




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
河南省駐馬店市確山縣2026屆九年級數(shù)學(xué)第一學(xué)期期末綜合測試試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.如圖,在Rt△ABO中,∠AOB=90°,AO=BO=2,以O(shè)為圓心,AO為半徑作半圓,以A為圓心,AB為半徑作弧BD,則圖中陰影部分的面積為()A.3π B.π+1 C.π D.22.如圖,在中,,,,是線段上的兩個動點,且,過點,分別作,的垂線相交于點,垂足分別為,.有以下結(jié)論:①;②當點與點重合時,;③;④.其中正確的結(jié)論有()A.1個 B.2個 C.3個 D.4個3.下列事件的概率,與“任意選個人,恰好同月過生日”這一事件的概率相等的是()A.任意選個人,恰好生肖相同 B.任意選個人,恰好同一天過生日C.任意擲枚骰子,恰好朝上的點數(shù)相同 D.任意擲枚硬幣,恰好朝上的一面相同4.如圖,四邊形ABCD為⊙O的內(nèi)接四邊形,E是BC延長線上的一點,已知∠BOD=130°,則∠DCE的度數(shù)為()A.45° B.50° C.65° D.75°5.如圖,矩形草坪ABCD中,AD=10m,AB=m.現(xiàn)需要修一條由兩個扇環(huán)構(gòu)成的便道HEFG,扇環(huán)的圓心分別是B,D.若便道的寬為1m,則這條便道的面積大約是()(精確到0.1m2)A.9.5m2 B.10.0m2 C.10.5m2 D.11.0m26.從口袋中隨機摸出一球,再放回口袋中,不斷重復(fù)上述過程,共摸了150次,其中有50次摸到黑球,已知口袋中有黑球10個和若干個白球,由此估計口袋中大約有多少個白球()A.10個 B.20個 C.30個 D.無法確定7.已知x=1是方程x2+px+1=0的一個實數(shù)根,則p的值是()A.0 B.1 C.2 D.﹣28.一元二次方程x(x﹣1)=0的解是()A.x=0 B.x=1 C.x=0或x=﹣1 D.x=0或x=19.如圖,在中,為上一點,連接、,且、交于點,,則等于()A. B. C. D.10.關(guān)于的方程有實數(shù)根,則滿足()A. B.且 C.且 D.11.已知蓄電池的電壓U為定值,使用蓄電池時,電流I(單位:A)與電阻R(單位:Ω)是反比例函數(shù)關(guān)系,它的圖象如圖所示.若此蓄電池為某用電器的電源,限制電流不能超過12A,那么用電器的可變電阻R應(yīng)控制在什么范圍?()A.R≥3Ω B.R≤3Ω C.R≥12Ω D.R≥24Ω12.下列圖形中,既是中心對稱圖形,又是軸對稱圖形的是()A.等邊三角形 B.平行四邊形 C.等腰三角形 D.菱形二、填空題(每題4分,共24分)13.一個等腰三角形的兩條邊長分別是方程x2﹣7x+10=0的兩根,則該等腰三角形的周長是_____.14.使式子有意義的x的取值范圍是____.15.如圖,扇形紙扇完全打開后,外側(cè)兩竹條AB,AC夾角為120°,AB的長為20cm,扇面BD的長為15cm,則弧DE的長是_____.16.已知二次函數(shù)的圖象經(jīng)過原點,則的值為_______.17.如圖,將矩形ABCD繞點C沿順時針方向旋轉(zhuǎn)90°到矩形A′B′CD′的位置,AB=2,AD=4,則陰影部分的面積為_____.18.如圖,已知中,,D是線段AC上一點(不與A,C重合),連接BD,將沿AB翻折,使點D落在點E處,延長BD與EA的延長線交于點F,若是直角三角形,則AF的長為_________.三、解答題(共78分)19.(8分)如圖,在矩形ABCD中,E是AD上的一點,沿CE將△CDE對折,點D剛好落在AB邊的點F上.(1)求證:△AEF∽△BFC.(2)若AB=20cm,BC=16cm,求tan∠DCE.20.(8分)函數(shù)與函數(shù)(、為不等于零的常數(shù))的圖像有一個公共點,其中正比例函數(shù)的值隨的值增大而減小,求這兩個函數(shù)的解析式.21.(8分)如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象相交于A(2,4)、B(-4,n)兩點.(1)分別求出一次函數(shù)與反比例函數(shù)的表達式;(2)根據(jù)所給條件,請直接寫出不等式kx+b>的解集;(3)過點B作BC⊥x軸,垂足為點C,連接AC,求S△ABC.22.(10分)某公司營銷兩種產(chǎn)品,根據(jù)市場調(diào)研,確定兩條信息:信息1:銷售種產(chǎn)品所獲利潤(萬元)與所銷售產(chǎn)品(噸)之間存在二次函數(shù)關(guān)系,如圖所示信息2:銷售種產(chǎn)品所獲利潤(萬元)與銷售產(chǎn)品(噸)之間存在正比例函數(shù)關(guān)系根據(jù)以上信息,解答下列問題:(1)求二次函數(shù)的表達式;(2)該公司準備購進兩種產(chǎn)品共10噸,請設(shè)計一個營銷方案使銷售兩種產(chǎn)品獲得的利潤之和最大,最大利潤是多少萬元?23.(10分)如圖,的半徑為,是的直徑,是上一點,連接、.為劣弧的中點,過點作,垂足為,交于點,,交的延長線于點.(1)求證:是的切線;(2)連接,若,如圖2.①求的長;②圖中陰影部分的面積等于_________.24.(10分)如圖,在平面直角坐標系中,已知拋物線與軸交于、兩點,與軸交于點,其頂點為點,點的坐標為(0,-1),該拋物線與交于另一點,連接.(1)求該拋物線的解析式,并用配方法把解析式化為的形式;(2)若點在上,連接,求的面積;(3)一動點從點出發(fā),以每秒1個單位的速度沿平行于軸方向向上運動,連接,,設(shè)運動時間為秒(>0),在點的運動過程中,當為何值時,?25.(12分)如圖1,若要建一個長方形雞場,雞場的一邊靠墻(墻長18米),墻對面有一個2米寬的門,另三邊用竹籬笆圍成,籬笆總長33米.求:(1)若雞場面積150平方米,雞場的長和寬各為多少米?(2)雞場面積可能達到200平方米嗎?(3)如圖2,若在雞場內(nèi)要用竹籬笆加建一道隔欄,則雞場最大面積可達多少平方米?26.如圖,拋物線y=-x2+bx+c與x軸交于A、B兩點,且B點的坐標為(3,0),經(jīng)過A點的直線交拋物線于點D(2,3).(1)求拋物線的解析式和直線AD的解析式;(2)過x軸上的點E(a,0)作直線EF∥AD,交拋物線于點F,是否存在實數(shù)a,使得以A、D、E、F為頂點的四邊形是平行四邊形?如果存在,求出滿足條件的a;如果不存在,請說明理由.
參考答案一、選擇題(每題4分,共48分)1、C【分析】根據(jù)題意和圖形可以求得的長,然后根據(jù)圖形,可知陰影部分的面積是半圓的面積減去扇形的面積,從而可以解答本題.【詳解】解:在中,,,,圖中陰影部分的面積為:,故選:C.本題考查扇形面積的計算,解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.2、B【分析】利用勾股定理判定①正確;利用三角形中位線可判定②正確;③中利用相似三角形的性質(zhì);④中利用全等三角形以及勾股定理即可判定其錯誤.【詳解】∵,,∴,故①正確;∵當點與點重合時,CF⊥AB,F(xiàn)G⊥AC,∴FG為△ABC的中位線∴GC=MH=,故②正確;ABE不是三角形,故不可能,故③錯誤;∵AC=BC,∠ACB=90°∴∠A=∠5=45°將△ACF順時針旋轉(zhuǎn)90°至△BCD,則CF=CD,∠1=∠4,∠A=∠6=45°,BD=AF∵∠2=45°∴∠1+∠3=∠3+∠4=45°∴∠DCE=∠2在△ECF和△ECD中,CF=CD,∠DCE=∠2,CE=CE∴△ECF≌△ECD(SAS)∴EF=DE∵∠5=45°∴∠BDE=90°∴,即故④錯誤;故選:B.此題主要考查等腰直角三角形、三角形中位線以及全等三角形的性質(zhì)、勾股定理的運用,熟練掌握,即可解題.3、A【分析】根據(jù)概率的意義對各選項分析判斷即可得解.【詳解】任選人,恰好同月過生日的概率為,A任選人,恰好生肖相同的概率為,B任選人,恰好同一天過生日的概率為,C任意擲枚骰子,恰好朝上的點數(shù)相同的概率為,D任意擲枚硬幣,恰好朝上的一面相同的概率為.故選:A.本題考查了概率的意義,正確理解概率的含義是解決本題的關(guān)鍵.4、C【分析】根據(jù)圓周角定理求出∠A,根據(jù)圓內(nèi)接四邊形的性質(zhì)得出∠DCE=∠A,代入求出即可.【詳解】∵∠BOD=130°,∴∠A=∠BOD=65°,∵四邊形ABCD為⊙O的內(nèi)接四邊形,∴∠DCE=∠A=65°,故選:C.本題考查了圓周角定理,圓內(nèi)接四邊形的性質(zhì)的應(yīng)用,注意:圓內(nèi)接四邊形的對角互補,并且一個外角等于它的內(nèi)對角.5、C【分析】由四邊形ABCD為矩形得到△ADB為直角三角形,又由AD=10,AB=10,由此利用勾股定理求出BD=20,又由cos∠ADB=,得到∠ADB=60°,又矩形對角線互相平分且相等,便道的寬為1m,所以每個扇環(huán)都是圓心角為30°且外環(huán)半徑為10.1,內(nèi)環(huán)半徑為9.1.這樣可以求出每個扇環(huán)的面積.【詳解】∵四邊形ABCD為矩形,∴△ADB為直角三角形,又∵AD=10,AB=,∴BD=,又∵cos∠ADB=,∴∠ADB=60°.又矩形對角線互相平分且相等,便道的寬為1m,所以每個扇環(huán)都是圓心角為30°,且外環(huán)半徑為10.1,內(nèi)環(huán)半徑為9.1.∴每個扇環(huán)的面積為.∴當π取3.14時整條便道面積為×2=10.4666≈10.1m2.便道面積約為10.1m2.故選:C.此題考查內(nèi)容比較多,有勾股定理、三角函數(shù)、扇形面積,做題的關(guān)鍵是把實際問題轉(zhuǎn)化為數(shù)學(xué)問題.6、B【詳解】解:摸了150次,其中有50次摸到黑球,則摸到黑球的頻率是,設(shè)口袋中大約有x個白球,則,解得x=1.經(jīng)檢驗:x=1是原方程的解故選B.7、D【分析】把x=1代入x2+px+1=0,即可求得p的值.【詳解】把x=1代入把x=1代入x2+px+1=0,得1+p+1=0,∴p=-2.故選D.本題考查了一元二次方程的解得定義,能使一元二次方程成立的未知數(shù)的值叫作一元二次方程的解,熟練掌握一元二次方程解得定義是解答本題的關(guān)鍵.8、D【解析】試題分析:方程利用兩數(shù)相乘積為0,兩因式中至少有一個為0,因此可由方程x(x﹣1)=0,可得x=0或x﹣1=0,解得:x=0或x=1.故選D.考點:解一元二次方程-因式分解法9、A【分析】根據(jù)平行四邊形得出,再根據(jù)相似三角形的性質(zhì)即可得出答案.【詳解】四邊形ABCD為平行四邊形故選A.本題考查了相似三角形的判定及性質(zhì),熟練掌握性質(zhì)定理是解題的關(guān)鍵.10、A【分析】分類討論:當a=5時,原方程變形一元一次方程,有一個實數(shù)解;當a≠5時,根據(jù)判別式的意義得到a≥1且a≠5時,方程有兩個實數(shù)根,然后綜合兩種情況即可得到滿足條件的a的范圍.【詳解】當a=5時,原方程變形為-4x-1=0,解得x=-;當a≠5時,△=(-4)2-4(a-5)×(-1)≥0,解得a≥1,即a≥1且a≠5時,方程有兩個實數(shù)根,所以a的取值范圍為a≥1.故選A.本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2-4ac:當△>0,方程有兩個不相等的實數(shù)根;當△=0,方程有兩個相等的實數(shù)根;當△<0,方程沒有實數(shù)根.也考查了一元二次方程的定義.11、A【分析】直接利用圖象上點的坐標得出函數(shù)解析式,進而利用限制電流不能超過12A,得出電器的可變電阻R應(yīng)控制范圍.【詳解】解:設(shè)I=,把(9,4)代入得:U=36,故I=,∵限制電流不能超過12A,∴用電器的可變電阻R≥3,故選:A.本題考查了反比例的實際應(yīng)用,數(shù)形結(jié)合,利用圖像解不等式是解題的關(guān)鍵12、D【分析】根據(jù)軸對稱圖形的概念:如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形,這條直線叫做對稱軸;中心對稱圖形的定義:把一個圖形繞某一點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形,針對每一個選項進行分析.【詳解】解:A、是軸對稱圖形,不是中心對稱圖形.故此選項錯誤;B、不是軸對稱圖形,是中心對稱圖形.故此選項錯誤;C、是軸對稱圖形,不是中心對稱圖形.故此選項錯誤;D、是軸對稱圖形,也是中心對稱圖形.故此選項正確;故選D.二、填空題(每題4分,共24分)13、1【分析】首先利用因式分解法解方程,再利用三角形三邊關(guān)系得出各邊長,進而得出答案.【詳解】解:x2﹣7x+10=0(x﹣2)(x﹣5)=0,解得:x1=2,x2=5,故等腰三角形的腰長只能為5,5,底邊長為2,則其周長為:5+5+2=1.故答案為:1.本題考查因式分解法解一元二次方程,需要熟悉三角形三邊的關(guān)系以及等腰三角形的性質(zhì).14、【分析】根據(jù)二次根式有意義的條件:被開方數(shù)為非負數(shù)求解即可.【詳解】解:由題意得:x-1≥0,x-1≠0,
解得:x≥1,x≠1.
故答案為x≥1且x≠1.本題考查了二次根式有意義的條件,解答本題的關(guān)鍵是掌握被開方數(shù)為非負數(shù)、分母不為零.15、cm【分析】直接利用弧長公式計算得出答案.【詳解】弧DE的長為:.故答案是:.考查了弧長公式計算,正確應(yīng)用弧長公式是解題關(guān)鍵.16、2;【分析】本題中已知了二次函數(shù)經(jīng)過原點(1,1),因此二次函數(shù)與y軸交點的縱坐標為1,即m(m-2)=1,由此可求出m的值,要注意二次項系數(shù)m不能為1.【詳解】根據(jù)題意得:m(m?2)=1,∴m=1或m=2,∵二次函數(shù)的二次項系數(shù)不為零,所以m=2.故填2.本題考查二次函數(shù)圖象上點的坐標特征,需理解二次函數(shù)與y軸的交點的縱坐標即為常數(shù)項的值.17、【解析】試題解析:連接∵四邊形ABCD是矩形,∴CE=BC=4,∴CE=2CD,由勾股定理得:∴陰影部分的面積是S=S扇形CEB′?S△CDE故答案為18、或【分析】分別討論∠E=90°,∠EBF=90°兩種情況:①當∠E=90°時,由折疊性質(zhì)和等腰三角形的性質(zhì)可推出△BDC為等腰直角三角形,再求出∠ABD=∠ABE=22.5°,進而得到∠F=45°,推出△ADF為等腰直角三角形即可求出斜邊AF的長度;②當∠EBF=90°時,先證△ABD∽△ACB,利用對應(yīng)邊成比例求出AD和CD的長,再證△ADF∽△CDB,利用對應(yīng)邊成比例求出AF.【詳解】①當∠E=90°時,由折疊性質(zhì)可知∠ADB=∠E=90°,如圖所示,在△ABC中,CA=CB=4,∠C=45°∴∠ABC=∠BAC==67.5°∵∠BDC=90°,∠C=45°∴△BCD為等腰直角三角形,∴CD=BC=,∠DBC=45°∴∠EBA=∠DBA=∠ABC-∠DBC=67.5°-45°=22.5°∴∠EBF=45°∴∠F=90°-45°=45°∴△ADF為等腰直角三角形∴AF=②當∠EBF=90°時,如圖所示,由折疊的性質(zhì)可知∠ABE=∠ABD=45°,∵∠BAD=∠CAB∴△ABD∽△ACB∴由情況①中的AD=,BD=,可得AB=∴AD=∴CD=∵∠DBC=∠ABC-∠ABD=22.8°∵∠E=∠ADB=∠C+∠DBC=67.5°∴∠F=22.5°=∠DBC∴EF∥BC∴△ADF∽△CDB∴∴∵∠E=∠BDA=∠C+∠DBC=45°+67.5°-∠ABD=112.5°-∠ABD,∠EBF=2∠ABD∴∠E+∠EBF=112.5°+∠ABD>90°∴∠F不可能為直角綜上所述,AF的長為或.故答案為:或.本題考查了等腰三角形的性質(zhì),折疊的性質(zhì),勾股定理,相似三角形的判定和性質(zhì),熟練掌握折疊前后對應(yīng)角相等,分類討論利用相似三角形的性質(zhì)求邊長是解題的關(guān)鍵.三、解答題(共78分)19、(1)證明見解析;(2)【分析】(1)由矩形的性質(zhì)及一線三等角得出∠A=∠B,∠AEF=∠BFC,從而可證得結(jié)論;(2)矩形的性質(zhì)及沿CE將△CDE對折,可求得CD、AD及CF的長;在Rt△BCF中,由勾股定理得出BF的長,從而可得AF的長;由△AEF∽△BFC可寫出比例式,從而可求得AE的長,進而得出DE的長;最后由正切函數(shù)的定義可求得答案.【詳解】(1)∵在矩形ABCD中,沿CE將△CDE對折,點D剛好落在AB邊的點F上∴△CDE≌△CFE∴∠EFC=∠D=90°∴∠AFE+∠BFC=90°∵∠A=90°∴∠AEF+∠AFE=90°∴∠AEF=∠BFC又∵∠A=∠B∴△AEF∽△BFC;(2)∵四邊形ABCD為矩形,AB=20cm,BC=16cm∴CD=20cm,AD=16cm∵△CDE≌△CFE∴CF=CD=20cm在Rt△BCF中,由勾股定理得:BF==12cm∴AF=AB﹣BF=8cm∵△AEF∽△BFC∴∴∴AE=6∴DE=AD-AE=16-6=10cm∴在Rt△DCE中,tan∠DCE=.本題考查了全等三角形、矩形、相似三角形、直角三角形兩銳角互余、勾股定理、三角函數(shù)的知識;解題的關(guān)鍵是熟練掌握全等三角形、矩形、相似三角形、勾股定理、三角函數(shù)的性質(zhì),從而完成求解.20、,【分析】把點A(3,k-2)代入,即可得出=k?2,據(jù)此求出k的值,再根據(jù)正比例函數(shù)y的值隨x的值增大而減小,得出滿足條件的k值即可求解.【詳解】根據(jù)題意可得
=k?2,
整理得k2-2k+3=0,
解得k1=-1,k2=3,
∵正比例函數(shù)y的值隨x的值增大而減小,
∴k=-1,
∴點A的坐標為(3,-3),
∴反比例函數(shù)是解析式為:y=?;
正比例函數(shù)的解析式為:y=-x.此題考查反比例函數(shù)與一次函數(shù)的交點問題,解題關(guān)鍵在于將函數(shù)圖象的交點與方程(組)的解結(jié)合起來是解此類題目常用的方法.21、(1);;(2)或;(3)6【分析】(1)先根據(jù)點A的坐標求出反比例函數(shù)的解析式,再求出B的坐標,利用待定系數(shù)法求一次函數(shù)的解析式;
(2)當一次函數(shù)的值>反比例函數(shù)的值時,直線在雙曲線的上方,直接根據(jù)圖象寫出一次函數(shù)的值>反比例函數(shù)的值x的取值范圍.
(3)以BC為底,BC上的高為A點橫坐標和B點橫坐標的絕對值的和,即可求出面積.【詳解】解:(1)∵點在的圖象上,∴.∴反比例函數(shù)的表達式為:;∴,.∵點,在上,∴∴∴一次函數(shù)的表達式為:;(2)根據(jù)題意,由點,,結(jié)合圖像可知,直線要在雙曲線的上方,∴不等式kx+b>的解集為:或.故答案為:或.(3)根據(jù)題意,以為底,則邊上的高為:4+2=6.∵BC=2,∴本題主要考查了待定系數(shù)法求反比例函數(shù)與一次函數(shù)的解析式和反比例函數(shù)y=中k的幾何意義.這里體現(xiàn)了數(shù)形結(jié)合的思想,做此類題一定要正確理解k的幾何意義.22、(1);(2)購進A產(chǎn)品6噸,購進B產(chǎn)品4噸,利潤之和最大,最大為6.6萬元【分析】(1)由拋物線過原點可設(shè)y與x間的函數(shù)關(guān)系式為y=ax2+bx+c,再利用待定系數(shù)法求解可得;
(2)設(shè)購進A產(chǎn)品m噸,購進B產(chǎn)品(10?m)噸,銷售A、B兩種產(chǎn)品獲得的利潤之和為W元,根據(jù):A產(chǎn)品利潤+B產(chǎn)品利潤=總利潤可得W=?0.1m2+1.5m+0.3(10?m),配方后根據(jù)二次函數(shù)的性質(zhì)即可知最值情況.【詳解】解:(1)設(shè)二次函數(shù)的表達式為y=ax2+bx+c,
由圖象,得拋物線過點(0,0),(1,1.4),(3,3.6),
將三點的坐標代入表達式,
得,
解得
所以二次函數(shù)的表達式為y=?0.1x2+1.5x;
(2)設(shè)購進A產(chǎn)品m噸,購進B產(chǎn)品(10?m)噸,銷售A、B兩種產(chǎn)品獲得的利潤之和為W元,
則W=?0.1m2+1.5m+0.3(10?m),
=?0.1m2+1.2m+3,
=?0.1(m?6)2+6.6,
∵?0.1<0,
∴∴當m=6時,W取得最大值,最大值為6.6萬元,
答:購進A產(chǎn)品6噸,購進B產(chǎn)品4噸,銷售A、B兩種產(chǎn)品獲得的利潤之和最大,最大利潤是6.6萬元.本題主要考查了二次函數(shù)的應(yīng)用,主要利用了待定系數(shù)法求二次函數(shù)解析式,二次函數(shù)的最值問題,(2)中整理得到所獲利潤與購進A產(chǎn)品的噸數(shù)的關(guān)系式是解題的關(guān)鍵.23、(1)見解析;(2)①,②.【分析】(1)連接OC,利用等腰三角形三線合一的性質(zhì)證得OC⊥BF,再根據(jù)CG∥FB即可證得結(jié)論;(2)①根據(jù)已知條件易證得是等邊三角形,利用三角函數(shù)可求得的長,根據(jù)三角形重心的性質(zhì)即可求得答案;②易證得,利用扇形的面積公式即可求得答案.【詳解】(1)連接.是的中點,.又,.,.是的切線.(2)①,∴.,.∴是等邊三角形.,,又的半徑為,在中,,∵BF⊥OC,CD⊥OB,BF與CD相交于E,點E是等邊三角形OBC的垂心,也是重心和內(nèi)心,∴.②∵AF∥BC,∴∴.要題考查了等腰三角形的性質(zhì),等邊三角形的判定和性質(zhì),三角函數(shù)的知識,扇形的面積公式,根據(jù)三角形重心的性質(zhì)求得的長是解題的關(guān)鍵.24、(1);(2);(3)【解析】(1)將A,B兩點的坐標代入拋物線解析式中,得到關(guān)于a,b的方程組,解之求得a,b的值,即得解析式,并化為頂點式即可;(2)過點A作AH∥y軸交BC于H,BE于G,求出直線BC,BE的解析式,繼而可以求得G、H點的坐標,進一步求出GH,聯(lián)立BE與拋物線方程求出點F的坐標,然后根據(jù)三角形面積公式求出△FHB的面積;(3)設(shè)點M坐標為(2,m),由題意知△OMB是直角三角形,進而利用勾股定理建立關(guān)于m的方程,求出點M的坐標,從而求出MD,最后求出時間t.【詳解】(1)∵拋物線與軸交于A(1,0),B(3,0)兩點,∴∴∴拋物線解析式為.(2)如圖1,
過點A作AH∥y軸交BC于H,BE于G,由(1)有,C(0,-2),∵B(3,0),∴直線BC解析式為y=x-2,∵H(1,y)在直線BC上,∴y=-,∴H(1,-),∵B(3,0),E(0,-1),∴直線BE解析式為y=-x-1,∴G(1,-),∴GH=,∵直線BE:y=-x-1與拋物線y=-x2+x-2相較于F,B,∴F(,-),∴S△FHB=GH×|xG-xF|+GH×|xB-xG|=GH×|xB-xF|=××(3-)=.(3)如圖2,由(1)有y=-x2+x-2,∵D為拋物線的頂點,∴D(2,),∵一動點M從點D出發(fā),以每秒1個單位的速度平沿行與y軸方向向上運動,∴設(shè)M(2,m),(m>),∴OM2=m2+4,BM2=m2+1,OB2=9,∵∠OMB=90°,∴OM2+BM2=OB2,∴m2+4+m2+1=9,∴m=或m=-(舍),∴M(2,),∴MD=-,∴t=-.本題考查了待定系數(shù)法求二次函數(shù)的表達式,待定系數(shù)法求一次函數(shù)表達式,角平分線上的點到兩邊的距離相等,勾股定理等知識點,綜合性比較強,不僅要掌握性質(zhì)定理,作合適的輔助線也對解題起重要作用.25、(1)長為15米,寬為10米;(2)不可能達到200
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 酒店顧問合同(標準版)
- 房地產(chǎn)中介合同模板與風(fēng)險提示
- 商業(yè)空間租賃合同協(xié)議
- 2025年軟件授權(quán)合同協(xié)議
- 2025年影視作品聯(lián)合出品合同協(xié)議
- 勞動合同請常年法律顧問合同5篇
- 2025廣西柳州市港航發(fā)展中心招聘編外合同制工作人員1人考前自測高頻考點模擬試題及參考答案詳解
- 片石干鋪墊層施工方案
- 屋面保溫板隔音施工方案
- 湖南員工體驗咨詢方案
- 2025年江蘇省國家公務(wù)員考錄《行測》真題及參考答案
- 2025年電力系統(tǒng)工程師高級專業(yè)試題及答案
- 屠宰場突發(fā)安全生產(chǎn)事故應(yīng)急預(yù)案
- 2025年電商平臺新業(yè)態(tài)發(fā)展趨勢與運營策略研究報告
- 2025中糧集團社會招聘7人筆試歷年參考題庫附帶答案詳解
- 海南自貿(mào)港考試題及答案
- 交換機教學(xué)課件
- 四川產(chǎn)業(yè)振興基金投資集團有限公司招聘筆試真題2024
- 2025廣東云浮市檢察機關(guān)招聘勞動合同制司法輔助人員17人備考考試題庫附答案解析
- 工裝夾具設(shè)計培訓(xùn)課件
- 大氣的受熱過程教學(xué)課件
評論
0/150
提交評論