小升初數(shù)學(xué)思維拓展《相遇問題》專項(xiàng)練習(xí)(含答案)_第1頁
小升初數(shù)學(xué)思維拓展《相遇問題》專項(xiàng)練習(xí)(含答案)_第2頁
小升初數(shù)學(xué)思維拓展《相遇問題》專項(xiàng)練習(xí)(含答案)_第3頁
小升初數(shù)學(xué)思維拓展《相遇問題》專項(xiàng)練習(xí)(含答案)_第4頁
小升初數(shù)學(xué)思維拓展《相遇問題》專項(xiàng)練習(xí)(含答案)_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

相遇問題

小升初數(shù)學(xué)思維拓展行程問題專項(xiàng)訓(xùn)練

(知識梳理+典題精講+專項(xiàng)訓(xùn)練)

知擁梳理

1、兩個(gè)運(yùn)動物體作相向運(yùn)動或在環(huán)形跑道上作背向運(yùn)動,隨著時(shí)間的發(fā)展,必然面對面地

相遇,這類問題叫做相遇問題.它的特點(diǎn)是兩個(gè)運(yùn)動物沐共同走完整個(gè)路程.

2、小學(xué)數(shù)學(xué)教材中的行程問題,一般是指相遇問題.

相遇問題根據(jù)數(shù)量關(guān)系可分成三種類型:求路程,求相遇時(shí)間,求速度.

它們的基本關(guān)系式如下:

總路程二(甲速+乙速)X相遇時(shí)間

相遇時(shí)間二總路程:(甲速+乙速)

另一個(gè)速度二甲乙速度和一已知的一個(gè)速度.

I

藥觀褊也,

【典例一】甲每小時(shí)行10千米,乙每小時(shí)行8千米,丙每小時(shí)行6千米.一天,甲從A地,

乙、丙從4地同時(shí)相向而行,途中甲、乙相遇后各自繼續(xù)前行,又經(jīng)過!小時(shí)甲遇到丙。A,

4

A兩地相距多少千米?

【分析】設(shè)甲、乙相遇用的時(shí)間為x小時(shí),甲、乙相遇后甲與丙的路程是乙與丙行的路程差

即(8x-6x)千米,再根據(jù)路程=速度x時(shí)間,求出x,再求出A,8兩地路程即可。

【解答】解:設(shè)甲、乙相遇用的時(shí)間為x小時(shí),

8x-6.r=(10+6)x—

4

2x=4

x=2

(10+8)x2

=18x2

=36(千米)

答:A、3兩地相距36千米。

【點(diǎn)評】本題主要考查了相遇問題,解題的關(guān)鍵是求出甲、乙相遇用的時(shí)間。

【典例二】甲、乙兩地相距1100米,小紅和小明分別從兩地同時(shí)相對而行,5分鐘后相遇,

小紅每分鐘走100米,小明每分鐘走多少來?(綜合算式)

【分析】先根據(jù)速度和二總路程+相遇時(shí)間,求出兩人的速度和,再減小紅的速度即可解答.

【解答】解:1100+5-100

=220-10()

=120(米)

答:小明每分鐘走120米.

【點(diǎn)評】解答本題的關(guān)鍵是依據(jù)等量關(guān)系式:速度=路程+時(shí)間,求出兩人的速度和.

【典例三】甲乙兩地相距2404〃,客車從甲地到乙地需要4小時(shí),貨車從甲地到乙地需要6

小時(shí).兩車同時(shí)從甲乙兩地同時(shí)出發(fā),相向而行,幾小時(shí)后相遇?

【分析】先依據(jù)速度=路程+時(shí)間,分別求出客車和貨車的速度,再求出兩車的速度和,最

后運(yùn)用時(shí)間二路程+速度即可解答.

【解答】解:240+(240+4+240+6)

=240+(60+40)

=2404-100

=2.4(小時(shí))

答:2.4小時(shí)后相遇.

【點(diǎn)評】本題還可以這樣解答:把兩地間的距離看作單位“1”,1+,+,).

專項(xiàng)制稱

一.選擇意(共8小期)

1.甲從A地,乙從8地同時(shí)以均勻的速度相向而行,第一次相遇A地6千米,繼續(xù)癖進(jìn),

到達(dá)對方起點(diǎn)后立即返回,在離占地3千米處第二次相遇,則A、3兩地相距()千米.

A.10B.12C.18D.15

2.甲乙兩輛汽車分別從4、3兩地同時(shí)開出,相向而行,6時(shí)后在距中點(diǎn)15千米處相遇,已

知甲車速度是乙車速度的‘,求A、A兩地間的距離.正確的列式是()

A.15x24-(10-7)x(10+7)B.154-(10-7)x(10+7)

77

C.15x64-(1——)D.154-6-5-(1——)x6

1010

3.甲、乙兩人由相距60k〃的兩地同時(shí)出發(fā)相向而行,甲步行每小時(shí)走5k〃,乙騎自行車,

3萬后兩人相遇,則乙的速度為每小時(shí)()

A.5kmB.C.\5bnD.20k〃

4.小松、小菊比賽登樓梯.他們在一憧高樓的地面(一樓)出發(fā),到達(dá)28樓后立即返回地

面.當(dāng)小松到達(dá)4樓時(shí),小菊剛到達(dá)3樓,如果他們保特固定的速度,那么小松到達(dá)28樓

后返回地面途中,將于小菊在幾樓相遇.(注:一樓與二樓之間的樓梯,均屬于一樓,以下

類推.)()

A.20B.21C.22D.23

5.兩列高鐵分別從A城和4城相對開出,2小時(shí)相遇,A城開出的高鐵平均速度是240千

米/時(shí),"城開出的高鐵平均速度是264千米/時(shí)。求人、A兩城相距多少千米,下列算式

錯誤的是()

A.2x240+2x264B.2x240+264C.2x(240+264)D.(240+264)x2

6.明明和爸爸一起去圓形街心花園散步,明明走一圈需要8分鐘,爸爸走一回需要12分

鐘。如果兩人同時(shí)同地出發(fā),相背而行,()后相遇。

A.8分鐘B.12分鐘C.4.8分鐘D.4.5分鐘

7.A,A兩地的鐵路長660千米,甲、乙兩列火車分別從4兩地同時(shí)出發(fā),相向而行,

甲車每時(shí)行駛60千米,乙車每時(shí)行駛72千米。相遇地點(diǎn)距離中點(diǎn)()千米。

A.300B.360C.60D.30

8.如圖,有一段山路,從A到8是2千米的上坡路,從8到C是4千米的平路,從C到。

是2.4千米的上坡路.歡歡和笑笑分別從A、。同時(shí)出發(fā),相向而行,他們下坡的速度都是

每小時(shí)6千米,平路的速度都是每小時(shí)4千米,上坡的速度都是每小時(shí)2千米,他們經(jīng)過

小時(shí)相遇.()

y4r2.4/D

A

A.0.2B.0.3C,1.2D.1.3

二.填空題(共8小題)

9.兩隊(duì)同學(xué)同時(shí)從相距30千米的甲、乙兩地相向出發(fā),一只鴿子以每小時(shí)20千米的速度

19.客車從甲地到乙地要20小時(shí),貨車從乙地到甲地要30小時(shí),兩車同時(shí)從兩地相對開

出,相遇時(shí)客車比貨車多疔了450千米,甲、乙兩地之間的距離是多少千米?相遇時(shí)客車和

貨車各行了多少千米?

20.西安和合肥是“:一帶一路”戰(zhàn)略規(guī)劃中兩個(gè)重要的內(nèi)陸節(jié)點(diǎn)城市,客、貨兩車分別從

合肥、西安兩地相對開出。已知客、貨兩車的速度比是4:5,兩車在途中相遇后繼續(xù)行駛,

客車把速度提高20%,貨車速度不蠻,再行4小時(shí)后.貨車到達(dá)合肥,而客車離西安還有

116千米,西安合肥兩地相距多少千米?

21.甲、乙兩車分別從A、A兩地同時(shí)出發(fā)相對開出,4小時(shí)相遇,相遇后兩車都以各自原

速繼續(xù)行或,已知甲車又行收了5小時(shí)到達(dá)8地,乙車叉行多少時(shí)間到達(dá)人地?

22.兩輛汽車分別從兩城同時(shí)相向而行,甲車每小時(shí)行39千米,乙車每小時(shí)行48千米,兩

車在離中點(diǎn)40.5千米處相遇.求相遇的時(shí)間?

23.A、8兩車同時(shí)從相距380千米的兩地出發(fā)相向而行,A車的速度是45千米/時(shí),B

車的速度是50千米/時(shí).相遇時(shí)A、B兩車各行駛了多少千米?

24.甲乙兩車從兩地相對開出,甲車每小時(shí)行48千米,每小時(shí)比乙車多行6千米,幾小時(shí)

后在距離中點(diǎn)24千米處相遇,求兩地的路程.

25.南安到梅山的距離大約是28千米.每天早上6:30從南安出發(fā)的客車以每小時(shí)68千米

的速度開往梅山,與此同時(shí)有一輛從梅山出發(fā)的客車以每小時(shí)72千米的速度開往南安.兩

車什么時(shí)候在途中相遇?相遇時(shí)離梅山有多遠(yuǎn)?

26.小明和小美同時(shí)從跑道的一端出發(fā)同向而跑,這條跑道長200米,小明跑到另一端后馬

上返回,在途中與小美相遇,從出發(fā)至相遇一共用了4分鐘,已知小明平均每分鐘跑60米,

小美平均每分鐘跑多少米?

27.甲、乙兩個(gè)運(yùn)動員在操場上練習(xí)跑步.甲運(yùn)動員4分鐘跑完一圈,乙運(yùn)動員6分鐘跑完

一周,甲、乙兩個(gè)運(yùn)動員同時(shí)在同一起點(diǎn)起跑.至少要多少分鐘后兩人在這一起點(diǎn)再次相遇?

參考答案

一.選擇題(共8小題)

1.【分析】第二次相遇兩人總共走了3個(gè)全程,第一次相遇A地6千米,所以甲一個(gè)全程

里走了6千米,三個(gè)全程里應(yīng)該走6x3=18千米,由于到達(dá)對方起點(diǎn)后立即返回,在離8地

3千米處第二次相遇,則口走了一個(gè)全程多了回來那一段,就是距8地的3千米,所以全程

是18-3=15千米.

【解答】解:6x3-3

=18-3,

=15(千米).

即A、4兩地相距15千米.

故選:D.

【點(diǎn)評】在此相遇問題中.第一次相遇兩人共行一個(gè)全程,以后每相遇一次就共行兩個(gè)全程.

2.【分析】根據(jù)題意知:當(dāng)兩車相遇時(shí),快車就比慢車多行了15x2千米,因兩車相遇時(shí),

用的時(shí)間相同,所以它們速度的比和路程的比相等,所以快車比慢車多行了10-7份的路程,

總路程是10+7份.據(jù)此解答.

【解答】解:15x2^(10-7)x(104-7)

=30+3x17

=10x17

=170(千米)

答:A、8兩地間的距離為170千米.

故選:A.

【點(diǎn)評】本題的關(guān)鍵是先求出兩車相遇時(shí)快車比慢車多汗的路程,進(jìn)而解決問題.

3.【答案】C

【分析】可沒乙的速度為大km/h,根據(jù)相遇時(shí)甲走的路程+乙行走的路程=總路程列出方

程求解即可。

【解答】解:設(shè)乙的速度為工?!?萬,根據(jù)題意得:

5x3+3大=60

3x=45

x=\5

答:乙的速度為每小時(shí)15匕〃。

故選:c。

【點(diǎn)評】本題考查了一元一次方程的應(yīng)用,解題關(guān)鍵是要讀懂題目的意思,根據(jù)題目給出的

條件,找出合適的等量關(guān)系列出方程。

4.【分析】根據(jù)小松到達(dá)4樓時(shí),小菊剛到達(dá)3樓,可得兩人的速度之比,可判斷出兩人

在相遇時(shí)所走的路程,除以各自的速度,根據(jù)相遇時(shí)時(shí)間相等得到關(guān)系式列出方程求解,進(jìn)

而判斷所在樓層即可.

【解答】解:因?yàn)楫?dāng)小松到達(dá)4樓時(shí),小菊剛到達(dá)3樓,

所以小松與小菊的速度之比為3:2,

設(shè)小松到達(dá)28樓后返回地面途中,將與小菊在x樓相遇,小松的速度為3〃,小菊的速度為

2a.相遇時(shí)小松走了(28-1)+(28-幻=55-工,小菊走了x-l,根據(jù)相遇時(shí)時(shí)間相等列出方

程得:

(55-x)+(3a)=(x-l)+2^,

(x-1)x3?=(55-x)x2a,

3cix-3a=\,

5ar=1\3a,

x=22.6;

因?yàn)橐粯桥c二樓之間的樓梯,均屬于一樓,

所以他們在22樓相遇.

故選:C.

【點(diǎn)評】本題得到兩人的速度之比及判斷在幾樓相遇是解決本題的易錯點(diǎn);根據(jù)所用時(shí)間相

等得到關(guān)系式是解決本題的關(guān)鍵.

5.【答案】13

【分析】已知兩車的速度和相遇時(shí)間,求兩地之間的距離,可以分別用兩車的速度乘相遇時(shí)

間,求出兩車行駛的路程再相加:也可以先求出兩車的速度和,再用速度和乘相遇時(shí)間。

【解答】解:求A、8兩城相距多少千米,可以列式為:

2x240+2x264:

240x2+264x2:

2x(240+264);

(240+264)x2o

選項(xiàng)4是錯誤的。

故選:B。

【點(diǎn)評】本題考查了相遇問題的數(shù)量關(guān)系:速度和x相遇時(shí)間=總路程;甲車速度x相遇時(shí)

間+乙車速度x相遇時(shí)間=總路程。

6.【答案】C

【分析】將圓形花園的一圈長看作單位“1”,根據(jù)速度;路程+時(shí)間,求出兩人的速度,然

后再根據(jù)相遇時(shí)間=總路程+速度和,求出相遇時(shí)間即可。

【解答】解:將圓形花園的一圈長看作單位“1”,

則明明的速度為:1+8=1,

8

爸爸的速度為:14-12=—,

12

相遇時(shí)間為:1-(1+—)

812

24

=—24

5

=4.8(分鐘)

答:兩人同時(shí)同地出發(fā),相背而行,4.8分鐘后相遇。

故選:C。

【點(diǎn)評】本題主要考查了相遇問題,把握總路程、相遇時(shí)間與速度和之間的關(guān)系,是本題解

題的關(guān)鍵。

7.【答案】D

【分析】先根據(jù)路程+速度和=相遇時(shí)間,求出相遇時(shí)兩車行駛的時(shí)間:因?yàn)榧总嚨乃俣刃?/p>

于乙車的速度,所以相遇時(shí)甲車還沒行駛到中點(diǎn);用660千米除以2減去甲車行駛的路程就

是相遇點(diǎn)距離中點(diǎn)的千米數(shù)。

【解答】解:660^(60+72)

=660+132

=5(小時(shí))

660+2-60x5

=330-300

=30(千米)

答:相遇地點(diǎn)距離中點(diǎn)3C千米。

故選:Do

【點(diǎn)評】本題屬于相遇問題,需靈活掌握路程、速度和與相遇時(shí)間之間的關(guān)系。

8.【分析】此題應(yīng)先求出歡歡上坡和笑笑下坡分別用的時(shí)間,歡歡上坡用的時(shí)間是:2+2=1

(小時(shí)),笑笑下坡用的時(shí)間是:2.4+6=0.4(小時(shí)):因?yàn)?>0.4所以當(dāng)笑笑走完2.4千

米的下坡路時(shí),歡歡還沒有走完2千米的上坡路,在歡歡走上坡路的同時(shí),笑笑又走了的平

路,(1-O.4)x4=2.4(千米);這時(shí)歡歡走完了上坡路,兩人都走平路,平路還有:

4-2.4=1.6(千米),又因?yàn)槠铰飞纤俣榷际敲啃r(shí)4千米,因此走完平路所用的時(shí)間為

1.6+(4x2)=0.2(小時(shí)):那么兩人相遇時(shí)間就1+0.2小時(shí).

【解答】解:①歡歡上坡用的時(shí)間是:2+2=1(小時(shí)),

②笑笑下坡用的時(shí)間是:2.4+6=04(小時(shí));

③笑笑先走了平路的路程:(1-O.4)x4=2.4(千米);

④還軻下的路程(最后歡歡和笑笑共同走的平路):4-2.4=1.6(千米):

⑤軻下路程需要的時(shí)間:1.6+(4x2)=0.2(小時(shí));

⑥相遇共用時(shí)間:14-0.2=1.2(小時(shí));

答:兩人1.2小時(shí)后相遇.

故選:C.

【點(diǎn)評】此題條件較復(fù)雜,注意理清思路,細(xì)細(xì)分析.本題的關(guān)鍵在于確定相遇的位置.

二.填空題(共8小題)

9.【分析】由于從同學(xué)們出發(fā)到相遇共飛行了30千米,則他們的相遇時(shí)間為30+20=1.5

小時(shí),兩地相距30千米,則兩隊(duì)同學(xué)的速度和為30?1.5=20千米,又甲隊(duì)同學(xué)比乙隊(duì)同學(xué)

每小時(shí)多走0.4千米,根據(jù)和差問題公式可知,甲的速度是每小時(shí)(20+0.4)+2=10.2千米,

乙的速度是每小時(shí)20-10.2=9.8千米.

【解答】解:[30+(30+20)+0.4]+2,

一[30+1.5+0.4]+2,

=20.4+2,

=10.2(千米);

20-10.2=9.8(千米).

答:甲隊(duì)的速度是10.2千米/小時(shí)乙隊(duì)的速度是9.8千米/小時(shí).

故答案為:10.2千米/小時(shí);9.8千米/小時(shí).

【點(diǎn)評】本題也可根據(jù)鴿子與他們用相同的時(shí)間以每小時(shí)20千米的速度行了30千米,而

他們相遇時(shí)共行30千米直接得出兩隊(duì)的速度和為每小時(shí)20千米.

10,【分析】相遇時(shí)因?yàn)闀r(shí)間相同,所以速度比和路程比是相同的,相遇時(shí)它們的路程比是

43

4:3,全程就是4+3=7,這時(shí)擎天柱行了全程的,,大黃蜂行了全程的士,相遇后擎天柱

77

速度是4x(l+25%),大黃蜂的速度是3x(l+3O%),設(shè)全程是x千米,當(dāng)它們相遇后繼續(xù)往

14

前走,它們各自走的路程分別是三x和士x-83,它們的時(shí)間又是相同的,所以用各自的路程

77

比上各自的速度,它們的比值是相同的.列出比例即可解答.

【解答】解:設(shè)A、A兩地相距x千米.

34

-x:4x(l+25%)=(-x-83):3x(l+3O%)

34

>x3.9=5x(-x-83)

11.720「”

------x=——x-5x83

77

8.3「℃

——x=5x83

7

x=35O

答:A、3兩地相距350千米.

故答案為:350.

【點(diǎn)評】本題比較難,關(guān)鍵是知道時(shí)間相同,速度比和路程比是相同的,再找出相遇后路程

與速度的比值是相同的.

11.【分析】環(huán)形跑道是一個(gè)封閉圖形,長400米.甲和乙同時(shí)從同一地點(diǎn)反向出發(fā),相遇

時(shí)兩人共跑了一個(gè)環(huán)形跑道的長度,即400米;甲和乙同時(shí)從同一地點(diǎn)同向出發(fā),屬于追擊

問題.當(dāng)甲追上乙時(shí),甲比乙多跑了一周的長度,即環(huán)形跑道的長度400米;據(jù)此解決問

題.

【解答】解:環(huán)形跑道長400米.甲和乙同時(shí)從同一地點(diǎn)反向出發(fā),相遇時(shí)兩人共跑了400

求;甲和乙同時(shí)從同一地點(diǎn)同向出發(fā).當(dāng)甲迫上乙時(shí),甲比乙多跑了400米.

故答案為:400,400.

【點(diǎn)評】此題考查了相遇問題和追擊問題的運(yùn)用,距離差二速度差x追及時(shí)間.

12.

【分析】設(shè)路程為無,相向而行相遇時(shí)間==匚,相背而行相遇時(shí)間==匚,最后相遇在A

2+66-2

點(diǎn)時(shí)相遇次數(shù)二」一+二一,即可得相遇的次數(shù).

6—26I2

【解答】解:設(shè)路程為X.相向而行相遇時(shí)間=上,相背而行相遇時(shí)間=」;

2+66-2

最后相遇在A點(diǎn)時(shí)相遇次數(shù):」_+」_=2(次).

6-26+2

答:從出發(fā)到結(jié)束他們共相遇了2次.

故答案為:2.

【點(diǎn)評】本題考查了一元一次方程的應(yīng)用,解題關(guān)鍵是要讀懂題目的意思,根據(jù)題目給出的

條件,找出合適的等量關(guān)系列出方程,再求解.

13.【分析】根據(jù)題意可知,在相遇的時(shí)候,大長腿比小長腿多走路程:32x2=64(千米),

利用追及問題公式,計(jì)算二人所走時(shí)間為:64+(20-12)=8(小時(shí)),然后利用相遇問題公

式,求兩地路程為:(20+12)x8+2=128(千米).

【解答】解:32x2-(20-12)x(20+12)4-2

=64+8x32+2

=8x32+2

=128(千米)

答:大長腿家與海邊相距128千米.

故答案為:128.

【點(diǎn)評】本題主要考查行程問題,關(guān)鍵利用相遇問題及追及問題公式做題.

14.

【分析】根據(jù)相遇問題公式:速度和x相遇時(shí)間二路程和,列式求出甲、乙兩人5分鐘走的

路程,然后再加上沒行的路程52米即A8兩地的距離;或者相遇后,再相距52米,據(jù)此解

答即可。

【解答】解:(40+46)x5+52

=86x5+52

=430+52

=482(米)

或(40+46)x5-52

=86x5-52

=430-52

=378(米)

答:A、3兩地的龍離是482米或378米.

故答案為:482米或378.

【點(diǎn)評】此題根據(jù)相遇問題公式:速度和x相遇時(shí)間=路程和.

15.【分析】假定甲不下山,同樣速度前進(jìn),則下山的600米相當(dāng)于上山400米,也就是1

小時(shí)甲與乙的速度差是600+400=1000米.甲下山走一半的路程,相當(dāng)于乙上山的速度走

1的路程,也就是乙上山走一個(gè)全程,甲上山走一個(gè)J個(gè)全程.由此可知甲乙兩人的速度

33

比是4:3,又知甲每小時(shí)比乙多走一千米,所以,甲上山的速度是每小時(shí)走4千米,乙上山

的速度是每小時(shí)3千米,單程全長是:3+06=3.6千米,甲回一出發(fā)點(diǎn)所用的時(shí)間是:

3.64-4+3.64-6=1.5(小時(shí)).

【解答】解:下山的600米相當(dāng)于上山:600+1.5=400(米),

甲下山走一半的路程,相當(dāng)于乙上山的速度走」的路程,也就是乙上山走一個(gè)全程,甲上山

3

走一個(gè)]+_!_=J個(gè)全程.甲乙兩人的速度比是J:1=4:3

333

甲上山速度是(600+400)+(4—3)x4=4000(米),

下山速度是4000x1.5=6000(米).

1個(gè)上山全程是4000-400=3600(米).

出發(fā)1小時(shí)后,甲還有下山路3600—600=3000(米),要走3000+6000=0.5(小時(shí));

一共要走1+0.5=15(小時(shí)).

答:甲從出發(fā)到返回出發(fā)點(diǎn)共需1.5小時(shí).

故答案為:1.5.

【點(diǎn)評】本題關(guān)鍵在轉(zhuǎn)化,把下山的距離再轉(zhuǎn)化為上山的距離,這種轉(zhuǎn)化是在保證時(shí)間相等

的情況下.通過轉(zhuǎn)化,可以理清思路.但是也要分清哪些距離是上山走的,哪些是下山走的.

16.【分析】已知貓跑5步的路程與狗跑3步的路程相同,即狗跑1步的路程是貓跑*步的

3

路程,又因?yàn)槎埮?步的時(shí)間與狗跑5步的時(shí)間相同;所以貓和狗的速度比是

3:(jx5)=9:25:同理可求貓和兔的速度比是5:((x7)=25:49:所以,貓、狗、兔的速度

7549

比是1:上:絲=225:625:441,狗追上貓一圓需400+(625-225)=1(單位時(shí)間),兔追上貓

925

一圖需400+(441-225)=竺(單位時(shí)間),所以第一次相遇時(shí)間:[1,—]=50(單位時(shí)

2727

間),然后乘625就是第一次相遇時(shí)狗跑的距離.

【解答】解:3:(1x5)=9:25

5:(-x7)=25:49

2549

1:—:—=225:625:441

925

400+(625-225)=1(單位時(shí)間)

400-(441-225)=|5(單位時(shí)間)

11,—]=50(單位時(shí)間)

27

625x50=31250(米)

答:第一次相遇時(shí)狗跑了31250米.

故答案為:31250.

【點(diǎn)評】本題考查了比較復(fù)雜的環(huán)形跑道問題和分?jǐn)?shù)的最小公倍數(shù)的綜合應(yīng)用,關(guān)鍵是求出

它們的速度比.

三.解答題

17,【分析】兩車在距離中點(diǎn)12千米處相遇,那么乙車就比甲車多行駛12x2=24千米,先

求出兩車的速度差,再根據(jù)相遇時(shí)間=乙車多行駛的路程路程+速度差,求出相遇的時(shí)間,

然后根據(jù)路程;速度x時(shí)間求出甲行的路程(即乙汽車?yán)^續(xù)前進(jìn)的路程),最后除以乙車的

速度即可.

【解答】解:(12x2)+(36—24)x24+36

=24+12x24+36

=48+36

=-(小時(shí))

3

4

答:相遇后,乙汽車?yán)^續(xù)前進(jìn)2小時(shí)后到達(dá)目的地.

3

【點(diǎn)評】求出兩車的相遇時(shí)間是解答本題的關(guān)鍵,依據(jù)是等量關(guān)系式:路程=速度x時(shí)間.

18,【分析】經(jīng)8小時(shí)相遇,甲車又用了6小時(shí)到達(dá)A地,說明相遇時(shí),乙8小時(shí)行的路

程,甲只用6小時(shí),即同樣的路程,乙用的時(shí)間是甲的2,所以,根據(jù)分?jǐn)?shù)乘法的意義,甲

6

8小時(shí)行的路程,乙用8x?小時(shí),然后再加上乙先行的8小時(shí)即可.

6

【解答】解:8x-+8

6

=10-+8

3

2

=18-(小時(shí))

3

2

答:乙要18*小時(shí)才能從8地到達(dá)A地.

3

【點(diǎn)評】本題考查了相遇問題,關(guān)鍵是求出行同樣的路程,乙用的時(shí)間是甲的

6

19.【答案】2250千米。1350千米,900千米。

【分析】首先根據(jù)速度xE寸間二路程,可得路程一定時(shí),速度和時(shí)間成反比,據(jù)此求出兩車

的速度之比是多少;然后艱據(jù)時(shí)間一定時(shí),路程和速度成正比,求出相遇時(shí)兩車行的路程之

比是多少,進(jìn)而求出客車比貨車多行了全程的幾分之幾;最后根據(jù)分?jǐn)?shù)除法的意義,用相遇

時(shí)客車比貨車多行的路程除以它占全程的分率,求出甲、乙兩地相距多少千米即可。用總路

程除以2,再加上450千米,即可求出客車行駛的路程。用總路程減去客車行駛的路程,即

可求出貨車行駛的路程。

【解答】解:因?yàn)榭蛙噺募椎氐揭业匦枰?0小時(shí),貨車從乙地到甲地需要30小時(shí)。

所以客車、貨車的速度之比是30:20=3:2。

所以相遇時(shí)兩車行的路程之比是3:2。

所以甲、乙兩地相距:

32

4504-(—-------------)

3+23+2

二450」

5

=2250(千米)

3

2250x^—=1350

2+3

2250-1350=900(千米)

答:甲、乙兩地相距225C千米。客車行駛了1350千米,貨車行駛了900千米。

【點(diǎn)評】此題主要考查了相遇問題,注意速度、時(shí)間和路程的關(guān)系:速度x時(shí)間=路程,路

程+時(shí)間=速度,路程+速度=時(shí)間,解答此題的關(guān)鍵是求出相遇時(shí)快車比慢車多行了全程

的幾分之幾。

20.【答案】900千米。

【分析】把兩地的路程看作單位“1”,由題意可知,相遇時(shí)貨車行了上=9,客車行了

4+59

—44客車還剩已5沒到8地;相遇后貨車行了?4,用了4小時(shí),每小時(shí)行:-4-4=-1,

4+599999

1444W

則客車未提高20%前的速度:—X—=—;客車提高20%后的速度:一x(l+20%)=—;相

95454575

遇后客車再行4小時(shí)行了:AX4=—,客車離8地還剩:由“客車離8地

7575975225

還有116千米”可知,116千米對應(yīng)的分率是三,用對應(yīng)量除以對應(yīng)分率就是全程的長度。

225

【解答】解:相遇后貨車4小時(shí)的速度:--4=1

4+59

144

則客車未提高20%前的速度:-x-=—

9545

4?

客車提高20%后的速度:—x(l+2()%)=—

4575

Qa?

相遇后客車再行4小時(shí)行了:—x4=—

7575

客車離8地還剩:

975225

20

兩地的距離:116--=900(千米)

225

答:西安合肥兩地相距900千米。

【點(diǎn)評】解答此題的關(guān)鍵是求出對應(yīng)量116千米的對應(yīng)分率,用對應(yīng)量除以對應(yīng)分率就是全

程的長度。

21.【答案】3小時(shí)。

5

【分析】根據(jù)本題可知:甲車行駛5小時(shí)的路程等于乙車行駛4小時(shí)的路程,據(jù)此可得出乙

車速度與甲車速度的關(guān)系,再根據(jù)時(shí)間=路程+速度即可。

【解答】解:4x(l+5)+(l+4)

54

=1x4

=—(小時(shí))

5

答:乙車又行3小時(shí)到達(dá)A地

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論