天津市大港區(qū)名校2026屆數(shù)學(xué)九年級第一學(xué)期期末達(dá)標(biāo)測試試題含解析_第1頁
天津市大港區(qū)名校2026屆數(shù)學(xué)九年級第一學(xué)期期末達(dá)標(biāo)測試試題含解析_第2頁
天津市大港區(qū)名校2026屆數(shù)學(xué)九年級第一學(xué)期期末達(dá)標(biāo)測試試題含解析_第3頁
天津市大港區(qū)名校2026屆數(shù)學(xué)九年級第一學(xué)期期末達(dá)標(biāo)測試試題含解析_第4頁
天津市大港區(qū)名校2026屆數(shù)學(xué)九年級第一學(xué)期期末達(dá)標(biāo)測試試題含解析_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

天津市大港區(qū)名校2026屆數(shù)學(xué)九年級第一學(xué)期期末達(dá)標(biāo)測試試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題3分,共30分)1.已知關(guān)于的一元二次方程兩實數(shù)根為、,則()A.3 B.﹣3 C.1 D.﹣12.如圖,在矩形中,.將向內(nèi)翻折,點落在上,記為,折痕為.若將沿向內(nèi)翻折,點恰好落在上,記為,則的長為()A. B. C. D.3.某商場降價銷售一批名牌襯衫,已知所獲利潤y(元)與降價x(元)之間的關(guān)系是y=-2x2+60x+800,則利潤獲得最多為()A.15元 B.400元 C.800元 D.1250元4.如圖,平行于x軸的直線與函數(shù)y1=(a>1,x>1),y2=(b>1.x>1)的圖象分別相交于A、B兩點,且點A在點B的右側(cè),在X軸上取一點C,使得△ABC的面積為3,則a﹣b的值為()A.6 B.﹣6 C.3 D.﹣35.下列事件中,是必然事件的是()A.隨意翻倒一本書的某頁,這頁的頁碼是奇數(shù). B.通常溫度降到以下,純凈的水結(jié)冰.C.從地面發(fā)射一枚導(dǎo)彈,未擊中空中目標(biāo). D.購買1張彩票,中獎.6.正方形的邊長為4,若邊長增加x,那么面積增加y,則y關(guān)于x的函數(shù)表達(dá)式為()A. B. C. D.7.如圖,將正方形圖案繞中心O旋轉(zhuǎn)180°后,得到的圖案是()A. B.C. D.8.已知一個扇形的半徑為60cm,圓心角為180°,若用它做成一個圓錐的側(cè)面,則這個圓錐的底面半徑為()A.15cm B.20cm C.25cm D.30cm9.如圖,已知,且,則()A. B. C. D.10.如圖,△ABC中,點D為邊BC的點,點E、F分別是邊AB、AC上兩點,且EF∥BC,若AE:EB=m,BD:DC=n,則()A.若m>1,n>1,則2S△AEF>S△ABD B.若m>1,n<1,則2S△AEF<S△ABDC.若m<1,n<1,則2S△AEF<S△ABD D.若m<1,n>1,則2S△AEF<S△ABD二、填空題(每小題3分,共24分)11.如果一個四邊形的某個頂點到其他三個頂點的距離相等,我們把這個四邊形叫做等距四邊形,這個頂點叫做這個四邊形的等距點.如圖,已知梯形ABCD是等距四邊形,AB∥CD,點B是等距點.若BC=10,cosA=,則CD的長等于_____.12.一個圓錐的側(cè)面展開圖是半徑為6,圓心角為120°的扇形,那么這個圓錐的底面圓的半徑為____.13.如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB于點D,如果CD=4,那么AD?BD的值是_____.14.如果關(guān)于x的方程x2-5x+a=0有兩個相等的實數(shù)根,那么a=_____.15.如圖,二次函數(shù)的圖象與x軸交于A,B兩點,與y軸交于點C,對稱軸與x軸交于點D,若點P為y軸上的一個動點,連接PD,則的最小值為________.16.如圖,在矩形ABCD中,AD=2,CD=1,連接AC,以對角線AC為邊,按逆時針方向作矩形ABCD的相似矩形AB1C1C,再連接AC1,以對角線AC1為邊作矩形AB1C1C的相似矩形AB2C2C1,......,按此規(guī)律繼續(xù)下去,則矩形AB2019C2019C2018的面積為_____.17.一元二次方程x2﹣4x+4=0的解是________.18.如圖,在中,點D、E分別在AB、AC邊上,,,,則__________.三、解答題(共66分)19.(10分)在平面直角坐標(biāo)系中,已知點是直線上一點,過點分別作軸,軸的垂線,垂足分別為點和點,反比例函數(shù)的圖象經(jīng)過點.(1)若點是第一象限內(nèi)的點,且,求的值;(2)當(dāng)時,直接寫出的取值范圍.20.(6分)如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=x2+bx+c的圖象與x軸相交于點A、B,與y軸相交于點C,B點的坐標(biāo)為(6,0),點M為拋物線上的一個動點.(1)若該二次函數(shù)圖象的對稱軸為直線x=4時:①求二次函數(shù)的表達(dá)式;②當(dāng)點M位于x軸下方拋物線圖象上時,過點M作x軸的垂線,交BC于點Q,求線段MQ的最大值;(2)過點M作BC的平行線,交拋物線于點N,設(shè)點M、N的橫坐標(biāo)為m、n.在點M運(yùn)動的過程中,試問m+n的值是否會發(fā)生改變?若改變,請說明理由;若不變,請求出m+n的值.21.(6分)如圖,△ABC三個頂點的坐標(biāo)分別為A(1,1),B(4,2),C(3,4).(1)請畫出△ABC向左平移5個單位長度后得到的△ABC;(2)請畫出△ABC關(guān)于原點對稱的△ABC;(3)在軸上求作一點P,使△PAB的周長最小,請畫出△PAB,并直接寫出P的坐標(biāo).22.(8分)如圖,直線y=x+2與拋物線y=ax2+bx+6相交于A(,)和B(4,m),直線AB交x軸于點E,點P是線段AB上異于A、B的動點,過點P作PC⊥x軸于點D,交拋物線于點C.(1)求拋物線的解析式.(2)連結(jié)AC、BC,是否存在一點P,使△ABC的面積等于14?若存在,請求出此時點P的坐標(biāo);若不存在,請說明理由.(3)若△PAC與△PDE相似,求點P的坐標(biāo).23.(8分)內(nèi)接于⊙,是直徑,,點在⊙上.(1)如圖,若弦交直徑于點,連接,線段是點到的垂線.①問的度數(shù)和點的位置有關(guān)嗎?請說明理由.②若的面積是的面積的倍,求的正弦值.(2)若⊙的半徑長為,求的長度.24.(8分)如圖,中,,是的中點,于.(1)求證:;(2)當(dāng)時,求的度數(shù).25.(10分)解下列方程:配方法.26.(10分)為慶祝建國周年,東營市某中學(xué)決定舉辦校園藝術(shù)節(jié).學(xué)生從“書法”、“繪畫”、“聲樂”、“器樂”、“舞蹈”五個類別中選擇一類報名參加.為了了解報名情況,組委會在全校隨機(jī)抽取了若干名學(xué)生進(jìn)行問卷調(diào)查,現(xiàn)將報名情況繪制成如圖所示的不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:(1)在這次調(diào)查中,一共抽取了多少名學(xué)生?(2)補(bǔ)全條形統(tǒng)計圖;(3)在扇形統(tǒng)計圖中,求“聲樂”類對應(yīng)扇形圓心角的度數(shù);(4)小東和小穎報名參加“器樂”類比賽,現(xiàn)從小提琴、單簧管、鋼琴、電子琴四種樂器中隨機(jī)選擇一種樂器,用列表法或畫樹狀圖法求出他們選中同一種樂器的概率.

參考答案一、選擇題(每小題3分,共30分)1、A【解析】根據(jù)根與系數(shù)的關(guān)系求解即可.【詳解】∵關(guān)于的一元二次方程兩實數(shù)根為、,∴.故選:A.本題考查了根與系數(shù)的關(guān)系,二次項系數(shù)為1,常用以下關(guān)系:、是方程的兩根時,,.2、B【分析】首先根據(jù)矩形和翻折的性質(zhì)得出△AED≌△A'ED,△A'BE≌△A'B'E,∠A'B'E=∠B=∠A'B'D=90°,∠AED=∠A'ED,∠A'EB=∠A'EB',BE=B'E,進(jìn)而得出∠AED=∠A'ED=∠A'EB=60°,∠ADE=∠A'DE=∠A'DC=30°,判定△DB'A'≌△DCA',DC=DB',得出AE,設(shè)AB=DC=x,利用勾股定理構(gòu)建方程,即可得解.【詳解】∵四邊形ABCD為矩形,∴∠ADC=∠C=∠B=90°,AB=DC,由翻折知,△AED≌△A'ED,△A'BE≌△A'B'E,∠A'B'E=∠B=∠A'B'D=90°,∴∠AED=∠A'ED,∠A'EB=∠A'EB',BE=B'E,∴∠AED=∠A'ED=∠A'EB=×180°=60°,∴∠ADE=90°﹣∠AED=30°,∠A'DE=90°﹣∠A'EB=30°,∴∠ADE=∠A'DE=∠A'DC=30°,又∵∠C=∠A'B'D=90°,DA'=DA',∴△DB'A'≌△DCA'(AAS),∴DC=DB',在Rt△AED中,∠ADE=30°,AD=2,∴AE=,設(shè)AB=DC=x,則BE=B'E=x﹣∵AE2+AD2=DE2,∴()2+22=(x+x﹣)2,解得,x1=(負(fù)值舍去),x2=,故答案為B.本題考查了矩形的性質(zhì),軸對稱的性質(zhì)等,解題關(guān)鍵是通過軸對稱的性質(zhì)證明∠AED=∠A'ED=∠A'EB=60°.3、D【分析】將函數(shù)關(guān)系式轉(zhuǎn)化為頂點式,然后利用開口方向和頂點坐標(biāo)即可求出最多的利潤.【詳解】解:y=-2x2+60x+800=-2(x-15)2+1250∵-2<0故當(dāng)x=15時,y有最大值,最大值為1250即利潤獲得最多為1250元故選:D.此題考查的是利用二次函數(shù)求最值,掌握將二次函數(shù)的一般式轉(zhuǎn)化為頂點式求最值是解決此題的關(guān)鍵.4、A【分析】△ABC的面積=?AB?yA,先設(shè)A、B兩點坐標(biāo)(其y坐標(biāo)相同),然后計算相應(yīng)線段長度,用面積公式即可求解.【詳解】設(shè)A(,m),B(,m),則:△ABC的面積=?AB?yA=?(﹣)?m=3,則a﹣b=2.故選A.此題主要考查了反比例函數(shù)系數(shù)的幾何意義,以及圖象上點的特點,求解函數(shù)問題的關(guān)鍵是要確定相應(yīng)點坐標(biāo),通過設(shè)A、B兩點坐標(biāo),表示出相應(yīng)線段長度即可求解問題.5、B【分析】根據(jù)必然事件的定義判斷即可.【詳解】A、C、D為隨機(jī)事件,B為必然事件.故選B.本題考查隨機(jī)事件與必然事件的判斷,關(guān)鍵在于熟記概念.6、C【分析】加的面積=新正方形的面積-原正方形的面積,把相關(guān)數(shù)值代入化簡即可.【詳解】解:∵新正方形的邊長為x+4,原正方形的邊長為4,∴新正方形的面積為(x+4)2,原正方形的面積為16,∴y=(x+4)2-16=x2+8x,故選:C.本題考查列二次函數(shù)關(guān)系式;得到增加的面積的等量關(guān)系是解決本題的關(guān)鍵.7、D【分析】根據(jù)旋轉(zhuǎn)的定義進(jìn)行分析即可解答【詳解】解:根據(jù)旋轉(zhuǎn)的性質(zhì),旋轉(zhuǎn)前后,各點的相對位置不變,得到的圖形全等,分析選項,可得正方形圖案繞中心O旋轉(zhuǎn)180°后,得到的圖案是D.故選D.本題考查了圖紙旋轉(zhuǎn)的性質(zhì),熟練掌握是解題的關(guān)鍵.8、D【分析】根據(jù)底面周長=展開圖的弧長可得出結(jié)果.【詳解】解:設(shè)這個圓錐的底面半徑為r,

根據(jù)題意得2πr=,

解得r=30(cm),

即這個圓錐的底面半徑為30cm.

故選:D.本題考查了圓錐的計算:圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.9、D【分析】根據(jù)相似三角形的面積比等于相似比的平方即可解決問題.【詳解】解:∵,∴,∵,∴,故選:D.此題考查相似三角形的性質(zhì),解題的關(guān)鍵是熟練掌握相似三角形的性質(zhì)解決問題,記住相似三角形的面積比等于相似比的平方.10、D【分析】根據(jù)相似三角形的判定與性質(zhì),得出,,從而建立等式關(guān)系,得出,然后再逐一分析四個選項,即可得出正確答案.【詳解】解:∵EF∥BC,若AE:EB=m,BD:DC=n,?∴△AEF∽△ABC,∴,∴,∴,∴∴當(dāng)m=1,n=1,即當(dāng)E為AB中點,D為BC中點時,,A.當(dāng)m>1,n>1時,S△AEF與S△ABD同時增大,則或,即2或2>,故A錯誤;B.當(dāng)m>1,n<1,S△AEF增大而S△ABD減小,則,即2,故B錯誤;C.m<1,n<1,S△AEF與S△ABD同時減小,則或,即2或2<,故C錯誤;D.m<1,n>1,S△AEF減小而S△ABD增大,則,即2<,故D正確.故選D.本題主要考查了相似三角形的判定與性質(zhì),熟練掌握相似三角形的性質(zhì)是解答本題的關(guān)鍵.二、填空題(每小題3分,共24分)11、16【解析】如圖作BM⊥AD于M,DE⊥AB于E,BF⊥CD于F.易知四邊形BEDF是矩形,理由面積法求出DE,再利用等腰三角形的性質(zhì),求出DF即可解決問題.【詳解】連接BD,過點B分別作BM⊥AD于點M,BN⊥DC于點N,∵梯形ABCD是等距四邊形,點B是等距點,∴AB=BD=BC=10,∵=,∴AM=,∴BM==3,∵BM⊥AD,∴AD=2AM=2,∵AB//CD,∴S△ABD=,∴BN=6,∵BN⊥DC,∴DN==8,∴CD=2DN=16,故答案為16.12、2【詳解】試題分析:設(shè)此圓錐的底面半徑為r,根據(jù)圓錐的側(cè)面展開圖扇形的弧長等于圓錐底面周長可得,2πr=,解得r=2cm.考點:圓錐側(cè)面展開扇形與底面圓之間的關(guān)系.13、1【分析】先由角的互余關(guān)系,導(dǎo)出∠DCA=∠B,結(jié)合∠BDC=∠CDA=90°,證明△BCD∽△CAD,利用相似三角形的性質(zhì),列出比例式,變形即可得答案.【詳解】解:∵∠ACB=90°,CD⊥AB于點D,∴∠BCD+∠DCA=90°,∠B+∠BCD=90°∴∠DCA=∠B,又∵∠BDC=∠CDA=90°,∴△BCD∽△CAD,∴BD:CD=CD:AD,∴AD?BD=CD2=42=1,故答案為:1.本題主要考查相似三角形的判定和性質(zhì),解決本題的關(guān)鍵是要熟練掌握相似三角形的判定和性質(zhì).14、【分析】若一元二次方程有兩個相等的實數(shù)根,則方程的根的判別式等于0,由此可列出關(guān)于a的等式,求出a的值.【詳解】∵關(guān)于x的方程x2-5x+a=0有兩個相等的實數(shù)根,∴△=25-4a=0,即a=.故答案為:.一元二次方程根的情況與判別式△的關(guān)系:(1)△>0?方程有兩個不相等的實數(shù)根;(2)△=0?方程有兩個相等的實數(shù)根;(3)△<0?方程沒有實數(shù)根.15、【分析】連接AC,連接CD,過點A作AE⊥CD交于點E,則AE為所求.由銳角三角函數(shù)的知識可知PC=PE,然后通過證明△CDO∽△AED,利用相似三角形的性質(zhì)求解即可.【詳解】解:連接AC,連接CD,過點A作AE⊥CD交于點E,則AE為所求.當(dāng)x=0時,y=3,∴C(0,3).當(dāng)y=0時,0=-x2+2x+3,∴x1=3,x2=-1,∴A(-1,0)、B(3,0),∴OA=1,OC=3,∴AC=,∵二次函數(shù)y=-x2+2x+3的對稱軸是直線x=1,∴D(1,0),∴點A與點D關(guān)于y軸對稱,∴sin∠ACO=,由對稱性可知,∠ACO=∠OCD,PA=PD,CD=AC=,∴sin∠OCD=,∵sin∠OCD=,∴PC=PE,∵PA=PD,∴PC+PD=PE+PA,∵∠CDO=∠ADE,∠COD=AED,∴△CDO∽△AED,∴,∴,∴;故答案為.本題考查了二次函數(shù)的圖像與性質(zhì),二次函數(shù)與坐標(biāo)軸的交點,銳角三角函數(shù)的知識,勾股定理,軸對稱的性質(zhì),相似三角形的判定與性質(zhì)等知識,難度較大,屬中考壓軸題.16、【分析】利用勾股定理可求得AC的長,根據(jù)面積比等于相似比的平方可得矩形AB1C1C的面積,同理可求出矩形AB2C2C1、AB3C3C2,……的面積,從而可發(fā)現(xiàn)規(guī)律,根據(jù)規(guī)律即可求得第2019個矩形的面積,即可得答案.【詳解】∵在矩形ABCD中,AD=2,CD=1,∴AC==,∵矩形ABCD與矩形AB1C1C相似,∴矩形AB1C1C與矩形ABCD的相似比為,∴矩形AB1C1C與矩形ABCD的面積比為,∵矩形ABCD的面積為1×2=2,∴矩形AB1C1C的面積為2×=,同理:矩形AB2C2C1的面積為×==,矩形AB3C3C2的面積為×==,……∴矩形ABnCnCn-1面積為,∴矩形AB2019C2019C2018的面積為=,故答案為:本題考查了矩形的性質(zhì),勾股定理,相似多邊形的性質(zhì),根據(jù)求出的結(jié)果得出規(guī)律并熟記相似圖形的面積比等于相似比的平方是解題關(guān)鍵..17、x1=x2=2【分析】根據(jù)配方法即可解方程.【詳解】解:x2﹣4x+4=0(x-2)2=0∴x1=x2=2本題考查了用配方法解一元二次方程,屬于簡單題,選擇配方法是解題關(guān)鍵.18、【分析】由,,即可求得的長,又由,根據(jù)平行線分線段成比例定理,可得,則可求得答案.【詳解】解:,,,,,.故答案為:.此題考查了相似三角形的判定和性質(zhì),此題比較簡單,注意掌握比例線段的對應(yīng)關(guān)系是解此題的關(guān)鍵.三、解答題(共66分)19、(1);(2)且.【分析】(1)設(shè)點,根據(jù),得到,代入,求得的坐標(biāo),即可求得答案;(2)依照(1),求得時的A點的坐標(biāo),根據(jù)題意,畫出函數(shù)圖象,然后根據(jù)函數(shù)的圖象直接求出k的取值范圍即可.【詳解】(1)依題意,設(shè)點,∴,∵,∴,∵點在直線上,∴點的坐標(biāo)為,∵點在函數(shù)的圖像上,∴;(2)依題意,設(shè)點,∴,∵,∴,∵點在直線上,∴點的坐標(biāo)為或,∵點在函數(shù)的圖像上,∴或,觀察圖象,當(dāng)且時,.此題屬于反比例函數(shù)與一次函數(shù)的綜合題,涉及的知識有:待定系數(shù)法求函數(shù)解析式,一次函數(shù)與反比例函數(shù)的交點,坐標(biāo)與圖形性質(zhì),此類題要先求特殊位置時對應(yīng)的k值,利用數(shù)形結(jié)合的思想,依照題意畫出圖形,利用數(shù)形結(jié)合找出k的取值范圍.20、(1)①y=x2﹣8x+3;②線段MQ的最大值為1.(2)m+n的值為定值.m+n=2.【分析】(1)①根據(jù)點B的坐標(biāo)和二次函數(shù)圖象的對稱軸即可求出二次函數(shù)解析式;②設(shè)M(m,m2﹣8m+3),利用待定系數(shù)法求出直線BC的解析式,從而求出Q(m,﹣2m+3),即可求出MQ的長與m的函數(shù)關(guān)系式,然后利用二次函數(shù)求最值即可;(2)將B(2,0)代入二次函數(shù)解析式中,求出二次函數(shù)解析式即可求出點C的坐標(biāo),然后利用待定系數(shù)法求出直線BC的解析式,根據(jù)一次函數(shù)的性質(zhì)設(shè)出直線MN的解析式,然后聯(lián)立方程結(jié)合一元二次方程根與系數(shù)的關(guān)系即可得出結(jié)論.【詳解】(1)①由題意,解得,∴二次函數(shù)的解析式為y=x2﹣8x+3.②如圖1中,設(shè)M(m,m2﹣8m+3),∵B(2,0),C(0,3),∴直線BC的解析式為y=﹣2x+3,∵M(jìn)Q⊥x軸,∴Q(m,﹣2m+3),∴QM=﹣2m+3﹣(m2﹣8m+3)=﹣m2+2m=﹣(m﹣3)2+1,∵﹣1<0,∴m=3時,QM有最大值,最大值為1.(2)結(jié)論:m+n的值為定值.理由:如圖2中,將B(2,0)代入二次函數(shù)解析式中,得解得:∴二次函數(shù)解析式為∴C(0,﹣32﹣2b),設(shè)直線BC的解析式為y=kx﹣32﹣2b,把(2,0)代入得到:k=2+b,∴直線BC的解析式為y=(2+b)x﹣32﹣2b,∵M(jìn)N∥CB,∴可以假設(shè)直線MN的解析式為y=(2+b)x+b′,由,消去y得到:x2﹣2x﹣32﹣2b﹣b′=0,∴x1+x2=2,∵點M、N的橫坐標(biāo)為m、n,∴m+n=2.∴m+n為定值,m+n=2.此題考查的是二次函數(shù)與一次函數(shù)的綜合題型,掌握利用待定系數(shù)法求二次函數(shù)解析式、一次函數(shù)解析式、利用二次函數(shù)求最值、一元二次方程根與系數(shù)的關(guān)系是解決此題的關(guān)鍵.21、(1)圖形見解析;(2)圖形見解析;(3)圖形見解析,點P的坐標(biāo)為:(2,0)【分析】(1)按題目的要求平移就可以了關(guān)于原點對稱的點的坐標(biāo)變化是:橫、縱坐標(biāo)都變?yōu)橄喾磾?shù),找到對應(yīng)點后按順序連接即可(3)AB的長是不變的,要使△PAB的周長最小,即要求PA+PB最小,轉(zhuǎn)為了已知直線與直線一側(cè)的兩點,在直線上找一個點,使這點到已知兩點的線段之和最小,方法是作A、B兩點中的某點關(guān)于該直線的對稱點,然后連接對稱點與另一點.【詳解】(1)△A1B1C1如圖所示;(2)△A2B2C2如圖所示;(3)△PAB如圖所示,點P的坐標(biāo)為:(2,0)1、圖形的平移;2、中心對稱;3、軸對稱的應(yīng)用22、(1)y=2x2﹣8x+6;(2)不存在一點P,使△ABC的面積等于14;(3)點P的坐標(biāo)為(3,5)或(,).【分析】(1)由B(4,m)在直線y=x+2上,可求得m的值,已知拋物線圖象上的A、B兩點坐標(biāo),可將其代入拋物線的解析式中,通過待定系數(shù)法即可求得解析式;(2)設(shè)出P點橫坐標(biāo),根據(jù)直線AB和拋物線的解析式表示出P、C的縱坐標(biāo),進(jìn)而得到關(guān)于PC的長度與P點橫坐標(biāo)的函數(shù)關(guān)系式,根據(jù)三角形面積公式列出方程,即可解答;(3)根據(jù)△PAC與△PDE相似,可得△PAC為直角三角形,根據(jù)直角頂點的不同,有3種情形,分類討論,即可分別求解.【詳解】(1)∵B(4,m)在直線y=x+2上,∴m=4+2=6,∴B(4,6),∵A(,),B(4,6)在拋物線y=ax2+bx+6上,∴,解得,∴拋物線的解析式為y=2x2﹣8x+6;(2)設(shè)動點P的坐標(biāo)為(n,n+2),則C點的坐標(biāo)為(n,2n2﹣8n+6),∵點P是線段AB上異于A、B的動點,∴,∴PC=(n+2)﹣(2n2﹣8n+6)=﹣2n2+9n﹣4,假設(shè)△ABC的面積等于14,則PC?(xB﹣xA)=14,∴,即:2n2﹣9n+12=0,∵△=(-9)2﹣4×2×12<0,∴一元二次方程無實數(shù)解,∴假設(shè)不成立,即:不存在一點P,使△ABC的面積等于14;(3)∵PC⊥x軸,∴∠PDE=90°,∵△PAC與△PDE相似,∴△PAC也是直角三角形,①當(dāng)P為直角頂點,則∠APC=90°由題意易知,PC∥y軸,∠APC=45°,因此這種情形不存在;②若點A為直角頂點,則∠PAC=90°.如圖1,過點A(,)作AN⊥x軸于點N,則ON=,AN=.過點A作AM⊥直線AB,交x軸于點M,則由題意易知,△AMN為等腰直角三角形,∴MN=AN=,∴OM=ON+MN=+=3,∴M(3,0).設(shè)直線AM的解析式為:y=kx+b,則:,解得,∴直線AM的解析式為:y=﹣x+3①又拋物線的解析式為:y=2x2﹣8x+6②聯(lián)立①②式,解得:或(與點A重合,舍去),∴C(3,0),即點C、M點重合.當(dāng)x=3時,y=x+2=5,∴P1(3,5);③若點C為直角頂點,則∠ACP=90°.∵y=2x2﹣8x+6=2(x﹣2)2﹣2,∴拋物線的對稱軸為直線x=2.如圖2,作點A(,)關(guān)于對稱軸x=2的對稱點C,則點C在拋物線上,且C(,).當(dāng)x=時,y=x+2=.∴P2(,).∵點P1(3,5)、P2(,)均在線段AB上,∴綜上所述,若△PAC與△PDE相似,點P的坐標(biāo)為(3,5)或(,).本題主要考查二次函數(shù)的圖象和性質(zhì)與三角形的綜合問題,掌握二次函數(shù)的待定系數(shù)法,平面直角坐標(biāo)系中,三角形的面積公式,相似三角形的判定和性質(zhì)定理,以及分類討論和數(shù)形結(jié)合思想,是解題的關(guān)鍵.23、(1)沒有關(guān)系,∠CDF=∠CAB=60°;(2);(3)或【解析】(1)①根據(jù)同弧所對的圓周角解答即可;②利用銳角三角函數(shù)的定義求出AC與BC、DF與CF的關(guān)系,利用三角形的面積公式得出,然后根據(jù)正弦的定義可求出的正弦值;(2)分兩種情況求解:①當(dāng)D點在直徑AB下方的圓弧上時;當(dāng)D點在直徑AB上方的圓弧上時.【詳解】解:(1)①沒有關(guān)系,理由如下:當(dāng)D在直徑AB的上方時,如下圖,∵AB為直徑,∴∠ACB=90°;∵∠ABC=30°,∴∠CAB=60°;∴∠CDF=∠CAB=60°;當(dāng)D在直徑AB的下方時,如下圖∵∠CAB=60°,∴∠CDB=180°-∠CAB=120°,∴∠CDF=60°.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論