




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
一、解答題1.在平面直角坐標系中,已知點,,連接,將向下平移6個單位得線段,其中點的對應(yīng)點為點.(1)填空:點的坐標為______,線段平移到掃過的面積為______.(2)若點是軸上的動點,連接.①如圖,當點在軸正半軸時,線段與線段相交于點,用等式表示三角形的面積與三角形的面積之間的關(guān)系,并說明理由.②當將四邊形的面積分成1∶3兩部分時,求點的坐標.2.如圖1,//,點、分別在、上,點在直線、之間,且.(1)求的值;(2)如圖2,直線分別交、的角平分線于點、,直接寫出的值;(3)如圖3,在內(nèi),;在內(nèi),,直線分別交、分別于點、,且,直接寫出的值.3.如圖,已知直線射線CD,.P是射線EB上一動點,過點P作PQEC交射線CD于點Q,連接CP.作,交直線AB于點F,CG平分.(1)若點P,F(xiàn),G都在點E的右側(cè),求的度數(shù);(2)若點P,F(xiàn),G都在點E的右側(cè),,求的度數(shù);(3)在點P的運動過程中,是否存在這樣的情形,使?若存在,求出的度數(shù);若不存在,請說明理由.4.綜合與實踐背景閱讀:在同一平面內(nèi),兩條不重合的直線的位置關(guān)系有相交、平行,若兩條不重合的直線只有一個公共點,我們就說這兩條直線相交,若兩條直線不相交,我們就說這兩條直線互相平行兩條直線的位置關(guān)系的性質(zhì)和判定是幾何的重要知識,是初中階段幾何合情推理的基礎(chǔ).已知:AM∥CN,點B為平面內(nèi)一點,AB⊥BC于B.問題解決:(1)如圖1,直接寫出∠A和∠C之間的數(shù)量關(guān)系;(2)如圖2,過點B作BD⊥AM于點D,求證:∠ABD=∠C;(3)如圖3,在(2)問的條件下,點E、F在DM上,連接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,則∠EBC=.5.已知,如圖1,射線PE分別與直線AB,CD相交于E、F兩點,∠PFD的平分線與直線AB相交于點M,射線PM交CD于點N,設(shè)∠PFM=α°,∠EMF=β°,且(40﹣2α)2+|β﹣20|=0(1)α=,β=;直線AB與CD的位置關(guān)系是;(2)如圖2,若點G、H分別在射線MA和線段MF上,且∠MGH=∠PNF,試找出∠FMN與∠GHF之間存在的數(shù)量關(guān)系,并證明你的結(jié)論;(3)若將圖中的射線PM繞著端點P逆時針方向旋轉(zhuǎn)(如圖3),分別與AB、CD相交于點M1和點N1時,作∠PM1B的角平分線M1Q與射線FM相交于點Q,問在旋轉(zhuǎn)的過程中的值是否改變?若不變,請求出其值;若變化,請說明理由.6.如圖①,將一張長方形紙片沿對折,使落在的位置;(1)若的度數(shù)為,試求的度數(shù)(用含的代數(shù)式表示);(2)如圖②,再將紙片沿對折,使得落在的位置.①若,的度數(shù)為,試求的度數(shù)(用含的代數(shù)式表示);②若,的度數(shù)比的度數(shù)大,試計算的度數(shù).7.先閱讀然后解答提出的問題:設(shè)a、b是有理數(shù),且滿足,求ba的值.解:由題意得,因為a、b都是有理數(shù),所以a﹣3,b+2也是有理數(shù),由于是無理數(shù),所以a-3=0,b+2=0,所以a=3,b=﹣2,所以.問題:設(shè)x、y都是有理數(shù),且滿足,求x+y的值.8.先閱讀然后解答提出的問題:設(shè)a、b是有理數(shù),且滿足,求ba的值.解:由題意得,因為a、b都是有理數(shù),所以a﹣3,b+2也是有理數(shù),由于是無理數(shù),所以a-3=0,b+2=0,所以a=3,b=﹣2,所以.問題:設(shè)x、y都是有理數(shù),且滿足,求x+y的值.9.觀察下列各式:(x-1)(x+1)=x2-1(x-1)(x2+x+1)=x3-1(x-1)(x3+x2+x+1)=x4-1……(1)根據(jù)以上規(guī)律,則(x-1)(x6+x5+x4+x3+x2+x+1)=__________________.(2)你能否由此歸納出一般性規(guī)律(x-1)(xn+xn-1+xn-2+…+x+1)=____________.(3)根據(jù)以上規(guī)律求1+3+32+…+349+350的結(jié)果.10.觀察下列各式,并用所得出的規(guī)律解決問題:(1),,,……,,,……由此可見,被開方數(shù)的小數(shù)點每向右移動______位,其算術(shù)平方根的小數(shù)點向______移動______位.(2)已知,,則_____;______.(3),,,……小數(shù)點的變化規(guī)律是_______________________.(4)已知,,則______.11.對任意一個三位數(shù)n,如果n滿足各數(shù)位上的數(shù)字互不相同,且都不為零,那么稱這個數(shù)為“夢幻數(shù)”,將一個“夢幻數(shù)”任意兩個數(shù)位上的數(shù)字對調(diào)后可以得到三個不同的新三數(shù),把這三個新三位數(shù)的和與111的商記為K(n),例如,對調(diào)百位與十位上的數(shù)字得到213,對調(diào)百位與個位上的數(shù)字得到321,對調(diào)十位與個位上的數(shù)字得到132,這三個新三位數(shù)的和為,,所以.(1)計算:和;(2)若x是“夢幻數(shù)”,說明:等于x的各數(shù)位上的數(shù)字之和;(3)若x,y都是“夢幻數(shù)”,且,猜想:________,并說明你猜想的正確性.12.規(guī)律探究,觀察下列等式:第1個等式:第2個等式:第3個等式:第4個等式:請回答下列問題:(1)按以上規(guī)律寫出第5個等式:=___________=___________(2)用含n的式子表示第n個等式:=___________=___________(n為正整數(shù))(3)求13.如圖,已知,,且滿足.(1)求、兩點的坐標;(2)點在線段上,、滿足,點在軸負半軸上,連交軸的負半軸于點,且,求點的坐標;(3)平移直線,交軸正半軸于,交軸于,為直線上第三象限內(nèi)的點,過作軸于,若,且,求點的坐標.14.已知,點在與之間.(1)圖1中,試說明:;(2)圖2中,的平分線與的平分線相交于點,請利用(1)的結(jié)論說明:.(3)圖3中,的平分線與的平分線相交于點,請直接寫出與之間的數(shù)量關(guān)系.15.對于平面直角坐標系xOy中的圖形G和圖形G上的任意點P(x,y),給出如下定義:將點P(x,y)平移到P'(x+t,y﹣t)稱為將點P進行“t型平移”,點P'稱為將點P進行“t型平移”的對應(yīng)點;將圖形G上的所有點進行“t型平移”稱為將圖形G進行“t型平移”.例如,將點P(x,y)平移到P'(x+1,y﹣1)稱為將點P進行“l(fā)型平移”,將點P(x,y)平移到P'(x﹣1,y+1)稱為將點P進行“﹣l型平移”.已知點A(2,1)和點B(4,1).(1)將點A(2,1)進行“l(fā)型平移”后的對應(yīng)點A'的坐標為.(2)①將線段AB進行“﹣l型平移”后得到線段A'B',點P1(1.5,2),P2(2,3),P3(3,0)中,在線段A′B′上的點是.②若線段AB進行“t型平移”后與坐標軸有公共點,則t的取值范圍是.(3)已知點C(6,1),D(8,﹣1),點M是線段CD上的一個動點,將點B進行“t型平移”后得到的對應(yīng)點為B',當t的取值范圍是時,B'M的最小值保持不變.16.閱讀理解:定義:,,為數(shù)軸上三點,若點到點的距離是它到點的時距離的(為大于1的常數(shù))倍,則稱點是的倍點,且當是的倍點或的倍點時,我們也稱是和兩點的倍點.例如,在圖1中,點是的2倍點,但點不是的2倍點.(1)特值嘗試.①若,圖1中,點______是的2倍點.(填或)②若,如圖2,,為數(shù)軸上兩個點,點表示的數(shù)是,點表示的數(shù)是4,數(shù)______表示的點是的3倍點.(2)周密思考:圖2中,一動點從出發(fā),以每秒2個單位的速度沿數(shù)軸向左運動秒,若恰好是和兩點的倍點,求所有符合條件的的值.(用含的式子表示)(3)拓展應(yīng)用數(shù)軸上兩點間的距離不超過30個單位長度時,稱這兩點處于“可視距離”.若(2)中滿足條件的和兩點的所有倍點均處于點的“可視距離”內(nèi),請直接寫出的取值范圍.(不必寫出解答過程)17.在平面直角坐標系中,點,的坐標分別為,,現(xiàn)將線段先向上平移3個單位,再向右平移1個單位,得到線段,連接,.(1)如圖1,求點,的坐標及四邊形的面積;圖1(2)如圖1,在軸上是否存在點,連接,,使?若存在這樣的點,求出點的坐標;若不存在,試說明理由;(3)如圖2,在直線上是否存在點,連接,使?若存在這樣的點,直接寫出點的坐標;若不存在,試說明理由.圖2(4)在坐標平面內(nèi)是否存在點,使?若存在這樣的點,直接寫出點的坐標的規(guī)律;若不存在,請說明理由.18.如圖所示,在直角坐標系中,已知,,將線段平移至,連接、、、,且,點在軸上移動(不與點、重合).(1)直接寫出點的坐標;(2)點在運動過程中,是否存在的面積是的面積的3倍,如果存在請求出點的坐標,如果不存在請說明理由;(3)點在運動過程中,請寫出、、三者之間存在怎樣的數(shù)量關(guān)系,并說明理由.19.(閱讀感悟)一些關(guān)于方程組的問題,若求的結(jié)果不是每一個未知數(shù)的值,而是關(guān)于未知數(shù)的式子的值,如以下問題:已知實數(shù),滿足①,②,求和的值.本題的常規(guī)思路是將①②兩式聯(lián)立組成方程組,解得,的值再代入欲求值的式子得到答案,常規(guī)思路運算量比較大.其實,仔細觀察兩個方程未知數(shù)的系數(shù)之間的關(guān)系,本題還可以通過適當變形整體求得式子的值,如由①-②可得,由①+②×2可得.這樣的解題思想就是通常所說的“整體思想”.(解決問題)(1)已知二元一次方程組,則,.(2)某班開展安全教育知識競賽需購買獎品,買5支鉛筆、3塊橡皮、2本日記本共需32元,買9支鉛筆、5塊橡皮、3本日記本共需58元,則購買20支鉛筆、20塊橡皮、20本日記本共需多少元?(3)對于實數(shù),,定義新運算:,其中,,是常數(shù),等式右邊是通常的加法和乘法運算.已知,,求的值.20.某工廠接受了20天內(nèi)生產(chǎn)1200臺GH型電子產(chǎn)品的總?cè)蝿?wù).已知每臺GH型產(chǎn)品由4個G型裝置和3個H型裝置配套組成.工廠現(xiàn)有80名工人,每個工人每天能加工6個G型裝置或3個H型裝置.工廠將所有工人分成兩組同時開始加工,每組分別加工一種裝置,并要求每天加工的G、H型裝置數(shù)量正好全部配套組成GH型產(chǎn)品.(1)按照這樣的生產(chǎn)方式,工廠每天能配套組成多少套GH型電子產(chǎn)品?請列出二元一次方程組解答此問題.(2)為了在規(guī)定期限內(nèi)完成總?cè)蝿?wù),工廠決定補充一些新工人,這些新工人只能獨立進行G型裝置的加工,且每人每天只能加工4個G型裝置.設(shè)原來每天安排x名工人生產(chǎn)G型裝置,后來補充m名新工人,求x的值(用含m的代數(shù)式表示)21.某公園的門票價格如下表所示:某中學七年級(1)、(2)兩個班計劃去游覽該公園,其中(I)班的人數(shù)較少,不足50人;(2)班人數(shù)略多,有50多人.如果兩個班都以班為單位分別購票,則一共應(yīng)付1172元,如果兩個班聯(lián)合起來,作為一個團體購票,則需付1078元.(1)列方程求出兩個班各有多少學生;(2)如果兩個班聯(lián)合起來買票,是否可以買單價為9元的票?你有什么省錢的方法來幫他們買票呢?請給出最省錢的方案.22.甲從A地出發(fā)步行到B地,乙同時從B地步行出發(fā)至A地,2小時后在中途相遇,相遇后,甲、乙步行速度都提高了1千米/小時.若設(shè)甲剛出發(fā)時的速度為a千米/小時,乙剛出發(fā)的速度為b千米/小時.(1)A、B兩地的距離可以表示為千米(用含a,b的代數(shù)式表示);(2)甲從A到B所用的時間是:小時(用含a,b的代數(shù)式表示);乙從B到A所用的時間是:小時(用含a,b的代數(shù)式表示).(3)若當甲到達B地后立刻按原路向A返行,當乙到達A地后也立刻按原路向B地返行.甲乙二人在第一次相遇后3小時36分鐘又再次相遇,請問AB兩地的距離為多少?23.如果3個數(shù)位相同的自然數(shù)m,n,k滿足:m+n=k,且k各數(shù)位上的數(shù)字全部相同,則稱數(shù)m和數(shù)n是一對“黃金搭檔數(shù)”.例如:因為25,63,88都是兩位數(shù),且25+63=88,則25和63是一對“黃金搭檔數(shù)”.再如:因為152,514,666都是三位數(shù),且152+514=666,則152和514是一對“黃金搭檔數(shù)”.(1)分別判斷87和12,62和49是否是一對“黃金搭檔數(shù)”,并說明理由;(2)已知兩位數(shù)s和兩位數(shù)t的十位數(shù)字相同,若s和t是一對“黃金搭檔數(shù)”,并且s與t的和能被7整除,求出滿足題意的s.24.學校組織名同學和名教師參加校外學習交流活動現(xiàn)打算選租大、小兩種客車,大客車載客量為人/輛,小客車載客量為人/輛(1)學校準備租用輛客車,有幾種租車方案?(2)在(1)的條件下,若大客車租金為元/輛,小客車租金為元/輛,哪種租車方案最省錢?(3)學校臨時增加名學生和名教師參加活動,每輛大客車有2名教師帶隊,每輛小客車至少有名教師帶隊.同學先坐滿大客車,再依次坐滿小客車,最后一輛小客車至少要有人,請你幫助設(shè)計租車方案25.某治污公司決定購買10臺污水處理設(shè)備.現(xiàn)有甲、乙兩種型號的設(shè)備可供選擇,其中每臺的價格與月處理污水量如下表:甲型乙型價格(萬元/臺)xy處理污水量(噸/月)300260經(jīng)調(diào)查:購買一臺甲型設(shè)備比購買一臺乙型設(shè)備多2萬元,購買3臺甲型設(shè)備比購買4臺乙型設(shè)備少2萬元.(1)求x,y的值;(2)如果治污公司購買污水處理設(shè)備的資金不超過91萬元,求該治污公司有哪幾種購買方案;(3)在(2)的條件下,如果月處理污水量不低于2750噸,為了節(jié)約資金,請為該公司設(shè)計一種最省錢的購買方案.26.如圖,在平面直角坐標系中,已知兩點,且a、b滿足點在射線AO上(不與原點重合).將線段AB平移到DC,點D與點A對應(yīng),點C與點B對應(yīng),連接BC,直線AD交y軸于點E.請回答下列問題:(1)求A、B兩點的坐標;(2)設(shè)三角形ABC面積為,若4<≤7,求m的取值范圍;(3)設(shè),請給出,滿足的數(shù)量關(guān)系式,并說明理由.27.在平面直角坐標系xOy中,已知點M(a,b).如果存在點N(a′,b′),滿足a′=|a+b|,b′=|a﹣b|,則稱點N為點M的“控變點”.(1)點A(﹣1,2)的“控變點”B的坐標為;(2)已知點C(m,﹣1)的“控變點”D的坐標為(4,n),求m,n的值;(3)長方形EFGH的頂點坐標分別為(1,1),(5,1),(5,4),(1,4).如果點P(x,﹣2x)的“控變點”Q在長方形EFGH的內(nèi)部,直接寫出x的取值范圍.28.如圖所示,在平面直角坐標系中,點A,,的坐標為,,,其中,,滿足,.(1)求,,的值;(2)若在軸上,且,求點坐標;(3)如果在第二象限內(nèi)有一點,在什么取值范圍時,的面積不大于的面積?求出在符合條件下,面積最大值時點的坐標.29.在平面直角坐標系中,已知線段,點的坐標為,點的坐標為,如圖1所示.(1)平移線段到線段,使點的對應(yīng)點為,點的對應(yīng)點為,若點的坐標為,求點的坐標;(2)平移線段到線段,使點在軸的正半軸上,點在第二象限內(nèi)(與對應(yīng),與對應(yīng)),連接如圖2所示.若表示△BCD的面積),求點、的坐標;(3)在(2)的條件下,在軸上是否存在一點,使表示△PCD的面積)?若存在,求出點的坐標;若不存在,請說明理由.30.某生態(tài)柑橘園現(xiàn)有柑橘21噸,計劃租用A,B兩種型號的貨車將柑橘運往外地銷售.已知滿載時,用2輛A型車和3輛B型車一次可運柑橘12噸;用3輛A型車和4輛B型車一次可運柑橘17噸.(1)1輛A型車和1輛B型車滿載時一次分別運柑橘多少噸?(2)若計劃租用A型貨車m輛,B型貨車n輛,一次運完全部柑橘,且每輛車均為滿載.①請幫柑橘園設(shè)計租車方案;②若A型車每輛需租金120元/次,B型車每輛需租金100元/次.請選出最省錢的租車方案,并求出最少租車費.【參考答案】***試卷處理標記,請不要刪除一、解答題1.(1);24;(2)①;見解析;②或【分析】(1)由平移的性質(zhì)得出點C坐標,AC=6,再求出AB,即可得出結(jié)論;(2)①過點作交于,分別用CE表示出兩個三角形的面積,即可得到答案;②根據(jù)題意,可分為兩種情況進行討論分析:(i)當交線段于,且將四邊形分成面積為兩部分時;當交于點,將四邊形分成面積為兩部分時;分別求出點P的坐標即可.【詳解】解:(1)∵點A(3,5),將AB向下平移6個單位得線段CD,∴C(3,56),即:C(3,1),由平移得,AC=6,四邊形ABDC是矩形,∵A(3,5),B(7,5),∴AB=73=4,∴CD=4,∴點D的坐標為:;∴S四邊形ABDC=AB?AC=4×6=24,即:線段AB平移到CD掃過的面積為24;故答案為:;24;(2)①過點作交于,則,如圖:∴,又∵,∴.②(i)當交線段于,且將四邊形分成面積為兩部分時,連接,延長交軸于點,則,∵,又∵,∴,∴,即,∵,∴,∴,∴.(ii)當交于點,將四邊形分成面積為兩部分時,連接,延長交軸于點,則.過點作交的延長線于點,則,∴,,即,∵,∴,又∵,即,∴,∴,∴.綜上所述,或.【點睛】此題是幾何變換綜合題,主要考查了平移的性質(zhì),矩形的判定,三角形的面積公式,用分類討論的思想是解本題的關(guān)鍵.2.(1);(2)的值為40°;(3).【分析】(1)過點O作OG∥AB,可得AB∥OG∥CD,利用平行線的性質(zhì)可求解;(2)過點M作MK∥AB,過點N作NH∥CD,由角平分線的定義可設(shè)∠BEM=∠OEM=x,∠CFN=∠OFN=y,由∠BEO+∠DFO=260°可求x-y=40°,進而求解;(3)設(shè)直線FK與EG交于點H,F(xiàn)K與AB交于點K,根據(jù)平行線的性質(zhì)即三角形外角的性質(zhì)及,可得,結(jié)合,可得即可得關(guān)于n的方程,計算可求解n值.【詳解】證明:過點O作OG∥AB,∵AB∥CD,∴AB∥OG∥CD,∴∴即∵∠EOF=100°,∴∠;(2)解:過點M作MK∥AB,過點N作NH∥CD,∵EM平分∠BEO,F(xiàn)N平分∠CFO,設(shè)∵∴∴x-y=40°,∵MK∥AB,NH∥CD,AB∥CD,∴AB∥MK∥NH∥CD,∴∴=x-y=40°,的值為40°;(3)如圖,設(shè)直線FK與EG交于點H,F(xiàn)K與AB交于點K,∵AB∥CD,∴∵∴∵∴即∵FK在∠DFO內(nèi),∴,∵∴∴即∴解得.經(jīng)檢驗,符合題意,故答案為:.【點睛】本題主要考查平行線的性質(zhì),角平分線的定義,靈活運用平行線的性質(zhì)是解題的關(guān)鍵.3.(1)40°;(2)65°;(3)存在,56°或20°【分析】(1)依據(jù)平行線的性質(zhì)以及角平分線的定義,即可得到∠PCG的度數(shù);(2)依據(jù)平行線的性質(zhì)以及角平分線的定義,即可得到∠ECG=∠GCF=25°,再根據(jù)PQ∥CE,即可得出∠CPQ=∠ECP=65°;(3)設(shè)∠EGC=4x,∠EFC=3x,則∠GCF=4x-3x=x,分兩種情況討論:①當點G、F在點E的右側(cè)時,②當點G、F在點E的左側(cè)時,依據(jù)等量關(guān)系列方程求解即可.【詳解】解:(1)∵∠CEB=100°,AB∥CD,∴∠ECQ=80°,∵∠PCF=∠PCQ,CG平分∠ECF,∴∠PCG=∠PCF+∠FCG=∠QCF+∠FCE=∠ECQ=40°;(2)∵AB∥CD∴∠QCG=∠EGC,∠QCG+∠ECG=∠ECQ=80°,∴∠EGC+∠ECG=80°,又∵∠EGC-∠ECG=30°,∴∠EGC=55°,∠ECG=25°,∴∠ECG=∠GCF=25°,∠PCF=∠PCQ=(80°-50°)=15°,∵PQ∥CE,∴∠CPQ=∠ECP=65°;(3)設(shè)∠EGC=4x,∠EFC=3x,則∠GCF=∠FCD=4x-3x=x,①當點G、F在點E的右側(cè)時,則∠ECG=x,∠PCF=∠PCD=x,∵∠ECD=80°,∴x+x+x+x=80°,解得x=16°,∴∠CPQ=∠ECP=x+x+x=56°;②當點G、F在點E的左側(cè)時,則∠ECG=∠GCF=x,∵∠CGF=180°-4x,∠GCQ=80°+x,∴180°-4x=80°+x,解得x=20°,∴∠FCQ=∠ECF+∠ECQ=40°+80°=120°,∴∠PCQ=∠FCQ=60°,∴∠CPQ=∠ECP=80°-60°=20°.【點睛】本題主要考查了平行線的性質(zhì),解題時注意:兩直線平行,同旁內(nèi)角互補;兩直線平行,內(nèi)錯角相等.4.(1);(2)見解析;(3)105°【分析】(1)通過平行線性質(zhì)和直角三角形內(nèi)角關(guān)系即可求解.(2)過點B作BG∥DM,根據(jù)平行線找角的聯(lián)系即可求解.(3)利用(2)的結(jié)論,結(jié)合角平分線性質(zhì)即可求解.【詳解】解:(1)如圖1,設(shè)AM與BC交于點O,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠ABC=90°,∴∠A+∠AOB=90°,∠A+∠C=90°,故答案為:∠A+∠C=90°;(2)證明:如圖2,過點B作BG∥DM,∵BD⊥AM,∴DB⊥BG,∴∠DBG=90°,∴∠ABD+∠ABG=90°,∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,∴∠C=∠CBG,∴∠ABD=∠C;(3)如圖3,過點B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)知∠ABD=∠CBG,∴∠ABF=∠GBF,設(shè)∠DBE=α,∠ABF=β,則∠ABE=α,∠ABD=2α=∠CBG,∠GBF=∠AFB=β,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°得:2α+β+3α+3α+β=180°,∵AB⊥BC,∴β+β+2α=90°,∴α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.故答案為:105°.【點睛】本題考查平行線性質(zhì),畫輔助線,找到角的和差倍分關(guān)系是求解本題的關(guān)鍵.5.(1)20,20,;(2);(3)的值不變,【分析】(1)根據(jù),即可計算和的值,再根據(jù)內(nèi)錯角相等可證;(2)先根據(jù)內(nèi)錯角相等證,再根據(jù)同旁內(nèi)角互補和等量代換得出;(3)作的平分線交的延長線于,先根據(jù)同位角相等證,得,設(shè),,得出,即可得.【詳解】解:(1),,,,,,,;故答案為:20、20,;(2);理由:由(1)得,,,,,,,;(3)的值不變,;理由:如圖3中,作的平分線交的延長線于,,,,,,,,設(shè),,則有:,可得,,.【點睛】本題主要考查平行線的判定與性質(zhì),熟練掌握內(nèi)錯角相等證平行,平行線同旁內(nèi)角互補等知識是解題的關(guān)鍵.6.(1);(2)①;②【分析】(1)由平行線的性質(zhì)得到,由折疊的性質(zhì)可知,∠2=∠BFE,再根據(jù)平角的定義求解即可;(2)①由(1)知,,根據(jù)平行線的性質(zhì)得到,再由折疊的性質(zhì)及平角的定義求解即可;②由(1)知,∠BFE=,由可知:,再根據(jù)條件和折疊的性質(zhì)得到,即可求解.【詳解】解:(1)如圖,由題意可知,∴,∵,∴,,由折疊可知.(2)①由題(1)可知,∵,,再由折疊可知:,;②由可知:,由(1)知,,又的度數(shù)比的度數(shù)大,,,,.【點睛】此題考查了平行線的性質(zhì),屬于綜合題,有一定難度,熟記“兩直線平行,同位角相等”、“兩直線平行,內(nèi)錯角相等”及折疊的性質(zhì)是解題的關(guān)鍵.7.7或-1.【分析】根據(jù)題目中給出的方法,對所求式子進行變形,求出x、y的值,進而可求x+y的值.【詳解】解:∵,∴,∴=0,=0∴x=±4,y=3當x=4時,x+y=4+3=7當x=-4時,x+y=-4+3=-1∴x+y的值是7或-1.【點睛】本題考查實數(shù)的運算,解題的關(guān)鍵是弄清題中給出的解答方法,然后運用類比的思想進行解答.8.7或-1.【分析】根據(jù)題目中給出的方法,對所求式子進行變形,求出x、y的值,進而可求x+y的值.【詳解】解:∵,∴,∴=0,=0∴x=±4,y=3當x=4時,x+y=4+3=7當x=-4時,x+y=-4+3=-1∴x+y的值是7或-1.【點睛】本題考查實數(shù)的運算,解題的關(guān)鍵是弄清題中給出的解答方法,然后運用類比的思想進行解答.9.(1)x7-1;(2)xn+1-1;(3).【分析】(1)仿照已知等式寫出答案即可;(2)先歸納總結(jié)出規(guī)律,然后按規(guī)律解答即可;(3)先利用得出規(guī)律的變形,然后利用規(guī)律解答即可.【詳解】解:(1)根據(jù)題意得:(x-1)(x6+x5+x4+x3+x2+x+1)=x7-1;(2)根據(jù)題意得:(x-1)(x"+x"-1+.…+x+1)=x"+1-1;(3)原式=×(3-1)(1+3+32+···+349+350)=×(x50+1-1)=故答案為:(1)x7-1;(2)xn+1-1;(3).【點睛】本題考查了平方差公式以及規(guī)律型問題,弄清題意、發(fā)現(xiàn)數(shù)字的變化規(guī)律是解答本題的關(guān)鍵.10.(1)兩;右;一;(2)12.25;0.3873;(3)被開方數(shù)的小數(shù)點向右(左)移三位,其立方根的小數(shù)點向右(左)移動一位;(4)-0.01【分析】(1)觀察已知等式,得到一般性規(guī)律,寫出即可;(2)利用得出的規(guī)律計算即可得到結(jié)果;(3)歸納總結(jié)得到規(guī)律,寫出即可;(4)利用得出的規(guī)律計算即可得到結(jié)果.【詳解】解:(1),,,……,,,……由此可見,被開方數(shù)的小數(shù)點每向右移動兩位,其算術(shù)平方根的小數(shù)點向右移動一位.故答案為:兩;右;一;(2)已知,,則;;故答案為:12.25;0.3873;(3),,,……小數(shù)點的變化規(guī)律是:被開方數(shù)的小數(shù)點向右(左)移三位,其立方根的小數(shù)點向右(左)移動一位;(4)∵,,∴,∴,∴y=-0.01.【點睛】此題考查了立方根,以及算術(shù)平方根,弄清題中的規(guī)律是解本題的關(guān)鍵.11.(1);(2)見解析;(3)【分析】(1)根據(jù)的定義,可以直接計算得出;(2)設(shè),得到新的三個數(shù)分別是:,這三個新三位數(shù)的和為,可以得到:;(3)根據(jù)(2)中的結(jié)論,猜想:.【詳解】解:(1)已知,所以新的三個數(shù)分別是:,這三個新三位數(shù)的和為,;同樣,所以新的三個數(shù)分別是:,這三個新三位數(shù)的和為,.(2)設(shè),得到新的三個數(shù)分別是:,這三個新三位數(shù)的和為,可得到:,即等于x的各數(shù)位上的數(shù)字之和.(3)設(shè),由(2)的結(jié)論可以得到:,,,根據(jù)三位數(shù)的特點,可知必然有:,,故答案是:.【點睛】此題考查了多位數(shù)的數(shù)字特征,每個數(shù)字是10以內(nèi)的自然數(shù)且不為0,解題的關(guān)鍵是:結(jié)合新定義,可以計算出問題的解,注意把握每個數(shù)字都會出現(xiàn)一次的特點,區(qū)別數(shù)字與多為數(shù)的不同.12.(1);;(2);;(3).【分析】(1)觀察前4個等式的分母先得出第5個式子的分母,再依照前4個等式即可得出答案;(2)根據(jù)前4個等式歸納類推出一般規(guī)律即可;(3)利用題(2)的結(jié)論,先寫出中各數(shù)的值,然后通過提取公因式、有理數(shù)加減法、乘法運算計算即可.【詳解】(1)觀察前4個等式的分母可知,第5個式子的分母為則第5個式子為:故應(yīng)填:;;(2)第1個等式的分母為:第2個等式的分母為:第3個等式的分母為:第4個等式的分母為:歸納類推得,第n個等式的分母為:則第n個等式為:(n為正整數(shù))故應(yīng)填:;;(3)由(2)的結(jié)論得:則.【點睛】本題考查了有理數(shù)運算的規(guī)律類問題,依據(jù)已知等式歸納總結(jié)出等式的一般規(guī)律是解題關(guān)鍵.13.(1),;(2);(3)【解析】【分析】(1)利用非負數(shù)的性質(zhì)即可解決問題;(2)利用三角形面積求法,由列方程組,求出點C坐標,進而由△ACD面積求出D點坐標.(3)由平行線間距離相等得到,繼而求出E點坐標,同理求出F點坐標,再由GE=12求出G點坐標,根據(jù)求出PG的長即可求P點坐標.【詳解】解:(1),∴,,,,,,,(2)由∴,,,如圖1,連,作軸,軸,,即,,,而,,,,(3)如圖2:∵EF∥AB,∴,∴,即,,,,,,,,,,,,,,【點睛】本題考查的是二元一次方程的應(yīng)用、三角形的面積公式、坐標與圖形的性質(zhì)、平移的性質(zhì),靈活運用分情況討論思想、掌握平移規(guī)律是解題的關(guān)鍵.14.(1)說明過程請看解答;(2)說明過程請看解答;(3)∠BED=360°-2∠BFD.【分析】(1)圖1中,過點E作EG∥AB,則∠BEG=∠ABE,根據(jù)AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,進而可得∠BED=∠ABE+∠CDE;(2)圖2中,根據(jù)∠ABE的平分線與∠CDE的平分線相交于點F,結(jié)合(1)的結(jié)論即可說明:∠BED=2∠BFD;(3)圖3中,根據(jù)∠ABE的平分線與∠CDE的平分線相交于點F,過點E作EG∥AB,則∠BEG+∠ABE=180°,因為AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,再結(jié)合(1)的結(jié)論即可說明∠BED與∠BFD之間的數(shù)量關(guān)系.【詳解】解:(1)如圖1中,過點E作EG∥AB,則∠BEG=∠ABE,因為AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,所以∠BEG+∠DEG=∠ABE+∠CDE,即∠BED=∠ABE+∠CDE;(2)圖2中,因為BF平分∠ABE,所以∠ABE=2∠ABF,因為DF平分∠CDE,所以∠CDE=2∠CDF,所以∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF),由(1)得:因為AB∥CD,所以∠BED=∠ABE+∠CDE,∠BFD=∠ABF+∠CDF,所以∠BED=2∠BFD.(3)∠BED=360°-2∠BFD.圖3中,過點E作EG∥AB,則∠BEG+∠ABE=180°,因為AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,所以∠BEG+∠DEG=360°-(∠ABE+∠CDE),即∠BED=360°-(∠ABE+∠CDE),因為BF平分∠ABE,所以∠ABE=2∠ABF,因為DF平分∠CDE,所以∠CDE=2∠CDF,∠BED=360°-2(∠ABF+∠CDF),由(1)得:因為AB∥CD,所以∠BFD=∠ABF+∠CDF,所以∠BED=360°-2∠BFD.【點睛】本題考查了平行線的性質(zhì),解決本題的關(guān)鍵是掌握平行線的性質(zhì).15.(1)(3,0);(2)①P1;②或;(3)【分析】(1)根據(jù)“l(fā)型平移”的定義解決問題即可.(2)①畫出線段A1B1即可判斷.②根據(jù)定義求出t最大值,最小值即可判斷.(3)如圖2中,觀察圖象可知,當B′在線段B′B″上時,B'M的最小值保持不變,最小值為.【詳解】(1)將點A(2,1)進行“l(fā)型平移”后的對應(yīng)點A'的坐標為(3,0),故答案為:(3,0);(2)①如圖1中,觀察圖象可知,將線段AB進行“﹣l型平移”后得到線段A'B',點P1(1.5,2),P2(2,3),P3(3,0)中,在線段A′B′上的點是P1,故答案為:P1;②若線段AB進行“t型平移”后與坐標軸有公共點,則t的取值范圍是﹣4≤t≤﹣2或t=1.故答案為:﹣4≤t≤﹣2或t=1.(3)如圖2中,觀察圖象可知,當B′在線段B′B″上時,B'M的最小值保持不變,最小值為,此時1≤t≤3.故答案為:1≤t≤3.【點睛】本題屬于幾何變換綜合題,考查了平移變換,“t型平移”的定義等知識,解題的關(guān)鍵理解題意,靈活運用所學知識解決問題,學會利用圖象法解決問題,屬于中考創(chuàng)新題型.16.(1)①B;②7或;(2)或或;(3)n≥.【分析】(1)①直接根據(jù)新定義的概念即可求出答案;②根據(jù)新定義的概念列出絕對值方程即可求解;(2)設(shè)P點所表示的數(shù)為4-2t,再根據(jù)新定義的概念列出方程即可求解;(3)分,,三種情況分別表示出PN的值,再根據(jù)PN的范圍列出不等式組即可求解.【詳解】(1)①由數(shù)軸可知,點A表示的數(shù)為-1,點B表示的數(shù)為2,點C表示的數(shù)為1,點D表示的數(shù)為0,∴AD=1,AC=2∴AD=AC∴點A不是的2倍點∴BD=2,BC=1∴BD=2BC∴點B是的2倍點故答案為:B;②若點C是點的3倍點∴CM=3CN設(shè)點C表示的數(shù)為x∴CM=,CN=∴=3即或解得x=7或x=∴數(shù)7或表示的點是的3倍點.故答案為:7或;(2)設(shè)點P表示的數(shù)為4-2t,∴PM=,PN=2t∵若恰好是和兩點的倍點,∴當點P是的n倍點∴PM=nPN∴=n×2t即6-2t=2nt或6-2t=-2nt解得或∵n>1∴∴當點P是的n倍點∴PN=nPM∴2t=n×即2t=n×或-2t=n×解得或∴符合條件的t值有或或;(3)∵PN=2t∴當時,PN=當時,PN=,當時,PN=∵點P均在點N的可視距離之內(nèi)∴PN≤30∴解得n≥∴n的取值范圍為n≥.【點睛】此題主要考查主要方程與不等式組的應(yīng)用,解題的關(guān)鍵是根據(jù)新定義概念列出方程或不等式求解.17.(1),,;(2)存在,或;(3)存在,或;(4)存在,的縱坐標總是4或.或者:點在平行于軸且與軸的距離等于4的兩條直線上;或者:點在直線或直線上【分析】(1)根據(jù)點的平移規(guī)律,即可得到對應(yīng)點坐標;(2)由,可以得到,即可得到P點坐標;(3)由,可以得到,結(jié)合點C坐標,就可以求得點Q坐標;(4)由,可以AB邊上的高的長度,從而得到點的坐標規(guī)律.【詳解】(1)∵點,點∴向上平移3個單位,再向右平移1個單位之后對應(yīng)點坐標為,點∴∴(2)存在,理由如下:∵即:=12∴∴或(3)存在,理由如下:∵即:∵∴∵∴或(4)存在:理由如下:∵∴設(shè)中,AB邊上的高為h則:∴∴點在直線或直線上【點睛】本題考查直角坐標系中點的坐標平移規(guī)律,由點到坐標軸的距離確定點坐標等知識點,根據(jù)相關(guān)內(nèi)容解題是關(guān)鍵.18.(1)(2,6);(2)(,0)或(9,0);(3)∠OCD+∠DBA=∠BDC或∠OCD-∠DBA=∠BDC【分析】(1)由點的坐標的特點,確定出FC=2,OF=6,得出C(2,6);(2)分點D在線段OA和在OA延長線兩種情況進行計算;(3)分點D在線段OA上時,∠OCD+∠DBA=∠BDC和在OA延長線∠OCD-∠DBA=∠BDC兩種情況進行計算.【詳解】解:(1)如圖,過點C作CF⊥y軸,垂足為F,過B作BE⊥x軸,垂足為E,∵A(6,0),B(8,6),∴FC=AE=8-6=2,OF=BE=6,∴C(2,6);(2)設(shè)D(x,0),當△ODC的面積是△ABD的面積的3倍時,若點D在線段OA上,∵OD=3AD,∴×6x=3××6(6-x),∴x=,∴D(,0);若點D在線段OA延長線上,∵OD=3AD,∴×6x=3××6(x-6),∴x=9,∴D(9,0);(3)如圖,過點D作DE∥OC,由平移的性質(zhì)知OC∥AB.∴OC∥AB∥DE.∴∠OCD=∠CDE,∠EDB=∠DBA.若點D在線段OA上,∠BDC=∠CDE+∠EDB=∠OCD+∠DBA,即∠OCD+∠DBA=∠BDC;若點D在線段OA延長線上,∠BDC=∠CDE-∠EDB=∠OCD-∠DBA,即∠OCD-∠DBA=∠BDC.【點睛】此題是幾何變換綜合題,主要考查了點三角形面積的計算方法,平移的性質(zhì),平行線的性質(zhì)和判定,解本題的關(guān)鍵是分點D在線段OA上,和OA延長線上兩種情況.19.(1)-4,4;(2)購買20支鉛筆、20塊橡皮、20本日記本共需120元;(3)1【分析】(1)由①-②得2x-2y=-8,則x-y=-4,再由①+②得4x+4y=16,則x+y=4;(2)設(shè)1支鉛筆x元,1塊橡皮y元,1本日記本z元,由題意:買5支鉛筆、3塊橡皮、2本日記本共需32元,買9支鉛筆、5塊橡皮、3本日記本共需58元,列出方程組,再由整體思想”求出x+y+z=6,即可求解;(3)由定義新運算:x※y=ax+by+c得1※4=a+4b+c=16①,1※5=a+5b+c=21②,求出a+b+c=1,即可求解.【詳解】解:(1),①-②得:2x-2y=-8,∴x-y=-4,①+②得:4x+4y=16,∴x+y=4,故答案為:-4,4;(2)設(shè)1支鉛筆x元,1塊橡皮y元,1本日記本z元,由題意得:,①×2-②得:x+y+z=6,∴20x+20y+20z=20(x+y+z)=20×6=120,即購買20支鉛筆、20塊橡皮、20本日記本共需120元;(3)∵x※y=ax+by+c,∴1※4=a+4b+c=16①,1※5=a+5b+c=21②,②-①得:b=5,∴a+c=16-4b=-4,∴a+b+c=1,∴1※1=a+b+c=1.【點睛】本題考查了二元一次方程組的應(yīng)用、整體思想以及新運算等知識;熟練掌握整體思想和新運算,找準等量關(guān)系,列出方程組是解題的關(guān)鍵.20.(1)按照這樣的生產(chǎn)方式,工廠每天能配套組成48套GH型電子產(chǎn)品;(2)x=.【解析】【分析】(1)設(shè)x人加工G型裝置,y人加工H型裝置,由題意可得:,解方程組,再由G配件總數(shù)除以4可得總套數(shù);(2)由題意可知:3(6x+4m)=3(80-x)×4,再用含m的式子表示x.【詳解】解:(1)設(shè)x人加工G型裝置,y人加工H型裝置,由題意可得:解得:,6×32÷4=48(套),答:按照這樣的生產(chǎn)方式,工廠每天能配套組成48套GH型電子產(chǎn)品.(2)由題意可知:3(6x+4m)=3(80-x)×4,解得:x=,【點睛】本題考核知識點:列方程組解應(yīng)用題.解題關(guān)鍵點:找出相等關(guān)系,列出方程.21.(1)七(1)班有47人,七(2)班有51人;(2)如果兩個班聯(lián)合起來買票,不可以買單價為9元的票,省錢的方法,可以買101張票,多余的作廢即可【解析】【分析】(1)由兩個班聯(lián)合起來,作為一個團體購票,則需付1078元可知:可得票價不是9元,所以兩個班的總?cè)藬?shù)沒有超過100人,設(shè)七(1)班有x人,七(2)班有y人,可列方程組,解方程組即可得答案;(2)如果兩班聯(lián)合起來作為一個團體購票,則每張票11元,省錢的方法,可以買101張票,多余的作廢即可?!驹斀狻拷猓海?)∵兩個班聯(lián)合起來,作為一個團體購票,則需付1078元有∵可得票價不是9元,所以兩個班的總?cè)藬?shù)沒有超過100人,∴設(shè)七(1)班有x人,七(2)班有y人,依題意得:∴七(1)班有47人,七(2)班有51人(2)因為47+51=98<100∴如果兩個班聯(lián)合起來買票,不可以買單價為9元的票∴省錢的方法,可以買101張票,多余的作廢即可??墒。骸军c睛】熟練掌握二元一次方程組的實際問題是解題的關(guān)鍵。22.(1)2(a+b);(2)(2+);(2+);(3)36.【分析】(1)根據(jù)兩地間的距離=兩人的速度之和×第一次相遇所需時間,即可得出結(jié)論;(2)利用時間=路程÷速度結(jié)合2小時后第一次相遇,即可得出結(jié)論;(3)設(shè)AB兩地的距離為S千米,根據(jù)路程=速度×時間,即可得出關(guān)于(a+b),S的二元一次方程組(此處將a+b當成一個整體),解之即可得出結(jié)論.【詳解】(1)A、B兩地的距離可以表示為2(a+b)千米.故答案為:2(a+b).(2)甲乙相遇時,甲已經(jīng)走了千米,乙已經(jīng)走了千米,根據(jù)相遇后他們的速度都提高了1千米/小時,得甲還需小時到達B地,乙還需小時到達A地,所以甲從A到B所用的時間為(2+)小時,乙從B到A所用的時間為(2+)小時.故答案為:(2+);(2+).(3)設(shè)AB兩地的距離為S千米,3小時36分鐘=小時.依題意,得:,令x=a+b,則原方程變形為,解得:.答:AB兩地的距離為36千米.【點睛】本題考查了列代數(shù)式以及二元一次方程組的應(yīng)用,找準等量關(guān)系,正確列出二元一次方程組是解題的關(guān)鍵.23.(1)87和12是“黃金搭檔數(shù)”,62和49不是“黃金搭檔數(shù)”,理由見解析;(2)39或38【分析】(1)根據(jù)“黃金搭檔數(shù)”的定義分別判斷即可;(2)由已知設(shè)x,y為整數(shù),x,z為整數(shù),表示出,由s和t是一對“黃金搭檔數(shù)”,并且s與t的和能被7整除,綜合分析,列出方程組求解即可.【詳解】(1)解:∵∴87和12是一對“黃金搭檔數(shù)”;∵∴111與62,49數(shù)位不相同,∴62和49不是一對“黃金搭檔數(shù)”;故87和12是一對“黃金搭檔數(shù)”,62和49不是一對“黃金搭檔數(shù)”;(2)∵兩位數(shù)s和兩位數(shù)t的十位數(shù)字相同,∴設(shè)x,y為整數(shù),x,z為整數(shù),∴∵s和t是一對“黃金搭檔數(shù)”,∴是一個兩位數(shù),且各個數(shù)位上的數(shù)相同,又∵s與t的和能被7整除,∴,共有兩種情況:①,解得,∵x為整數(shù),∴不合題意,舍去;②,∵都是整數(shù),且∴解得或,故s為39或38.【點睛】本題考查三元一次方程組的整數(shù)解,解題關(guān)鍵是理解題目中的定義,根據(jù)已知條件列出方程組.24.(1)有3種租車方案;(2)租5輛大客車,2輛小客車最省錢;(3)租用大客車2輛,小客車7輛;或租10輛小客車.【分析】(1)設(shè)租大客車x輛,根據(jù)題意可列出關(guān)于x的不等式,求得不等式的解集后,再根據(jù)x為整數(shù)即可確定租車方案;(2)依次計算(1)題中的租車方案,比較結(jié)果即可得出答案;(3)設(shè)租大客車x輛,小客車y輛,根據(jù)客車的座位數(shù)滿足的條件可確定x、y滿足的不等式組,進一步可確定x、y滿足的方程,再由帶隊的老師數(shù)可確定x、y滿足的不等式,二者結(jié)合即可確定租車方案.【詳解】解:(1)由題意知:本次乘車共270+7=277(人).設(shè)租大客車x輛,則小客車(7-x)輛,根據(jù)題意,得,解得:,因為x為整數(shù),且x≤7,所以x=5,6,7,即有3種租車方案.(2)方案一:當x=7,所租7輛皆為大客車時,租車費用為:7×400=2800(元),方案二:當x=6,所租6輛為大客車,1輛為小客車時,租車費用為:6×400+300=2700(元),方案三:當x=5,所租5輛為大客車,2輛為小客車時,租車費用為:5×400+300×2=2600(元),所以,租5輛大客車,2輛小客車最省錢.(3)乘車總?cè)藬?shù)為270+7+10+4=291(人),因為最后一輛小客車最少20人,則客車空位不能大于10個,所以客車的總座位數(shù)應(yīng)滿足:291≤座位數(shù)≤301.設(shè)租大客車x輛,小客車y輛,則291≤45x+30y≤301,即,∵x、y均為整數(shù),∴3x+2y=20,即.∵每輛大客車有2名教師帶隊,每輛小客車至少有名教師帶隊,∴2x+y≤11.把代入上式,得,解得.又∵x為整數(shù)且是2的倍數(shù),∴x=2,y=7或x=0,y=10.故租車方案為:租大客車2輛,小客車7輛;或租10輛小客車.【點睛】本題考查了不等式和不等式組的實際應(yīng)用、二元一次方程的整數(shù)解等知識,正確理解題意,列出不等式和不等式組是解題的關(guān)鍵.25.(1);(2)該公司有6種購買方案,方案1:購買10臺乙型設(shè)備;方案2:購買1臺甲型設(shè)備,9臺乙型設(shè)備;方案3:購買2臺甲型設(shè)備,8臺乙型設(shè)備;方案4:購買3臺甲型設(shè)備,7臺乙型設(shè)備;方案5:購買4臺甲型設(shè)備,6臺乙型設(shè)備;方案6:購買5臺甲型設(shè)備,5臺乙型設(shè)備;(3)最省錢的購買方案為:購買4臺甲型設(shè)備,6臺乙型設(shè)備.【分析】(1)由一臺A型設(shè)備的價格是x萬元,一臺乙型設(shè)備的價格是y萬元,根據(jù)題意得等量關(guān)系:購買一臺甲型設(shè)備-購買一臺乙型設(shè)備=2萬元,購買4臺乙型設(shè)備-購買3臺甲型設(shè)備=2萬元,根據(jù)等量關(guān)系,列出方程組,再解即可;(2)設(shè)購買甲型設(shè)備m臺,則購買乙型設(shè)備(10-m)臺,由題意得不等關(guān)系:購買甲型設(shè)備的花費+購買乙型設(shè)備的花費≤91萬元,根據(jù)不等關(guān)系列出不等式,再解即可;(3)由題意可得:甲型設(shè)備處理污水量+乙型設(shè)備處理污水量≥2750噸,根據(jù)不等關(guān)系,列出不等式,再解即可.【詳解】(1)依題意,得:,解得:.(2)設(shè)該治污公司購進m臺甲型設(shè)備,則購進(10﹣m)臺乙型設(shè)備,依題意,得:10m+8(10﹣m)≤91,解得:m≤5.又∵m為非零整數(shù),∴m=0,1,2,3,4,5,∴該公司有6種購買方案,方案1:購買10臺乙型設(shè)備;方案2:購買1臺甲型設(shè)備,9臺乙型設(shè)備;方案3:購買2臺甲型設(shè)備,8臺乙型設(shè)備;方案4:購買3臺甲型設(shè)備,7臺乙型設(shè)備;方案5:購買4臺甲型設(shè)備,6臺乙型設(shè)備;方案6:購買5臺甲型設(shè)備,5臺乙型設(shè)備.(3)依題意,得:300m+260(10﹣m)≥2750,解得:m≥3,∴m=4,5.當m=4時,總費用為10×4+8×6=88(萬元);當m=5時,總費用為10×5+8×5=90(萬元).∵88<90,∴最省錢的購買方案為:購買4臺甲型設(shè)備,6臺乙型設(shè)備.【點睛】此題主要考查了二元一次方程組的應(yīng)用和一元一次不等式的應(yīng)用,關(guān)鍵是正確理解題意,找出題目中的等量關(guān)系和不等關(guān)系,列出方程(組)和不等式.26.(1);(2);(3)當點C在x軸的正半軸上時,;當點C在點A和點O之間時,,理由見解析.【分析】(1)由非負性可得,解方程組可求解a,b的值,即可求解;(2)由平移的性質(zhì)可得AC=m-(-3)=m+3,OB=2,由三角
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 大學課件輔導
- 張家口市人民醫(yī)院胃鏡檢查醫(yī)師上崗資格認證
- 承德市人民醫(yī)院老年心力衰竭急性加重處理考核
- 2025廣東運管所郁南縣亮麗路燈管理有限公司招聘員工1名考前自測高頻考點模擬試題及參考答案詳解
- 北京市中醫(yī)院喉癌部分切除術(shù)操作資格認證
- 2025第二人民醫(yī)院感染指標判讀考核
- 滄州市人民醫(yī)院傷口分期標準掌握考核
- 2025中心醫(yī)院醫(yī)療器械消毒滅菌考核
- 天津市人民醫(yī)院絨毛穿刺取樣技術(shù)專項技能考核
- 2025人民醫(yī)院燒傷康復治療方案制定考核
- 迪爾凱姆社會學主義的巨擎匯總課件
- 家庭經(jīng)濟困難學生認定申請表
- 血栓性血小板減少性紫癜ttp匯編課件
- 閥門安裝及閥門安裝施工方案
- 大學數(shù)學《實變函數(shù)》電子教案
- YY/T 0640-2008無源外科植入物通用要求
- GB/T 29531-2013泵的振動測量與評價方法
- GB/T 2637-2016安瓿
- 循環(huán)系統(tǒng)查體培訓課件
- 數(shù)軸上的動點問題課件
- 省級公開課(一等獎)雨巷-戴望舒課件
評論
0/150
提交評論