福建省德化、安溪2022年高三二診模擬考試數(shù)學(xué)試卷含解析_第1頁(yè)
福建省德化、安溪2022年高三二診模擬考試數(shù)學(xué)試卷含解析_第2頁(yè)
福建省德化、安溪2022年高三二診模擬考試數(shù)學(xué)試卷含解析_第3頁(yè)
福建省德化、安溪2022年高三二診模擬考試數(shù)學(xué)試卷含解析_第4頁(yè)
福建省德化、安溪2022年高三二診模擬考試數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、2021-2022高考數(shù)學(xué)模擬試卷考生須知:1全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1已知,是兩條不重合的直線,是兩個(gè)不重合的平面,則下列命題中錯(cuò)誤的是( )A若,則或B若,則C若,則D若,則2已知函數(shù),若對(duì)任意的,存在實(shí)數(shù)滿足,使得,則的最大值是( )A3

2、B2C4D53已知為虛數(shù)單位,復(fù)數(shù),則其共軛復(fù)數(shù)( )ABCD4幻方最早起源于我國(guó),由正整數(shù)1,2,3,這個(gè)數(shù)填入方格中,使得每行、每列、每條對(duì)角線上的數(shù)的和相等,這個(gè)正方形數(shù)陣就叫階幻方定義為階幻方對(duì)角線上所有數(shù)的和,如,則( )A55B500C505D50505在中,分別為所對(duì)的邊,若函數(shù)有極值點(diǎn),則的范圍是( )ABCD6一個(gè)正四棱錐形骨架的底邊邊長(zhǎng)為,高為,有一個(gè)球的表面與這個(gè)正四棱錐的每個(gè)邊都相切,則該球的表面積為( )ABCD7如圖所示,矩形的對(duì)角線相交于點(diǎn),為的中點(diǎn),若,則等于( )ABCD8已知我市某居民小區(qū)戶主人數(shù)和戶主對(duì)戶型結(jié)構(gòu)的滿意率分別如圖和如圖所示,為了解該小區(qū)戶主對(duì)

3、戶型結(jié)構(gòu)的滿意程度,用分層抽樣的方法抽取的戶主進(jìn)行調(diào)查,則樣本容量和抽取的戶主對(duì)四居室滿意的人數(shù)分別為A240,18B200,20C240,20D200,189如圖是計(jì)算值的一個(gè)程序框圖,其中判斷框內(nèi)應(yīng)填入的條件是( )ABCD10己知函數(shù)若函數(shù)的圖象上關(guān)于原點(diǎn)對(duì)稱的點(diǎn)有2對(duì),則實(shí)數(shù)的取值范圍是( )ABCD11已知函數(shù),若,則下列不等關(guān)系正確的是( )ABCD12中國(guó)鐵路總公司相關(guān)負(fù)責(zé)人表示,到2018年底,全國(guó)鐵路營(yíng)業(yè)里程達(dá)到13.1萬(wàn)公里,其中高鐵營(yíng)業(yè)里程2.9萬(wàn)公里,超過(guò)世界高鐵總里程的三分之二,下圖是2014年到2018年鐵路和高鐵運(yùn)營(yíng)里程(單位:萬(wàn)公里)的折線圖,以下結(jié)論不正確的是

4、( )A每相鄰兩年相比較,2014年到2015年鐵路運(yùn)營(yíng)里程增加最顯著B(niǎo)從2014年到2018年這5年,高鐵運(yùn)營(yíng)里程與年價(jià)正相關(guān)C2018年高鐵運(yùn)營(yíng)里程比2014年高鐵運(yùn)營(yíng)里程增長(zhǎng)80%以上D從2014年到2018年這5年,高鐵運(yùn)營(yíng)里程數(shù)依次成等差數(shù)列二、填空題:本題共4小題,每小題5分,共20分。13在數(shù)列中,已知,則數(shù)列的的前項(xiàng)和為_(kāi).14已知集合,則_15若實(shí)數(shù),滿足,則的最小值為_(kāi)16已知是拋物線上一點(diǎn),是圓關(guān)于直線對(duì)稱的曲線上任意一點(diǎn),則的最小值為_(kāi)三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17(12分)已知函數(shù)(1)若,不等式的解集;(2)若,求實(shí)數(shù)的取值范圍.

5、18(12分)設(shè)等差數(shù)列的首項(xiàng)為0,公差為a,;等差數(shù)列的首項(xiàng)為0,公差為b,.由數(shù)列和構(gòu)造數(shù)表M,與數(shù)表;記數(shù)表M中位于第i行第j列的元素為,其中,(i,j=1,2,3,).記數(shù)表中位于第i行第j列的元素為,其中(,).如:,.(1)設(shè),請(qǐng)計(jì)算,;(2)設(shè),試求,的表達(dá)式(用i,j表示),并證明:對(duì)于整數(shù)t,若t不屬于數(shù)表M,則t屬于數(shù)表;(3)設(shè),對(duì)于整數(shù)t,t不屬于數(shù)表M,求t的最大值.19(12分)已知函數(shù),(1)當(dāng)時(shí),求不等式的解集;(2)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍20(12分)已知,函數(shù),(是自然對(duì)數(shù)的底數(shù)).()討論函數(shù)極值點(diǎn)的個(gè)數(shù);()若,且命題“,”是假命題,求實(shí)數(shù)

6、的取值范圍.21(12分)在直角坐標(biāo)系中,圓C的參數(shù)方程(為參數(shù)),以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.(1)求圓C的極坐標(biāo)方程;(2)直線l的極坐標(biāo)方程是,射線與圓C的交點(diǎn)為O、P,與直線l的交點(diǎn)為Q,求線段的長(zhǎng). 22(10分)如圖,在三棱柱中,、分別是、的中點(diǎn).(1)證明:平面;(2)若底面是正三角形,在底面的投影為,求到平面的距離.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1D【解析】根據(jù)線面平行和面面平行的性質(zhì),可判定A;由線面平行的判定定理,可判斷B;C中可判斷,所成的二面角為;D中有可能,即得解.【詳解

7、】選項(xiàng)A:若,根據(jù)線面平行和面面平行的性質(zhì),有或,故A正確;選項(xiàng)B:若,由線面平行的判定定理,有,故B正確;選項(xiàng)C:若,故,所成的二面角為,則,故C正確;選項(xiàng)D,若,有可能,故D不正確.故選:D【點(diǎn)睛】本題考查了空間中的平行垂直關(guān)系判斷,考查了學(xué)生邏輯推理,空間想象能力,屬于中檔題.2A【解析】根據(jù)條件將問(wèn)題轉(zhuǎn)化為,對(duì)于恒成立,然后構(gòu)造函數(shù),然后求出的范圍,進(jìn)一步得到的最大值.【詳解】,對(duì)任意的,存在實(shí)數(shù)滿足,使得, 易得,即恒成立,對(duì)于恒成立,設(shè),則,令,在恒成立,故存在,使得,即,當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增.,將代入得:,且,故選:A【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,零點(diǎn)存在

8、定理和不等式恒成立問(wèn)題,考查了轉(zhuǎn)化思想,屬于難題.3B【解析】先根據(jù)復(fù)數(shù)的乘法計(jì)算出,然后再根據(jù)共軛復(fù)數(shù)的概念直接寫(xiě)出即可.【詳解】由,所以其共軛復(fù)數(shù).故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)的乘法運(yùn)算以及共軛復(fù)數(shù)的概念,難度較易.4C【解析】因?yàn)榛梅降拿啃小⒚苛?、每條對(duì)角線上的數(shù)的和相等,可得,即得解.【詳解】因?yàn)榛梅降拿啃?、每列、每條對(duì)角線上的數(shù)的和相等,所以階幻方對(duì)角線上數(shù)的和就等于每行(或每列)的數(shù)的和,又階幻方有行(或列),因此,于是故選:C【點(diǎn)睛】本題考查了數(shù)陣問(wèn)題,考查了學(xué)生邏輯推理,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.5D【解析】試題分析:由已知可得有兩個(gè)不等實(shí)根.考點(diǎn):1、余弦定理;2、函數(shù)的

9、極值.【方法點(diǎn)晴】本題考查余弦定理,函數(shù)的極值,涉及函數(shù)與方程思想思想、數(shù)形結(jié)合思想和轉(zhuǎn)化化歸思想,考查邏輯思維能力、等價(jià)轉(zhuǎn)化能力、運(yùn)算求解能力,綜合性較強(qiáng),屬于較難題型. 首先利用轉(zhuǎn)化化歸思想將原命題轉(zhuǎn)化為有兩個(gè)不等實(shí)根,從而可得.6B【解析】根據(jù)正四棱錐底邊邊長(zhǎng)為,高為,得到底面的中心到各棱的距離都是1,從而底面的中心即為球心.【詳解】如圖所示:因?yàn)檎睦忮F底邊邊長(zhǎng)為,高為,所以 , 到 的距離為,同理到 的距離為1,所以為球的球心,所以球的半徑為:1,所以球的表面積為.故選:B【點(diǎn)睛】本題主要考查組合體的表面積,還考查了空間想象的能力,屬于中檔題.7A【解析】由平面向量基本定理,化簡(jiǎn)得,

10、所以,即可求解,得到答案【詳解】由平面向量基本定理,化簡(jiǎn),所以,即,故選A【點(diǎn)睛】本題主要考查了平面向量基本定理的應(yīng)用,其中解答熟記平面向量的基本定理,化簡(jiǎn)得到是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,數(shù)基礎(chǔ)題8A【解析】利用統(tǒng)計(jì)圖結(jié)合分層抽樣性質(zhì)能求出樣本容量,利用條形圖能求出抽取的戶主對(duì)四居室滿意的人數(shù)【詳解】樣本容量為:(150+250+400)30%240,抽取的戶主對(duì)四居室滿意的人數(shù)為:故選A【點(diǎn)睛】本題考查樣本容量和抽取的戶主對(duì)四居室滿意的人數(shù)的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意統(tǒng)計(jì)圖的性質(zhì)的合理運(yùn)用9B【解析】根據(jù)計(jì)算結(jié)果,可知該循環(huán)結(jié)構(gòu)循環(huán)了5次;輸出S前循環(huán)體的n的值為12

11、,k的值為6,進(jìn)而可得判斷框內(nèi)的不等式【詳解】因?yàn)樵摮绦驁D是計(jì)算值的一個(gè)程序框圈所以共循環(huán)了5次所以輸出S前循環(huán)體的n的值為12,k的值為6,即判斷框內(nèi)的不等式應(yīng)為或 所以選C【點(diǎn)睛】本題考查了程序框圖的簡(jiǎn)單應(yīng)用,根據(jù)結(jié)果填寫(xiě)判斷框,屬于基礎(chǔ)題10B【解析】考慮當(dāng)時(shí),有兩個(gè)不同的實(shí)數(shù)解,令,則有兩個(gè)不同的零點(diǎn),利用導(dǎo)數(shù)和零點(diǎn)存在定理可得實(shí)數(shù)的取值范圍.【詳解】因?yàn)榈膱D象上關(guān)于原點(diǎn)對(duì)稱的點(diǎn)有2對(duì),所以時(shí),有兩個(gè)不同的實(shí)數(shù)解.令,則在有兩個(gè)不同的零點(diǎn).又, 當(dāng)時(shí),故在上為增函數(shù),在上至多一個(gè)零點(diǎn),舍.當(dāng)時(shí),若,則,在上為增函數(shù);若,則,在上為減函數(shù);故,因?yàn)橛袃蓚€(gè)不同的零點(diǎn),所以,解得.又當(dāng)時(shí),且

12、,故在上存在一個(gè)零點(diǎn).又,其中.令,則,當(dāng)時(shí),故為減函數(shù),所以即.因?yàn)?,所以在上也存在一個(gè)零點(diǎn).綜上,當(dāng)時(shí),有兩個(gè)不同的零點(diǎn).故選:B.【點(diǎn)睛】本題考查函數(shù)的零點(diǎn),一般地,較為復(fù)雜的函數(shù)的零點(diǎn),必須先利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,再結(jié)合零點(diǎn)存在定理說(shuō)明零點(diǎn)的存在性,本題屬于難題.11B【解析】利用函數(shù)的單調(diào)性得到的大小關(guān)系,再利用不等式的性質(zhì),即可得答案.【詳解】在R上單調(diào)遞增,且,.的符號(hào)無(wú)法判斷,故與,與的大小不確定,對(duì)A,當(dāng)時(shí),故A錯(cuò)誤;對(duì)C,當(dāng)時(shí),故C錯(cuò)誤;對(duì)D,當(dāng)時(shí),故D錯(cuò)誤;對(duì)B,對(duì),則,故B正確.故選:B.【點(diǎn)睛】本題考查分段函數(shù)的單調(diào)性、不等式性質(zhì)的運(yùn)用,考查函數(shù)與方程思想、轉(zhuǎn)化與

13、化歸思想,考查邏輯推理能力和運(yùn)算求解能力,屬于基礎(chǔ)題.12D【解析】由折線圖逐項(xiàng)分析即可求解【詳解】選項(xiàng),顯然正確;對(duì)于,選項(xiàng)正確;1.6,1.9,2.2,2.5,2.9不是等差數(shù)列,故錯(cuò).故選:D【點(diǎn)睛】本題考查統(tǒng)計(jì)的知識(shí),考查數(shù)據(jù)處理能力和應(yīng)用意識(shí),是基礎(chǔ)題二、填空題:本題共4小題,每小題5分,共20分。13【解析】由已知數(shù)列遞推式可得數(shù)列的所有奇數(shù)項(xiàng)與偶數(shù)項(xiàng)分別構(gòu)成以2為公比的等比數(shù)列,求其通項(xiàng)公式,得到,再由求解【詳解】解:由,得,則數(shù)列的所有奇數(shù)項(xiàng)與偶數(shù)項(xiàng)分別構(gòu)成以2為公比的等比數(shù)列,故答案為:【點(diǎn)睛】本題考查數(shù)列遞推式,考查等差數(shù)列與等比數(shù)列的通項(xiàng)公式,訓(xùn)練了數(shù)列的分組求和,屬于中

14、檔題14【解析】解一元二次不等式化簡(jiǎn)集合,再進(jìn)行集合的交運(yùn)算,即可得到答案.【詳解】,.故答案為:.【點(diǎn)睛】本題考查一元二次不等式的求解、集合的交運(yùn)算,考查運(yùn)算求解能力,屬于基礎(chǔ)題.15【解析】由約束條件先畫(huà)出可行域,然后求目標(biāo)函數(shù)的最小值.【詳解】由約束條件先畫(huà)出可行域,如圖所示,由,即,當(dāng)平行線經(jīng)過(guò)點(diǎn)時(shí)取到最小值,由可得,此時(shí),所以的最小值為.故答案為.【點(diǎn)睛】本題考查了線性規(guī)劃的知識(shí),解題的一般步驟為先畫(huà)出可行域,然后改寫(xiě)目標(biāo)函數(shù),結(jié)合圖形求出最值,需要掌握解題方法.16【解析】由題意求出圓的對(duì)稱圓的圓心坐標(biāo),求出對(duì)稱圓的圓坐標(biāo)到拋物線上的點(diǎn)的距離的最小值,減去半徑即可得到的最小值.【詳

15、解】假設(shè)圓心關(guān)于直線對(duì)稱的點(diǎn)為,則有,解方程組可得,所以曲線的方程為,圓心為,設(shè),則,又,所以,即,所以,故答案為:.【點(diǎn)睛】該題考查的是有關(guān)動(dòng)點(diǎn)距離的最小值問(wèn)題,涉及到的知識(shí)點(diǎn)有點(diǎn)關(guān)于直線的對(duì)稱點(diǎn),點(diǎn)與圓上點(diǎn)的距離的最小值為到圓心的距離減半徑,屬于中檔題目.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17(1)(2)【解析】(1)依題意可得,再用零點(diǎn)分段法分類討論可得;(2)依題意可得對(duì)恒成立,根據(jù)絕對(duì)值的幾何意義將絕對(duì)值去掉,分別求出解集,則兩解集的并集為,得到不等式即可解得;【詳解】解:(1)若,則,即,當(dāng)時(shí),原不等式等價(jià)于,解得當(dāng)時(shí),原不等式等價(jià)于,解得,所以;當(dāng)時(shí),

16、原不等式等價(jià)于,解得;綜上,原不等式的解集為;(2)即,得或,由解得,由解得,要使得的解集為,則解得,故的取值范圍是.【點(diǎn)睛】本題考查絕對(duì)值不等式的解法,著重考查等價(jià)轉(zhuǎn)化思想與分類討論思想的綜合應(yīng)用,屬于中檔題18(1)(2)詳見(jiàn)解析(3)29【解析】(1)將,代入,可求出,可代入求,可求結(jié)果(2)可求,通過(guò)反證法證明,(3)可推出,的最大值,就是集合中元素的最大值,求出【詳解】(1)由題意知等差數(shù)列的通項(xiàng)公式為:;等差數(shù)列的通項(xiàng)公式為:,得,則,得,故(2)證明:已知,由題意知等差數(shù)列的通項(xiàng)公式為:;等差數(shù)列的通項(xiàng)公式為:,得,得,所以若,則存在,使,若,則存在,使,因此,對(duì)于正整數(shù),考慮集

17、合,即,下面證明:集合中至少有一元素是7的倍數(shù)反證法:假設(shè)集合中任何一個(gè)元素,都不是7的倍數(shù),則集合中每一元素關(guān)于7的余數(shù)可以為1,2,3,4,5,6,又因?yàn)榧现泄灿?個(gè)元素,所以集合中至少存在兩個(gè)元素關(guān)于7的余數(shù)相同,不妨設(shè)為,其中,則這兩個(gè)元素的差為7的倍數(shù),即,所以,與矛盾,所以假設(shè)不成立,即原命題成立即集合中至少有一元素是7的倍數(shù),不妨設(shè)該元素為,則存在,使,即,由已證可知,若,則存在,使,而,所以為負(fù)整數(shù),設(shè),則,且,所以,當(dāng),時(shí),對(duì)于整數(shù),若,則成立(3)下面用反證法證明:若對(duì)于整數(shù),則,假設(shè)命題不成立,即,且則對(duì)于整數(shù),存在,使成立,整理,得,又因?yàn)?,所以且?的倍數(shù),因?yàn)椋?/p>

18、以,所以矛盾,即假設(shè)不成立所以對(duì)于整數(shù),若,則,又由第二問(wèn),對(duì)于整數(shù),則,所以的最大值,就是集合中元素的最大值,又因?yàn)?,所以【點(diǎn)睛】本題考查數(shù)列的綜合應(yīng)用,以及反證法,求最值,屬于難題19 (1) (2) 【解析】(1)當(dāng)時(shí),當(dāng)或時(shí),所以可轉(zhuǎn)化為,解得,所以不等式的解集為(2)因?yàn)?,所以,所以,即,即?dāng)時(shí),因?yàn)?,所以,不符合題意當(dāng)時(shí),解可得,因?yàn)楫?dāng)時(shí),不等式恒成立,所以,所以,解得,所以實(shí)數(shù)的取值范圍為20(1)當(dāng)時(shí),沒(méi)有極值點(diǎn),當(dāng)時(shí),有一個(gè)極小值點(diǎn).(2)【解析】試題分析 :(1),分,討論,當(dāng)時(shí),對(duì),當(dāng)時(shí),解得,在上是減函數(shù),在上是增函數(shù)。所以,當(dāng)時(shí),沒(méi)有極值點(diǎn),當(dāng)時(shí),有一個(gè)極小值點(diǎn).(2)原命題為假命題,則逆否命題為真命題。即不等式在區(qū)間內(nèi)有解。設(shè) ,所以 ,設(shè) ,則,且是增函數(shù),所以 。所以分和k1討論。試題解析:()因?yàn)?,所以,?dāng)時(shí),對(duì),所以在是減函數(shù),此時(shí)函數(shù)不存在極值,所以函數(shù)沒(méi)有極值點(diǎn);當(dāng)時(shí),令,解得,若,則,所以在上是減函數(shù),若,則,所以在上是增函數(shù),當(dāng)時(shí),取得極小值為,函數(shù)有且僅有一個(gè)極小值點(diǎn),所以當(dāng)時(shí),沒(méi)有極值點(diǎn),當(dāng)時(shí),有一個(gè)極小值點(diǎn).()命題“,”是假命題,則“,”是真命題,即不等式在區(qū)間內(nèi)有解.若,則設(shè) ,所以 ,設(shè) ,則,且是增函數(shù),所以 當(dāng)時(shí)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論