向量值映照微分學09定理應用曲線和曲面的隱式表達_第1頁
向量值映照微分學09定理應用曲線和曲面的隱式表達_第2頁
向量值映照微分學09定理應用曲線和曲面的隱式表達_第3頁
向量值映照微分學09定理應用曲線和曲面的隱式表達_第4頁
向量值映照微分學09定理應用曲線和曲面的隱式表達_第5頁
已閱讀5頁,還剩32頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

x0

?0?0,D(f1,···,f(?0?D(?1,?m?1(?0?非奇異Bλ(?0RBμ(?0Rm?1

D(f1,···,f(?0?

??(?)Bμ(0), ?,?(?))X3,···,

?(?)

?(?0Bλ(?0(?0[Bλ(?0(?0

(?01 11:(?0.(?0Bμ(?

?(?)

?(?0

((?)(0)?(?)

?(?)

?可確定曲線Γ?) ?)??)(?)(?) x?→0 ?

(?,?())

D?(?) RmΣ={x∈mf(x)=0∈R}基于隱映照定理針對上述約束有以下結論x0

x0?0Df(x?,?)?f

,?)

(?? ?(?0,(?0 ?=??)Bμ(?0 ??(?))2:隱映照定理論的幾何刻畫,如圖2所示.Bλ?0Bμ(?0Rm中,Σ

?(?)

?(?

?R.現(xiàn)為 中的曲 Σ(?):Rm?1?

((?(?

)?(?)

?DΣ(?)=:=D?(x?)1

·· (?∈

TxΣ

g1,···,

(?)?相應地,n(x)Rm, (D?)T(?)

n(x)=0∈1(R3中曲線(隱式表示形式)).R3{ f(x,y,z)=0∈Γ ∈Rg(x,y,z)=0∈z{ f(x,y,z)= ?(f,

g(x0,y0,z0)=

?(xz(x,y,z?0(F

[x])

f(x,y,

∈ g(x,y,(F

f(x0,y0, =0∈g(x0,y0,

(x,y,z)R2×2

Bλ(y0R,μ

R2?yB(y),ξ(y

B (

[[=[

f(x(y),y,

=0∈ g(x(y),y,亦即 Γ,表所以曲線示可以用向

Γ(y):Bλ(y0)?y7→Γ(y)

∈Γ

ddΓ(y)=DΓ(y) ∈ λ y, =0∈R2,?y∈Bλ

+D[x

])

)=0∈)

z

z

(x(y),y,z(y))

(x(y),y,

x = =

(x(y),y,

(x(y),y, ?(f,= ?(y,

(x(y),y,?(f,g)(x(y),y,?(x,

?(f,?(x,?(f,—?(y,z)(x(y),y,?(f, ?(x,

?(f,?(y,?(f,dy(y)

?(z, (x(y),y, ?y∈?(f, ?(f,—?x,—?x, (x(y),y,

?(x,?(f,?(x,

?(f,?(y, + ?(f, (x(y),y,z(y))∈?(z,

?(f,?(x,?(f,

x?

=?(f,

y?

=?(f,

z??(y,

(x(y0),y0,

(x(y0),y0, ?z,

(x(y0),y0, ?x, 2(R4中曲線(隱式表示形式)).R4f(x,y,z,θ)=0∈x∈Γ g(x,y,z,θ)=0∈h(x,y,z,θ)=0∈θ f(x,y,z,θ)=

)=

?(f,g,h)(x,y,z,θ?0 h(x0,y0,z0,θ0)=

?(x,y,

f(x,y,z, g(x,y,z,

∈ h(x,y,z, f(x0,y0,z0,

g(x0,y0,z0, =0∈h(x0,y0,z0, D[D[x z0 yθ0

(xy,z,θR3×3 ?Bλ(z0)?R,??z∈Bλ(z0),?ξ(z)∈

g(x(z),y(z),z,h(x(z),y(z),z,

=0∈

Γ(z):B(z)?z7→Γ(z) ∈ Γ

(z)=DΓ(z)

=0∈ ?z∈ +D[x =0∈

(x(z),y(z),z,θ(z))

(x(z),y(z),z, =

=

(x(z),y(z),z,

(x(z),y(z),z,

?(f,g,?(z,y,=? ?(f,g,?(x,y,θ)(x(z),y(z),z,

?(f,g, (x(z),y(z),z,?(x,z,?(f,g,?(x,y,?(f,g,?(z,y,—?(f,g,h)(x(z),y(z),z,?(x,y,?(f,g,

?(f,g,—?(z,y, ?(x,z,

—?(f,g,?Γ(z)?

—(f,g,h)(x(z),y(z),z,

?(x,z, (x(z),y(z),z, ?(x,y,1

?(f,g,?(x,y,?(f,g,?(f,g,?(f,g,?(x,y,

x(z),y(z),z,

?(x,y,?(f,g,?(y,z,?(f,g,=

(x(z),y(z),z, ?z∈?(f,g,?(x,y,?(f,g,—?(x,y,3(Rp中曲線(隱式表示形式)).Rp Γ X∈Rp|f(X)=0∈f ) ∈設有X0∈Γ亦即f(X0)

(X0)

.

?(X1,···,Xα,···,

=f(X)∈X.XX1X0

. =f0

)=0∈0.p0X1X0.. D(f1,···,fX0D0.?

X 000.

D(X1,···,Xα,···,

(X∈R(p?1)×(p?1)X.

pX1X0.

.? ,對?X∈B(X),?ξ(X) p

(Xα)?R,?

(Xα) p1?.?0 0..XpX0

F(Xα,ξ(Xα))=0∈

..

.0Γ(Xα):Bλ(Xα)?Xα7→Γ(Xα) ∈0.Γ

dX1(X.α(Xα)=DΓ(Xα) α.

∈.?0F(Xα,ξ(Xα))= =0∈ ?Xα∈Bλ0.1X X DXα + X.

. (

(Xα)=0∈ . ?f ?f ?f

?f ?f ·· ·· ?.α

(Xα)=

.?f

.. ?f

.?f

.. ?f

?f.

··

··

?(?1)α?2?(f1,···,??(X1,···,. ?(f1,···, ?(X1,···,Xα?1,···,?0= ?(f1,···, ?(f1,···,?0 ?(X1,···,Xα,···, ?(X1,···,Xα+1,···,.?(?1)p?α?1?(f1,···,??(X1,···,

?(?1)α?2?(f1,···,??(X1,···,.?(f1,···,

(?1) ?(X1,···,Xα?1,···, αdΓ(Xα) α

?(f1,···,α α ?(X1,···,Xα,···, ?(f1,···,??(X1,···,Xα+1,···,.(?1)p?α+1?(f1,···,

?(X1,··?(?1)0?(f1,···,??(X1,···,

,

?(f1,···, ? ?(X1,X2,···,.

∈.曲

p?1?(f1,···, ??(X1,···, 4(R32維曲面).R32 Σ f(x,y,z)=03z

Σf(x0y0z00

?f(x0,y0,z0)?=0([x ,z

=f(x,y,z)∈ x0,y0

=f(x0,y0,z0)=y

,

=?f(x0,y0,z0)?= x

[x

x則按隱映照定理,?

?R2,?B(y)?R,對 ∈

,?!ξ(x,z)Bμ(y0)?R

([xFz

,ξ(x,

=f(x,ξ(x,z),z)=([x ([x [x Σz

:

7→

ξ(x, ∈z

[?Σ?Σ

?x,?z(x,z)= ?x(x, ?z(x,

[

x × (x,z)= (x, ∈

?ξ(x,

?ξ(x,再確定隱函數(shù)的偏導數(shù)?ξ(x,z)和?ξ(x,z) F

([xz

),ξ(x,z)= ([ ([ D[x x,ξ(x,z)+D x,ξ(x,z)D[x]ξ(x,z)=0∈y ?f,

(x,ξ(x,z),z)+?f(x,ξ(x,z),

?ξ,

(x,z)=0∈?x ?x ?x(x,z)=?(x,ξ(x,z), (x,z)=??z(x,ξ(x,z), n

×

(x,z)= (x,ξ(x,z),z)

(x,ξ(x,z),

ξ(x0,

(x,ξ(x,z), =

[xz

∈B

(x?x0)?x(x0,ξ(x0,z0),z0)+(y?ξ(x0,z0))?y(x0,ξ(x0,z0),z0)+(z?z0)?z(x0,ξ(x0,z0),z0)=

Σ (x?x0)?x(x0,y0,z0)+(y?y0)?y(x0,y0,z0)+(z?z0)?z(x0,y0,z0)=(DΣ)T(x,z)n=0∈ ??x(x,ξ(x,z), ??z(x,ξ(x,z),

=0∈

n10??x(x,ξ(x,z), n ??z(x,ξ(x,z),

=0∈

?x(x,ξ(x,z),n3=?z(x,ξ(x,z),?x 1 1n ∥

(x,ξ(x,z),z)

(x,ξ(x,z),n ?f n?z 5(R43維曲面).R43xΣ ∈R4f(x,y,z,θ)=0∈zθ

Σf(xy,z,θ0

?f(x,y,z,θ?=0 x , =f(x,y,z,θ)∈θ ,

=f(x0,y0,z0,θ0)=

z , =?y(x0,y0,z0,θ0)?=x?x?zθ∈,?!ξ(x,z,θ)

θxxxΣzθ:?zθx7→ θ

ξ(x,z,=zθ

?Σ?Σ

(x,z, (x,z, (x,z, θ

(x,z,θ)

∈x =θzθ

z + ,ξ(x,z, D[x]ξ(x,z,θ)=0∈zθ ?f,?f,?f(x,ξ(x,z,θ),z,θ)+?f(x,ξ(x,z,θ),z,θ)?ξ,?ξ,?ξ(x,z,θ)=0∈?x?z

?x??x(x,z,θ)=??f(x,ξ(x,z,θ),z, (x,z,θ)=??z(x,ξ(x,z,θ),z,?ξ(x,z,θ)=??θ(x,ξ(x,z,θ),z,

(DΣ)T(x,z,θ)n=0∈1??x(x,ξ(x,z,θ),z,θ)00??z(x,ξ(x,z,θ),z,θ)1

4

0∈

0??x(x,ξ(x,z,θ),z,θ)0 100??x(x,ξ(x,z,θ),z,010??z(x,ξ(x,z,θ),z,

2

0∈001??x(x,ξ(x,z,θ),z, 1 n=?f(x,ξ(x,z,θ),z,n3=?z(x,ξ(x,z,θ),z,n4=?θ(x,ξ(x,z,θ),z, nn

(x,ξ(x,z,θ),z, ξ(x0,z0, ∈Σ點的切平面方程 y ξ(x0,z0,

(x,ξ(x,z,θ),z, = 0

∈ (x?

(x0,ξ(x0,z0,θ0),z0,θ0)+(y?ξ(x0,

(x0,ξ(x0,z0,θ0),z0, +(z? (x0,ξ(x0,z0,θ0),z0,θ0)+(θ?

(x0,ξ(x0,z0,θ0),z0,θ0)= (x?

(x0,y0,z0,θ0)+(y? +(θ?

(x0,y0,z0,θ0)+(z?(x0,y0,z0,θ0)=

(x0,y0,z0,6(Rp+1p維曲面(隱式表示形式)).Rp+1p Σ X∈Rp+1f(X)=0∈

)=0Σ,亦即有f(X ?Xα(X0)?=0,其中α為1,···,p+1 )=0.? ,

=f(X1,···,

,···,

)∈.?X1X0.. ,

=f(X1,···,Xα,···,Xp+1)=0X 0.XX0. ?

, (X1,···,Xα,···,Xp+1)?= X 0.XX

??

X0X.?..XX

.?..

X0X.? ..XX00ξ(X1···,Xα,···,Xp+1)∈Bμ(Xα)?R00.? .

,

?1,···,Xα,···,

=

1

ξ(X,···,Xα,···, .XXX XXX0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論