參考答案:(1);(2)見解析【分析】(1)根據(jù)拋物線的方程確定橢圓的頂點,結(jié)合離心率可得a、b的值,進而求得橢圓的方程;(2)首先利用特殊情況確定點的坐標,然后根據(jù)直線和圓、橢圓的位置關(guān)系驗證以AB為直徑的圓是否過定點.【詳解】(1)因為橢圓的離心率,所以,即.因為拋物線的焦點恰好是該橢圓的一個頂點,所以,所以,.所以橢圓的方程為.(2)(i)當直線的斜率不存在時.因為直線與圓相切,故其中的一條切線方程為.由,不妨設(shè),,則以為直徑的圓的方程為.(ii)當直線的斜率為零時.因為直線與圓相切,所以其中的一條切線方程為.由,不妨設(shè),,則以為直徑的圓的方程為.顯然以上兩圓都經(jīng)過點.(iii)當直線的斜率存在且不為零時.設(shè)直線的方程為.由消去,得,所以設(shè),,則,.所以.所以.①因為直線和圓相切,所以圓心到直線的距離,整理,得,
②將②代入①,得,顯然以為直徑的圓經(jīng)過定點,綜上可知,以為直徑的圓過定點.【點睛】本題主要考察橢圓的標準方程的求解及圓錐曲線相關(guān)的定點問題,相對復(fù)雜,需綜合運用所學知識求解.21.(2015?大連模擬)已知曲線C:,直線l:(t為參數(shù))(1)以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,寫出直線l的極坐標方程和曲線C的參數(shù)方程;(2)過曲線C上任意一點P作與l夾角為30°的直線,交l于點A,求|PA|的最大值與最小值.參考答案:考點:直線與圓錐曲線的綜合問題.
專題:三角函數(shù)的圖像與性質(zhì);圓錐曲線的定義、性質(zhì)與方程;坐標系和參數(shù)方程.分析:(1)把曲線C的普通方程化為參數(shù)方程,把直線l的參數(shù)方程化為普通方程,再把普通方程化為極坐標方程即可;(2)利用曲線C的參數(shù)方程求出點P到直線l的距離d,計算|PA|=,利用三角函數(shù)的恒等變換求出它的最大與最小值即可.解答:解:(1)∵曲線C:,∴C的參數(shù)方程為,θ為參數(shù);又直線l的參數(shù)方程為(t為參數(shù)),化為普通方程是l:y=2﹣x,把代入得,ρsinθ=2﹣ρcosθ,化簡,得ρ(sinθ+cosθ)=2,即ρsin(θ+)=1,∴直線l的極坐標方程為ρsin(θ+)=1;(2)設(shè)曲線C上任意一點P(2cosθ,sinθ),則點P到直線l的距離為d==,∴|PA|==2d=|sin(θ+α)﹣2|,其中α為銳角,當sin(θ+α)=﹣1時,|PA|取得最大值,為+2;當sin(θ+α)=1時,|PA|取得最小值,為﹣2.點評:本題考查了直線與橢圓的參數(shù)方程和極坐標的應(yīng)用問題,也考查了三角函數(shù)的恒等變換的應(yīng)用問題,是綜合性題目.22.已知等差數(shù)列的公差大于,且.若分別是等比數(shù)列的前三項.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)記數(shù)列的前項和為,若,求的取值范圍
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中共南平市委黨校緊缺急需專業(yè)教師招聘考前自測高頻考點模擬試題完整答案詳解
- 2025春季中國石油哈爾濱石化公司高校畢業(yè)生招聘5人考前自測高頻考點模擬試題及完整答案詳解
- 2025廣東郁南縣興華產(chǎn)業(yè)投資有限公司、郁南縣興瑞產(chǎn)業(yè)投資有限公司招聘員工6人考前自測高頻考點模擬試題及答案詳解(全優(yōu))
- 2025春季黑龍江哈爾濱“丁香人才周”尚志市事業(yè)單位引才招聘98人考前自測高頻考點模擬試題及答案詳解參考
- 2025廣東韶關(guān)市“百萬英才匯南粵”行動計劃“粵聚英才粵見未來”南雄市中小學、幼兒園教師招聘及選聘106人模擬試卷及一套參考答案詳解
- 2025金華武義縣保安服務(wù)有限公司招聘2人模擬試卷附答案詳解(完整版)
- 2025昆明市盤龍區(qū)人民醫(yī)院第二季度招聘編外人員(1人)考前自測高頻考點模擬試題及完整答案詳解1套
- 2025貴州黔晨綜合發(fā)展有限公司招聘15人考前自測高頻考點模擬試題及答案詳解(易錯題)
- 2025黑龍江帕弗爾能源產(chǎn)業(yè)管理有限公司高校畢業(yè)生招聘93人(第三期)考前自測高頻考點模擬試題及答案詳解(歷年真題)
- 2025廣東揭陽惠來縣校園招聘衛(wèi)生專業(yè)技術(shù)人員80人考前自測高頻考點模擬試題及1套完整答案詳解
- 會計法考試試題及答案2025年
- 五糧液企業(yè)文化知識競賽題及答案
- 羽毛球起源教學課件
- 2025年地方AMC行業(yè)研究報告及未來行業(yè)發(fā)展趨勢預(yù)測
- 2025年零碳園區(qū)發(fā)展白皮書-榮續(xù)ESG智庫
- 《模擬電子技術(shù)》課件第4章場效應(yīng)管及其基本放大電路
- 邊境守護者邊境管控信息化平臺建設(shè)方案分析
- 設(shè)備編號管理標準與實施細則
- 變電站安全準入培訓內(nèi)容課件
- 2025年中醫(yī)館轉(zhuǎn)讓協(xié)議書
- 醫(yī)美行業(yè)課件
評論
0/150
提交評論