




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、2021-2022高考數(shù)學模擬試卷注意事項:1答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1我國數(shù)學家陳景潤在哥德巴赫猜想的研究中取得了世界領先的成果哥德巴赫猜想是“每個大于2的偶數(shù)可以表示為兩個素數(shù)(即質數(shù))的和”,如,在不超過20的素數(shù)中,隨機選取兩個不同的數(shù),其和等于
2、20的概率是( )ABCD以上都不對2設,滿足,則的取值范圍是( )ABCD3集合,則( )ABCD4已知等差數(shù)列滿足,公差,且成等比數(shù)列,則A1B2C3D45已知棱錐的三視圖如圖所示,其中俯視圖是等腰直角三角形,則該三棱錐的四個面中,最大面積為( )ABCD6如圖,這是某校高三年級甲、乙兩班在上學期的5次數(shù)學測試的班級平均分的莖葉圖,則下列說法不正確的是( )A甲班的數(shù)學成績平均分的平均水平高于乙班B甲班的數(shù)學成績的平均分比乙班穩(wěn)定C甲班的數(shù)學成績平均分的中位數(shù)高于乙班D甲、乙兩班這5次數(shù)學測試的總平均分是1037如圖,中,點D在BC上,將沿AD旋轉得到三棱錐,分別記,與平面ADC所成角為,
3、則,的大小關系是( )ABC,兩種情況都存在D存在某一位置使得8已知排球發(fā)球考試規(guī)則:每位考生最多可發(fā)球三次,若發(fā)球成功,則停止發(fā)球,否則一直發(fā)到次結束為止某考生一次發(fā)球成功的概率為,發(fā)球次數(shù)為,若的數(shù)學期望,則的取值范圍為( )ABCD9已知函數(shù)是定義在上的偶函數(shù),當時,則,,的大小關系為( )ABCD10已知x,則“”是“”的( )A充分而不必要條件B必要而不充分條件C充分必要條件D既不充分也不必要條件11已知命題,則是( )A,B,.C,D,.12周易歷來被人們視作儒家群經(jīng)之首,它表現(xiàn)了古代中華民族對萬事萬物的深刻而又樸素的認識,是中華人文文化的基礎,它反映出中國古代的二進制計數(shù)的思想方
4、法我們用近代術語解釋為:把陽爻“- ”當作數(shù)字“1”,把陰爻“-”當作數(shù)字“0”,則八卦所代表的數(shù)表示如下:卦名符號表示的二進制數(shù)表示的十進制數(shù)坤0000震0011坎0102兌0113依此類推,則六十四卦中的“屯”卦,符號“ ”表示的十進制數(shù)是( )A18B17C16D15二、填空題:本題共4小題,每小題5分,共20分。13已知等差數(shù)列的各項均為正數(shù),且,若,則_.14已知平面向量、的夾角為,且,則的最大值是_15如果復數(shù)滿足,那么_(為虛數(shù)單位).16正方體中,是棱的中點,是側面上的動點,且平面,記與的軌跡構成的平面為,使得;直線與直線所成角的正切值的取值范圍是;與平面所成銳二面角的正切值為
5、;正方體的各個側面中,與所成的銳二面角相等的側面共四個其中正確命題的序號是_(寫出所有正確命題的序號)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)如圖,在四棱柱中,底面是正方形,平面平面,.過頂點,的平面與棱,分別交于,兩點.()求證:;()求證:四邊形是平行四邊形;()若,試判斷二面角的大小能否為?說明理由.18(12分)在極坐標系中,直線的極坐標方程為,以極點為原點,極軸為軸的正半軸建立平面直角坐標系,曲線的參數(shù)方程為(為參數(shù)),求直線與曲線的交點的直角坐標.19(12分)已知集合,將的所有子集任意排列,得到一個有序集合組,其中.記集合中元素的個數(shù)為,規(guī)定空
6、集中元素的個數(shù)為.當時,求的值;利用數(shù)學歸納法證明:不論為何值,總存在有序集合組,滿足任意,都有.20(12分)已知不等式的解集為.(1)求實數(shù)的值;(2)已知存在實數(shù)使得恒成立,求實數(shù)的最大值.21(12分)已知函數(shù).(1)若函數(shù),求的極值;(2)證明:. (參考數(shù)據(jù): )22(10分)如圖所示,已知平面,為等邊三角形,為邊上的中點,且.()求證:面;()求證:平面平面;()求該幾何體的體積參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1A【解析】首先確定不超過的素數(shù)的個數(shù),根據(jù)古典概型概率求解方法計算可得結果.【詳解】不超過的
7、素數(shù)有,共個,從這個素數(shù)中任選個,有種可能;其中選取的兩個數(shù),其和等于的有,共種情況,故隨機選出兩個不同的數(shù),其和等于的概率故選:.【點睛】本題考查古典概型概率問題的求解,屬于基礎題.2C【解析】首先繪制出可行域,再繪制出目標函數(shù),根據(jù)可行域范圍求出目標函數(shù)中的取值范圍.【詳解】由題知,滿足,可行域如下圖所示,可知目標函數(shù)在點處取得最小值,故目標函數(shù)的最小值為,故的取值范圍是.故選:D.【點睛】本題主要考查了線性規(guī)劃中目標函數(shù)的取值范圍的問題,屬于基礎題.3A【解析】計算,再計算交集得到答案.【詳解】,故.故選:.【點睛】本題考查了交集運算,屬于簡單題.4D【解析】先用公差表示出,結合等比數(shù)列
8、求出.【詳解】,因為成等比數(shù)列,所以,解得.【點睛】本題主要考查等差數(shù)列的通項公式.屬于簡單題,化歸基本量,尋求等量關系是求解的關鍵.5B【解析】由三視圖可知,該三棱錐如圖, 其中底面是等腰直角三角形,平面,結合三視圖求出每個面的面積即可.【詳解】由三視圖可知,該三棱錐如圖所示:其中底面是等腰直角三角形,平面,由三視圖知,因為,所以,所以,因為為等邊三角形,所以,所以該三棱錐的四個面中,最大面積為.故選:B【點睛】本題考查三視圖還原幾何體并求其面積; 考查空間想象能力和運算求解能力;三視圖正確還原幾何體是求解本題的關鍵;屬于中檔題、常考題型.6D【解析】計算兩班的平均值,中位數(shù),方差得到正確,
9、兩班人數(shù)不知道,所以兩班的總平均分無法計算,錯誤,得到答案.【詳解】由題意可得甲班的平均分是104,中位數(shù)是103,方差是26.4;乙班的平均分是102,中位數(shù)是101,方差是37.6,則A,B,C正確.因為甲、乙兩班的人數(shù)不知道,所以兩班的總平均分無法計算,故D錯誤.故選:.【點睛】本題考查了莖葉圖,平均值,中位數(shù),方差,意在考查學生的計算能力和應用能力.7A【解析】根據(jù)題意作出垂線段,表示出所要求得、角,分別表示出其正弦值進行比較大小,從而判斷出角的大小,即可得答案【詳解】由題可得過點作交于點,過作的垂線,垂足為,則易得,設,則有,可得,;,;,綜上可得,故選:【點睛】本題考查空間直線與平
10、面所成的角的大小關系,考查三角函數(shù)的圖象和性質,意在考查學生對這些知識的理解掌握水平8A【解析】根據(jù)題意,分別求出再根據(jù)離散型隨機變量期望公式進行求解即可【詳解】由題可知,則解得,由可得,答案選A【點睛】本題考查離散型隨機變量期望的求解,易錯點為第三次發(fā)球分為兩種情況:三次都不成功、第三次成功9C【解析】根據(jù)函數(shù)的奇偶性得,再比較的大小,根據(jù)函數(shù)的單調性可得選項.【詳解】依題意得,當時,因為,所以在上單調遞增,又在上單調遞增,所以在上單調遞增,即,故選:C.【點睛】本題考查函數(shù)的奇偶性的應用、冪、指、對的大小比較,以及根據(jù)函數(shù)的單調性比較大小,屬于中檔題.10D【解析】,不能得到, 成立也不能
11、推出,即可得到答案.【詳解】因為x,當時,不妨取,故時,不成立,當時,不妨取,則不成立,綜上可知,“”是“”的既不充分也不必要條件,故選:D【點睛】本題主要考查了充分條件,必要條件的判定,屬于容易題.11B【解析】根據(jù)全稱命題的否定為特稱命題,得到結果.【詳解】根據(jù)全稱命題的否定為特稱命題,可得,本題正確選項:【點睛】本題考查含量詞的命題的否定,屬于基礎題.12B【解析】由題意可知“屯”卦符號“”表示二進制數(shù)字010001,將其轉化為十進制數(shù)即可.【詳解】由題意類推,可知六十四卦中的“屯”卦符號“”表示二進制數(shù)字010001,轉化為十進制數(shù)的計算為120+124=1故選:B【點睛】本題主要考查
12、數(shù)制是轉化,新定義知識的應用等,意在考查學生的轉化能力和計算求解能力.二、填空題:本題共4小題,每小題5分,共20分。13【解析】設等差數(shù)列的公差為,根據(jù),且,可得,解得,進而得出結論.【詳解】設公差為,因為,所以,所以,所以 故答案為:【點睛】本題主要考查了等差數(shù)列的通項公式、需熟記公式,屬于基礎題.14【解析】建立平面直角坐標系,設,可得,進而可得出,由此將轉化為以為自變量的三角函數(shù),利用三角恒等變換思想以及正弦函數(shù)的有界性可得出結果.【詳解】根據(jù)題意建立平面直角坐標系如圖所示,設,以、為鄰邊作平行四邊形,則,設,則,且,在中,由正弦定理,得,即,在中,由正弦定理,得,即.,則,當時,取最
13、大值.故答案為:.【點睛】本題考查了向量的數(shù)量積最值的計算,將問題轉化為角的三角函數(shù)的最值問題是解答的關鍵,考查計算能力,屬于難題15【解析】把已知等式變形,再由復數(shù)代數(shù)形式的乘除運算化簡,然后利用復數(shù)模的計算公式求解.【詳解】,故答案為:.【點睛】本小題主要考查復數(shù)除法運算,考查復數(shù)的模的求法,屬于基礎題.16【解析】取中點,中點,中點,先利用中位線的性質判斷點的運動軌跡為線段,平面即為平面,畫出圖形,再依次判斷:利用等腰三角形的性質即可判斷;直線與直線所成角即為直線與直線所成角,設正方體的棱長為2,進而求解;由,取為中點,則,則即為與平面所成的銳二面角,進而求解;由平行的性質及圖形判斷即可
14、.【詳解】取中點,連接,則,所以,所以平面即為平面,取中點,中點,連接,則易證得,所以平面平面,所以點的運動軌跡為線段,平面即為平面.取為中點,因為是等腰三角形,所以,又因為,所以,故正確;直線與直線所成角即為直線與直線所成角,設正方體的棱長為2,當點為中點時,直線與直線所成角最小,此時,;當點與點或點重合時,直線與直線所成角最大,此時,所以直線與直線所成角的正切值的取值范圍是,正確;與平面的交線為,且,取為中點,則即為與平面所成的銳二面角,所以正確;正方體的各個側面中,平面,平面,平面,平面與平面所成的角相等,所以正確故答案為:【點睛】本題考查直線與平面的空間位置關系,考查異面直線成角,二面
15、角,考查空間想象能力與轉化思想.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(1)證明見解析;(2)證明見解析;(3)不能為.【解析】(1)由平面平面,可得平面,從而證明;(2)由平面與平面沒有交點,可得與不相交,又與共面,所以,同理可證,得證;(3)作交于點,延長交于點,連接,根據(jù)三垂線定理,確定二面角的平面角,若,由大角對大邊知,兩者矛盾,故二面角的大小不能為.【詳解】(1)由平面平面,平面平面,且,所以平面,又平面,所以;(2)依題意都在平面上,因此平面,平面,又平面,平面,平面與平面平行,即兩個平面沒有交點,則與不相交,又與共面,所以,同理可證,所以四邊形是平行四
16、邊形;(3)不能.如圖,作交于點,延長交于點,連接,由,所以平面,則平面,又,根據(jù)三垂線定理,得到,所以是二面角的平面角,若,則是等腰直角三角形,又,所以中,由大角對大邊知,所以,這與上面相矛盾,所以二面角的大小不能為.【點睛】本題考查了立體幾何中的線線平行和垂直的判定問題,和二面角的求解問題,意在考查學生的空間想象能力和邏輯推理能力;解答本題關鍵在于能利用直線與直線、直線與平面、平面與平面關系的相互轉化,屬中檔題.18【解析】將直線的極坐標方程和曲線的參數(shù)方程分別化為直角坐標方程,聯(lián)立直角坐標方程求出交點坐標,結合的取值范圍進行取舍即可.【詳解】因為直線的極坐標方程為,所以直線的普通方程為,
17、又因為曲線的參數(shù)方程為(為參數(shù)),所以曲線的直角坐標方程為, 聯(lián)立方程,解得或,因為,所以舍去,故點的直角坐標為.【點睛】本題考查極坐標方程、參數(shù)方程與直角坐標方程的互化;考查運算求解能力;熟練掌握極坐標方程、參數(shù)方程與直角坐標方程的互化公式是求解本題的關鍵;屬于中檔題、常考題型.19;證明見解析.【解析】當時,集合共有個子集,即可求出結果;分類討論,利用數(shù)學歸納法證明.【詳解】當時,集合共有個子集,所以;當時,由可知,此時令,滿足對任意,都有,且;假設當時,存在有序集合組滿足題意,且,則當時,集合的子集個數(shù)為個,因為是4的整數(shù)倍,所以令,且恒成立,即滿足對任意,都有,且,綜上,原命題得證.【
18、點睛】本題考查集合的自己個數(shù)的研究,結合數(shù)學歸納法的應用,屬于難題.20(1);(2)4【解析】(1)分類討論,求解x的范圍,取并集,得到絕對值不等式的解集,即得解;(2)轉化原不等式為:,利用均值不等式即得解.【詳解】(1)當時不等式可化為 當時,不等式可化為;當時,不等式可化為;綜上不等式的解集為.(2)由(1)有,即而當且僅當:,即,即時等號成立,綜上實數(shù)最大值為4.【點睛】本題考查了絕對值不等式的求解與不等式的恒成立問題,考查了學生綜合分析,轉化劃歸,數(shù)學運算的能力,屬于中檔題.21(1)見解析;(1)見證明【解析】(1)求出函數(shù)的導數(shù),解關于導函數(shù)的不等式,求出函數(shù)的單調區(qū)間,從而求
19、出函數(shù)的極值即可;(1)問題轉化為證exx1xlnx10,根據(jù)xlnxx(x1),問題轉化為只需證明當x0時,ex1x1+x10恒成立,令k(x)ex1x1+x1,(x0),根據(jù)函數(shù)的單調性證明即可【詳解】(1),當,當,在上遞增,在上遞減,在取得極大值,極大值為,無極大值.(1)要證f(x)+1exx1即證exx1xlnx10,先證明lnxx1,取h(x)lnxx+1,則h(x),易知h(x)在(0,1)遞增,在(1,+)遞減,故h(x)h(1)0,即lnxx1,當且僅當x1時取“”,故xlnxx(x1),exx1xlnxex1x1+x1,故只需證明當x0時,ex1x1+x10恒成立,令k(x)ex1x1+x1,(x0),則k(x)ex4x+1,令F
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 45996-2025科技評估指標體系構建通用要求
- 常用股東退股協(xié)議書
- 基本安全消防知識培訓課件
- 初三化學金屬材料與冶煉測試試卷及答案
- 中小企業(yè)質量成本核算與控制的深度剖析與實踐策略
- ^(31)P-MRS在肝細胞癌研究中的應用與價值探究
- 初三道德與法治愛國敬業(yè)精神試卷及答案
- 八年級數(shù)學二元一次方程組單元試卷及答案
- 基坑開挖安全知識培訓課件
- 2025心理健康服務產(chǎn)業(yè)鏈、市場供需現(xiàn)狀及行業(yè)未來發(fā)展趨勢分析報告
- 2025年食品安全培訓考試試題及答案
- 2025年長江證券港股通開通測試題及答案
- 2025西安亮麗電力集團有限責任公司招聘10人筆試備考題庫及1套完整答案詳解
- 成都銀行總行招聘考試真題2024
- 基孔肯雅熱培訓測試題含答案
- 小額貸款公司貸款五級分類辦法
- 2025公衛(wèi)執(zhí)業(yè)醫(yī)師考試試題(附答案)
- 醫(yī)院藥品質量管理課件
- 2025年上海市中考招生考試數(shù)學真題試卷(真題+答案)
- 2025年廣東省中考英語試題卷(含答案解析)
- 腎病綜合征患者飲食與液體平衡管理:核心原則、臨床策略與患者教育
評論
0/150
提交評論