




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
河南省鄭州市2026屆九年級數(shù)學(xué)第一學(xué)期期末綜合測試模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.為了估計水塘中的魚數(shù),養(yǎng)魚者先從魚塘中捕獲30條魚,在每一條魚身上做好標(biāo)記后把這些魚放歸魚塘,再從魚塘中打撈魚。通過多次實驗后發(fā)現(xiàn)捕撈的魚中有作記號的頻率穩(wěn)定在2.5%左右,則魚塘中魚的條數(shù)估計為()A.600條 B.1200條 C.2200條 D.3000條2.如圖,下列四個三角形中,與相似的是()A. B. C. D.3.邊長分別為6,8,10的三角形的內(nèi)切圓半徑與外接圓半徑的比為()A.1:5 B.4:5 C.2:10 D.2:54.下列事件為必然事件的是()A.打開電視機,正在播放新聞 B.任意畫一個三角形,其內(nèi)角和是C.買一張電影票,座位號是奇數(shù)號 D.?dāng)S一枚質(zhì)地均勻的硬幣,正面朝上5.如圖所示,幾何體的左視圖為()A. B. C. D.6.與三角形三個頂點距離相等的點,是這個三角形的()A.三條中線的交點B.三條角平分線的交點C.三條高的交點D.三邊的垂直平分線的交點7.下列式子中,y是x的反比例函數(shù)的是()A. B. C. D.8.若方程x2+3x+c=0有實數(shù)根,則c的取值范圍是()A.c≤ B.c≤ C.c≥ D.c≥9.一件商品的原價是100元,經(jīng)過兩次提價后的價格為121元,如果每次提價的百分率都是x,根據(jù)題意,下面列出的方程正確的是()A.100(1+x)=121 B.100(1-x)=121 C.100(1+x)2=121 D.100(1-x)2=12110.下列圖形中是中心對稱圖形的共有()A.1個 B.2個 C.3個 D.4個二、填空題(每小題3分,共24分)11.如圖,△ABC內(nèi)接于⊙O,若∠A=α,則∠OBC=_____.12.如圖,點是圓周上異于的一點,若,則_____.13.如圖,四邊形的兩條對角線、相交所成的銳角為,當(dāng)時,四邊形的面積的最大值是______.14.如圖,⊙O是等邊△ABC的外接圓,弦CP交AB于點D,已知∠ADP=75°,則∠POB等于_______°.15.如圖,扇形紙扇完全打開后,外側(cè)兩竹條AB,AC夾角為150°,AB的長為18cm,BD的長為9cm,則紙面部分BDEC的面積為_____cm1.16.若,則______.17.天水市某校從三名男生和兩名女生中選出兩名同學(xué)做為“伏羲文化節(jié)”的志愿者,則選出一男一女的概率為.18.若關(guān)于x的一元二次方程有一個根為0,則m的值等于___.三、解答題(共66分)19.(10分)如圖,點A的坐標(biāo)是(-2,0),點B的坐標(biāo)是(0,6),C為OB的中點,將△ABC繞點B逆時針旋轉(zhuǎn)90°后得到△A′BC′,若反比例函數(shù)的圖像恰好經(jīng)過A′B的中點D,求這個反比例函數(shù)的解析式.20.(6分)已知拋物線y=x2﹣2和x軸交于A,B(點A在點B右邊)兩點,和y軸交于點C,P為拋物線上的動點.(1)求出A,C的坐標(biāo);(2)求動點P到原點O的距離的最小值,并求此時點P的坐標(biāo);(3)當(dāng)點P在x軸下方的拋物線上運動時,過P的直線交x軸于E,若△POE和△POC全等,求此時點P的坐標(biāo).21.(6分)如圖,在□ABCD中,AD是⊙O的弦,BC是⊙O的切線,切點為B.(1)求證:;(2)若AB=5,AD=8,求⊙O的半徑.22.(8分)如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于,兩點.(1)求一次函數(shù)和反比例函數(shù)的表達式;(2)直接寫出的面積.23.(8分)如圖是一個橫斷面為拋物線形狀的拱橋,當(dāng)水面寬(AB)為4m時,拱頂(拱橋洞的最高點)離水面2m.當(dāng)水面下降1m時,求水面的寬度增加了多少?24.(8分)如圖,直線與x軸交于點A,與y軸交于點B,拋物線y=-x2+bx+c經(jīng)過A,B兩點.(1)求拋物線的解析式.(2)點P是第一象限拋物線上的一點,連接PA,PB,PO,若△POA的面積是△POB面積的倍.①求點P的坐標(biāo);②點Q為拋物線對稱軸上一點,請求出QP+QA的最小值.25.(10分)如圖①,在△ABC中,∠ACB=90°,∠B=30°,AC=1,D為AB的中點,EF為△ACD的中位線,四邊形EFGH為△ACD的內(nèi)接矩形(矩形的四個頂點均在△ACD的邊上).(1)計算矩形EFGH的面積;(2)將矩形EFGH沿AB向右平移,F(xiàn)落在BC上時停止移動.在平移過程中,當(dāng)矩形與△CBD重疊部分的面積為時,求矩形平移的距離;(3)如圖③,將(2)中矩形平移停止時所得的矩形記為矩形,將矩形繞點按順時針方向旋轉(zhuǎn),當(dāng)落在CD上時停止轉(zhuǎn)動,旋轉(zhuǎn)后的矩形記為矩形,設(shè)旋轉(zhuǎn)角為,求的值.26.(10分)商場銷售一批襯衫,平均每天可銷售20件,每件盈利40元.為了擴大銷售,增加盈利,盡量減少庫存,商場決定采取適當(dāng)?shù)慕祪r措施.經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價5元,商場平均每天可多售出10件.求:(1)若商場平均每天要盈利1200元,每件襯衫應(yīng)降價多少元?(2)要使商場平均每天盈利1600元,可能嗎?請說明理由.
參考答案一、選擇題(每小題3分,共30分)1、B【分析】由題意已知魚塘中有記號的魚所占的比例,用樣本中的魚除以魚塘中有記號的魚所占的比例,即可求得魚的總條數(shù).【詳解】解:30÷2.5%=1.故選:B.本題考查統(tǒng)計中用樣本估計總體的思想,熟練掌握并利用樣本總量除以所求量占樣本的比例即可估計總量.2、C【分析】△ABC是等腰三角形,底角是75°,則頂角是30°,結(jié)合各選項是否符合相似的條件即可.【詳解】由題圖可知,,所以∠B=∠C=75°,所以.根據(jù)兩邊成比例且夾角相等的兩個三角形相似知,與相似的是項中的三角形故選:C.此題主要考查等腰三角形的性質(zhì),三角形內(nèi)角和定理和相似三角形的判定的理解和掌握,此題難度不大,但綜合性較強.3、D【分析】由面積法求內(nèi)切圓半徑,通過直角三角形外接圓半徑為斜邊一半可求外接圓半徑,則問題可求.【詳解】解:∵62+82=102,∴此三角形為直角三角形,∵直角三角形外心在斜邊中點上,∴外接圓半徑為5,設(shè)該三角形內(nèi)接圓半徑為r,∴由面積法×6×8=×(6+8+10)r,解得r=2,三角形的內(nèi)切圓半徑與外接圓半徑的比為2:5,故選D.本題主要考查了直角三角形內(nèi)切圓和外接圓半徑的有關(guān)性質(zhì)和計算方法,解決本題的關(guān)鍵是要熟練掌握面積計算方法.4、B【分析】必然事件就是一定發(fā)生的事件,即發(fā)生的概率是1的事件.【詳解】∵A,C,D選項為不確定事件,即隨機事件,故不符合題意.∴一定發(fā)生的事件只有B,任意畫一個三角形,其內(nèi)角和是,是必然事件,符合題意.故選B.本題考查的是對必然事件的概念的理解.解決此類問題,要學(xué)會關(guān)注身邊的事物,并用數(shù)學(xué)的思想和方法去分析、看待、解決問題,提高自身的數(shù)學(xué)素養(yǎng).用到的知識點為:必然事件指在一定條件下一定發(fā)生的事件;不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.5、A【分析】根據(jù)從左邊看得到的圖形是左視圖,可得答案.【詳解】解:從左邊看第一層一個小正方形,第二層一個小正方形,第三層一個小正方形故選:A.本題考查簡單組合體的三視圖,難度不大.6、D【分析】可分別根據(jù)線段垂直平分線的性質(zhì)進行思考,首先滿足到A點、B點的距離相等,然后思考滿足到C點、B點的距離相等,都分別在各自線段的垂直平分線上,于是答案可得.【詳解】解:如圖:∵OA=OB,∴O在線段AB的垂直平分線上,∵OB=OC,∴O在線段BC的垂直平分線上,∵OA=OC,∴O在線段AC的垂直平分線上,又三個交點相交于一點,∴與三角形三個頂點距離相等的點,是這個三角形的三邊的垂直平分線的交點.故選:D.此題主要考查垂直平分線的性質(zhì),解題的關(guān)鍵是熟知線段垂直平分線上的點到線段兩個端點距離相等.7、C【分析】根據(jù)反比例函數(shù)的定義,反比例函數(shù)的一般式是y=(k≠0),即可判定各函數(shù)的類型是否符合題意.【詳解】A、是正比例函數(shù),錯誤;B、不是反比例函數(shù),錯誤;C、是反比例函數(shù),正確;D、不是反比例函數(shù),錯誤.故選:C.本題考查反比例函數(shù)的定義特點,反比例函數(shù)解析式的一般形式為:y=(k≠0).8、A【分析】由方程x2+3x+c=0有實數(shù)解,根據(jù)根的判別式的意義得到△≥0,即32-4×1×c≥0,解不等式即可得到c的取值范圍.【詳解】解:∵方程x2+3x+c=0有實數(shù)根,∴△=b2﹣4ac=32﹣4×1×c≥0,解得:c≤,故選:A.本題考查了根的判別式,需要熟記:當(dāng)△=0時,方程有兩個相等的實數(shù)根;當(dāng)△>0時,方程有兩個不相等的實數(shù)根;當(dāng)△<0時,方程沒有實數(shù)根.9、C【詳解】試題分析:對于增長率的問題的基本公式為:增長前的數(shù)量×=增長后的數(shù)量.由題意,可列方程為:100(1+x)2=121,故答案為:C考點:一元二次方程的應(yīng)用10、B【分析】根據(jù)中心對稱圖形的概念:把一個圖形繞某一點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形,進行判斷.【詳解】從左起第2、4個圖形是中心對稱圖形,故選B.本題考查了中心對稱圖形的概念,注意掌握圖形繞某一點旋轉(zhuǎn)180°后能夠與自身重合.二、填空題(每小題3分,共24分)11、90°﹣α.【分析】首先連接OC,由圓周角定理,可求得∠BOC的度數(shù),又由等腰三角形的性質(zhì),即可求得∠OBC的度數(shù).【詳解】連接OC.∵∠BOC=2∠BAC,∠BAC=α,∴∠BOC=2α.∵OB=OC,∴∠OBC故答案為:.此題考查了圓周角定理與等腰三角形的性質(zhì).此題比較簡單,注意掌握輔助線的作法,注意數(shù)形結(jié)合思想的應(yīng)用.12、或【分析】根據(jù)題意,分為點B在優(yōu)弧和劣弧兩種可能進行分析,由圓周角定理,即可得到答案.【詳解】解:當(dāng)點B在優(yōu)弧AC上時,有:∵∠AOC=140°,∴;當(dāng)點B在劣弧AC上時,有∵,∴,∴;故答案為:或.本題考查了圓周角定理,以及圓內(nèi)接四邊形的性質(zhì),解題的關(guān)鍵是熟練掌握同弧所對的圓周角等于圓心角的一半.13、【分析】設(shè)AC=x,根據(jù)四邊形的面積公式,,再根據(jù)得出,再利用二次函數(shù)最值求出答案.【詳解】解:∵AC、BD相交所成的銳角為∴根據(jù)四邊形的面積公式得出,設(shè)AC=x,則BD=8-x所以,∴當(dāng)x=4時,四邊形ABCD的面積取最大值故答案為:本題考查的知識點主要是四邊形的面積公式,熟記公式是解題的關(guān)鍵.14、90【分析】先根據(jù)等邊三角形的的性質(zhì)和三角形的外角性質(zhì)求出∠ACP,進而求得可得∠BCP,最后根據(jù)圓周角定理∠BOP=2∠BCP=90°.【詳解】解:∵∠A=∠ACB=60°,∠ADP=75°,∴∠ACP=∠ADP-∠A=15°,∴∠BCP=∠ACB-∠ACP=45°,∴∠BOP=2∠BCP=90°.故答案為90.此題主要考查了等邊三角形的的性質(zhì),三角形外角的性質(zhì),以及圓周角定理,關(guān)鍵是掌握在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.15、【分析】貼紙部分的面積可看作是扇形BAC的面積減去扇形DAE的面積.【詳解】S=S扇形BAC﹣S扇形DAE==(cm1).故答案是:本題考查扇形面積,解題的關(guān)鍵是掌握扇形面積公式.16、-1【分析】由可得,,再代入代數(shù)式計算即可.【詳解】∵,∴,∴原式=,故填:-1.本題考查比例的基本性質(zhì),屬于基礎(chǔ)題型.17、【解析】試題分析:畫樹狀圖得:∵共有20種等可能的結(jié)果,選出一男一女的有12種情況,∴選出一男一女的概率為:.故答案為.考點:列表法與樹狀圖法求概率18、m=-1【解析】把0代入方程有:,∴m1=1,m2=-1.∵m?1≠0∴m=1(舍去)故m=-1.三、解答題(共66分)19、.【分析】作A′H⊥y軸于H.證明△AOB≌△BHA′(AAS),推出OA=BH,OB=A′H,求出點A′坐標(biāo),再利用中點坐標(biāo)公式求出點D坐標(biāo)即可解決問題.【詳解】作A′H⊥y軸于H.∵∠AOB=∠A′HB=∠ABA′=90°,∴∠ABO+∠A′BH=90°,∠ABO+∠BAO=90°,∴∠BAO=∠A′BH,∵BA=BA′,∴△AOB≌△BHA′(AAS),∴OA=BH,OB=A′H,∵點A的坐標(biāo)是(?2,0),點B的坐標(biāo)是(0,6),∴OA=2,OB=6,∴BH=OA=2,A′H=OB=6,∴OH=4,∴A′(6,4),∵BD=A′D,∴D(3,5),∵反比例函數(shù)的圖象經(jīng)過點D,∴這個反比例函數(shù)的解析式本題考查反比例函數(shù)圖形上的點的坐標(biāo)特征,坐標(biāo)與圖形的變化-旋轉(zhuǎn)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造全等三角形解決問題.20、(1)A(﹣,0),點C的坐標(biāo)為(0,﹣2);(2)最小值為,點P的坐標(biāo)為(,﹣)或(﹣,﹣);(3)P(﹣1,﹣1)或(1,1).【分析】(1)令y=0,解方程求出x的值,即可得到點A、B的坐標(biāo),令x=0求出y的值,即可得到點C的坐標(biāo);(2)根據(jù)二次函數(shù)圖象上點的坐標(biāo)特征設(shè)點P的坐標(biāo)為(x,x2﹣2),利用勾股定理列式求出OP2,再根據(jù)二次函數(shù)的最值問題解答;(3)根據(jù)二次函數(shù)的增減性,點P在第三四象限時,OP≠1,從而判斷出OC與OE是對應(yīng)邊,然后確定出點E與點A或點B重合,再根據(jù)全等三角形對應(yīng)角相等可得∠POC=∠POE,然后根據(jù)第三、四象限角平分線上的點到角的兩邊距離相等的坐標(biāo)特征利用拋物線解析式求解即可.【詳解】解:(1)令y=0,則x2﹣2=0,解得x=±,∵點A在點B右邊,∴A(,0),令x=0,則y=﹣2,∴點C的坐標(biāo)為(0,﹣2);(2)∵P為拋物線y=x2﹣2上的動點,∴設(shè)點P的坐標(biāo)為(x,x2﹣2),則OP2=x2+(x2﹣2)2=x4﹣3x2+4=(x2﹣)2+,∴當(dāng)x2=,即x=±時,OP2最小,OP的值也最小,最小值為,此時,點P的坐標(biāo)為(,﹣)或(﹣,﹣);(3)∵OP2=(x2﹣)2+,∴點P在第三四象限時,OP≠1,∵△POE和△POC全等,∴OC與OE是對應(yīng)邊,∴∠POC=∠POE,∴點P在第三、四象限角平分線上,①點P在第三象限角平分線上時,y=x,∴x2﹣2=x,解得x1=﹣1,x2=2(舍去),此時,點P(﹣1,﹣1);②點P在第四象限角平分線上時,y=﹣x,∴x2﹣2=﹣x,解得x1=1,x2=﹣2(舍去),此時,點P(1,1),綜上所述,P(﹣1,﹣1)或(1,1)時△POE和△POC全等.本題是二次函數(shù)綜合題型,主要利用了拋物線與坐標(biāo)軸的交點的求解、二次函數(shù)的最值問題、全等三角形的性質(zhì)、難點在于判斷出(3)點P在第三、四象限角平分線上.21、(1)證明見解析;(2)⊙O的半徑為【分析】(1)連接OB,根據(jù)題意求證OB⊥AD,利用垂徑定理求證;(2)根據(jù)垂徑定理和勾股定理求解.【詳解】解:(1)連接OB,交AD于點E.∵BC是⊙O的切線,切點為B,∴OB⊥BC.∴∠OBC=90°∵四邊形ABCD是平行四邊形∴AD//BC∴∠OED=∠OBC=90°∴OE⊥AD又∵OE過圓心O∴(2)∵OE⊥AD,OE過圓心O∴AE=AD=4在Rt△ABE中,∠AEB=90°,BE==3,設(shè)⊙O的半徑為r,則OE=r-3在Rt△ABE中,∠OEA=90°,OE2+AE2=OA2即(r-3)2+42=r2∴r=∴⊙O的半徑為掌握垂徑定理和勾股定理是本題的解題關(guān)鍵.22、(1)y=﹣x+5,y=;(2)【分析】(1)由點B在反比例函數(shù)圖象上,可求出點B的坐標(biāo),將點A的坐標(biāo)代入反比例函數(shù)即可求出反比例函數(shù)解析式;將點A和點B的坐標(biāo)代入一次函數(shù)y=k1x+b即可求出一次函數(shù)解析式;(2)延長AB交x軸與點C,由一次函數(shù)解析式可找出點C的坐標(biāo),通過分割圖形利用三角形的面積公式即可得出結(jié)論;【詳解】⑴解:將A(1,4)代入y=,得k2=4,∴該反比例函數(shù)的解析式為y=,當(dāng)x=4時代入該反比例函數(shù)解析式可得y=1,即點B的坐標(biāo)為(4,1),將A(1,4)B(4,1)代入y=k1x+b中,得,解得k1=﹣1,b=5,∴該一次函數(shù)的解析式為y=﹣x+5;(2)設(shè)直線y=﹣x+5與x軸交于點C,如圖,當(dāng)y=0時,?x+5=0,解得:x=5,則C(5,0),∴S△AOB=S△AOC?S△BOC=×5×4?×5×1=.本題考查了反比例函數(shù)與一次函數(shù)的交點問題、反比例函數(shù)圖象上點的坐標(biāo)特征、三角形的面積公式以及解二元一次方程組,掌握知識點是解題的關(guān)鍵.23、水面寬度增加了(2﹣4)米【分析】根據(jù)已知建立直角坐標(biāo)系,進而求出二次函數(shù)解析式,再通過把y=-1代入拋物線解析式得出水面寬度,即可得出答案.【詳解】解:建立平面直角坐標(biāo)系,設(shè)橫軸x通過AB,縱軸y通過AB中點O且通過C點,則通過畫圖可得知O為原點,拋物線以y軸為對稱軸,且經(jīng)過A,B兩點,OA和OB可求出為AB的一半2米,拋物線頂點C坐標(biāo)為(0,2),設(shè)頂點式y(tǒng)=ax2+2,代入A點坐標(biāo)(﹣2,0),得出:a=﹣0.5,所以拋物線解析式為y=﹣0.5x2+2,當(dāng)水面下降1米,通過拋物線在圖上的觀察可轉(zhuǎn)化為:當(dāng)y=﹣1時,對應(yīng)的拋物線上兩點之間的距離,也就是直線y=﹣1與拋物線相交的兩點之間的距離,可以通過把y=﹣1代入拋物線解析式得出:﹣1=﹣0.5x2+2,解得:x=±,所以水面寬度增加了(2﹣4)米.此題考查的是二次函數(shù)的應(yīng)用,建立適當(dāng)?shù)淖鴺?biāo)系,利用待定系數(shù)法求二次函數(shù)的解析式是解決此題的關(guān)鍵.24、(1);(2)①點P的坐標(biāo)為(,1);②【分析】(1)先確定出點A,B坐標(biāo),再用待定系數(shù)法求出拋物線解析式;
(2)設(shè)出點P的坐標(biāo),①用△POA的面積是△POB面積的倍,建立方程求解即可;②利用對稱性找到最小線段,用兩點間距離公式求解即可.【詳解】解:(1)在中,令x=0,得y=1;令y=0,得x=2,∴A(2,0),,B(0,1).∵拋物線經(jīng)過A、B兩點,∴解得∴拋物線的解析式為.(2)①設(shè)點P的坐標(biāo)為(,),過點P分別作x軸、y軸的垂線,垂足分別為D、E.∴∵∴∴,∵點P在第一象限,所以∴點P的坐標(biāo)為(,1)②設(shè)拋物線與x軸的另一交點為C,則點C的坐標(biāo)為(,)連接PC交對稱軸一點,即Q點,則PC的長就是QP+QA的最小值,所以QP+QA的最小值就是.此題是二次函數(shù)綜合題,主要考查了待定系數(shù)法,三角形的面積,對稱性,解本題的關(guān)鍵是求拋物線解析式.25、(1);(2)矩形移動的距離為時,矩形與△CBD重疊部分的面積是;(3)【解析】分析:(1)根據(jù)已知,由直角三角形的性質(zhì)可知AB=2,從而求得AD,CD,利用中位線的性質(zhì)可得EF,DF,利用三角函數(shù)可得GF,由矩形的面積公式可得結(jié)果;(2)首先利用分類討論的思
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年夏季奧林匹克試題及答案
- 工程項目進度管控與調(diào)整策略方案
- 建設(shè)項目勘察工作流程優(yōu)化方案
- 咸寧市中考數(shù)學(xué)模擬試題及答案
- 工程建設(shè)合同管理與執(zhí)行方案
- 人防項目設(shè)計審批流程方案
- 2025年湖北正源電力集團有限公司招聘146名高校畢業(yè)生(第三批)模擬試卷及答案詳解(考點梳理)
- 2025安徽工程大學(xué)部分專業(yè)技術(shù)崗位招聘2人考前自測高頻考點模擬試題及答案詳解(各地真題)
- 2025福建億力集團有限公司所屬單位校園招聘98人考前自測高頻考點模擬試題及一套答案詳解
- 2025年4月山東中醫(yī)藥大學(xué)附屬醫(yī)院合同制人員招聘113人模擬試卷完整參考答案詳解
- MSOP(測量標(biāo)準(zhǔn)作業(yè)規(guī)范)測量SOP
- 低介電常數(shù)材料應(yīng)用
- 水平三(五年級)體育《籃球:單手肩上投籃》說課稿課件
- 2023發(fā)電機自動準(zhǔn)同期裝置整定計算技術(shù)導(dǎo)則
- GB/T 3672.1-2002橡膠制品的公差第1部分:尺寸公差
- 月度工作總結(jié)
- 《C++語言基礎(chǔ)》全套課件(完整版)
- 箱涵高支模方案
- 《社會工作倫理案例分析》課件 兒童和青少年社會工作倫理
- 藝人明星形象代言肖像權(quán)使用合同模板
- 綠化養(yǎng)護檢查記錄表
評論
0/150
提交評論