




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
InsideGenAI
n°02
KeyGenAItrendstowatchin2025
Atransformativeyearahead.
TableofContents
InsideGenAI
1Introduction3
2TheriseofAgenticAI6
2.1Conceptualfoundations9
2.2Sectoraltransformationsandstrategicimpacts10
2.3Frompilottoscaledintegration12
2.4Ethicalimperativesandregulatoryconsiderations15
2.5Strategicandoperationaladvantages17
3MultimodalAI:Thenextevolution19
3.1AdvancingthefrontiersofAIcapabilities22
3.2Transformativeimplicationsforindustryandsociety24
3.3Keychallenges27
3.4TheconvergenceofmultimodalAIandArtificialGeneralIntelligence(AGI)29
4AI-poweredcustomerexperiencerevolution31
4.1Hyper-personalizationandadaptiveintelligence33
4.2AI-drivenautomationincustomersupport34
4.3Predictiveservicemodelsandanticipatoryengagement35
4.4ThefutureoftheAI-drivencustomerexperience36
5Enhancedethicsframeworks37
6Newchapters40
6.1SustainableAI41
6.2AIandhumanaugmentation44
6.3EthicalAIandsocialimpact47
7Lookingahead:ThedawnofArtificialGeneralIntelligence(AGI)49
7.1AdvancementsinAIinfrastructureandenterpriseapplications51
7.2RegulatoryandethicalconsiderationsforAGIdevelopment52
7.3TheroadtoAGI:Atransformativeeraahead54
8Conclusion55
InsideGenAI
THEARRIVALOF2025MARKSASIGNIFICANTEVOLUTIONINTHETRAJECTORYOFGENERATIVEAI(GENAI),APARADIGM-SHIFTINGTECHNOLOGYTHATISFUNDAMENTALLYREDEFININGINDUSTRIALLANDSCAPESANDCHALLENGINGTRADITIONALOPERATIONAL
MODELS.
1Introduction
Thisanalysissummarizesthekeyinsightsfromleadingacademicresearch,industrywhitepapers,ourmarketexperience,andtheimportantmilestonesachievedbyCRIF’sGenAIFactorysinceitwasestablishedin2023.Thepaperalsohighlightsthesymbioticrelationship
betweeninnovationandstrategicforesight.
Thespeedandscaleofrecent
advancementsgobeyondincremental
innovation,heraldingatransformative
erawhereGenAIisnotmerelya
technologicalaugmentationbuta
cornerstoneofstrategicenterprise
growth.Research1revealsthatenterprisespendingonGenAIsurgedmorethan
sixfoldin2024,jumpingfrom$2.3billionto$13.8billionasbusinessesmadea
decisiveshiftfromAIexperimentationtoimplementation,consideringGenAIasanindispensabletoolofcompetitivedifferentiation.
GenAI’spotentialfordisruptionextendsacrosseveryfacetofmodernindustry,
fromacceleratinginnovationcycles
toenhancingdecision-makingprocesseswithunprecedentedprecisionand
speed.Itisnotjustarelativelynew
technologybutatransformativeforcethatenablesorganizationstoadapt,
evolve,andleadinhyper-competitivemarkets.2025marksaninflectionpoint
wherebusinessesthatintegrateGenAI
effectivelywillgainacompetitiveedge,leveragingitsabilitytoautomatedecisionmaking,enhancecustomerengagement,andoptimizeoperationalefficiency.
Organizationsthatproactivelyembed
GenAIintotheirworkflowswillunlock
newrevenuestreams,achievecost
reductions,andcultivateacompetitiveedgeinanincreasinglyAI-drivenmarket.
AsindustriescontinuetheirshiftfromAIexperimentationtofull-scaledeployment,theorganizationsthatleadinGenAI
adoptionwillbeinapositionnotonlytorespondtoemergingchallengesbuttoactivelyshapethefutureoftheir
respectivesectors.
Availabledatashowsthat,invalueterms,50.8%ofglobalVCfundingwasdeployedinAI-focusedcompanies—almost
doubletheshareinthesamequarterof20232—drivingarapidevolutionof
playersandservingasanincredible
sourceofinnovation.Thisinfluxof
fundinghasnotonlyacceleratedthepaceoftechnologicaldevelopmentbutalso
fosteredacompetitiveecosystemwhereorganizationsmustinnovatetostay
relevant.
OneofthemostsignificantdevelopmentsistheemergenceofagenticAI,a
sophisticatedclassofautonomous
systemswithdynamicdecision-makingcapabilities.Thesesystemsepitomizetheshiftfromhuman-dependentworkflowstoautonomousoperationalmodels
thatenhanceefficiencyandprecision.
ForecastsbyGartnersuggestthatby
2028,agenticAIwillautonomously
manageatleast15%ofroutine
organizationaldecisions,adramatic
increasefromitscurrentbaseline3.Thistransitionheraldsanewerainwhich
decision-makingprocessesareredefinedbyadaptiveintelligenceandcontextualresponsiveness.
12024:TheStateofGenerativeAIintheEnterprise-MenloVentures
2fDiIntelligence–Yoursourceforforeigndirectinvestmentinformation-fDiI
4
3HowIntelligentAgentsinAICanWorkAlone|Gartner
5
Equallytransformativeistheproliferationofretrieval-augmentedgeneration
(RAG)methodologies,whichcombine
thebroadgeneralizationcapabilities
oflargelanguagemodels(LLMs)with
tailored,domain-specificdatasets,
ensuringgreatercontextualaccuracyandadaptability.Thisapproachsignificantlyenhancesoperationalefficiency,
allowingAIsystemstodeliverreal-time,contextuallypreciseresponseswithouttheneedforfull-scaleretraining.
However,quicklyadoptingthese
technologiescomeswithchallenges.
TheintrinsicspeedofGenAIdevelopmentrequiresthesimultaneousevolution
ofethicalgovernanceframeworksandregulatoryoversight.Asenterprises
expandtheirAI/GenAI-driveninitiatives,theymustskillfullynavigatethecomplexinterplayofethicalconsiderations,
operationalintegrity,andregulatorycompliancetomitigatepotentialrisks.
Algorithmicbias,thepotentialformisuse,andtheimperativefortransparencyare
notjustabstractconcernsbutpressingchallengesthatdemandimmediate
andsustainedattention.Organizationsthatfailtoaddresstheseissuesrisk
underminingpublictrustandregulatorycompliance,whichcouldjeopardize
theirlong-termviability.
Thefollowingchaptersprovidea
rigorousanalysisofthekeytrendssettoshapetheGenAIlandscapein2025.
FromtheparadigmofagenticAItothe
emergingfrontierofArtificialGeneral
Intelligence(AGI),thispaperoutlinesa
comprehensiveroadmapforleveraging
thelimitlessopportunitiesandaddressingtheinherentcomplexitiesofthis
transformativeera.Bycontextualizing
theseadvancements,theanalysisaimstoprovideaholisticunderstandingoftheimplicationsandstrategicimperatives
associatedwithGenAI.
Ourjourneystartswithanin-depth
examinationofagenticAI,outliningitstransformativepotentialinreconfiguring
autonomyanddecisionmakingwithinmodern-dayenterprises.
Thiscomprehensiveoverviewlaysthegroundworkforunderstandinghow
GenAI,initsmanyforms,issetto
redefinetheboundariesofinnovationandoperationalexcellenceintheyearstocome.
InsideGenAI
2Therise
ofAgenticAI
AgenticAI4representsafundamentalshiftinartificial
intelligence,enablingsystemstonotonlyautonomouslyexecutecomplexdecisionsbutalsotodynamicallyadapttochangingenvironments.
4“Anyintelligentagentcapableofautonomouslytakingsuitableandseamlessactionbasedonsensoryinput,whetherinthephysicalworldorinavirtualormixed-realityenvironmentrepresentingthephysicalworld”-
PositionPaper:AgentAITowardsaHolisticIntelligence
7
UnliketraditionalAI,whichrelieson
predefinedinstructionsandextensive
humanintervention,agenticAI
incorporatesadvancedmachinelearningtechniques,reinforcementlearning,andreal-timedecision-makingprocessestofunctionwithahighdegreeofautonomy.
AgenticAIsystemsaredesignedto
operatewithcontextualawareness,to
setandpursueindependentgoals,and
torefinetheirdecision-makingstrategiesbasedonfeedbackloops,makingthem
particularlyeffectiveindynamicandunpredictablescenarios.
Overall,agenticAIrepresentsamoreautonomousandadaptableformofartificialintelligence,poisedtotacklecomplexandevolvingchallengeswithgreaterindependenceandefficiency.
Thisadvancementisredefiningthe
boundariesofautomationandhuman
interaction,wheremachinesnotonly
perceiveandpredicteventsbutalsoactindynamic,real-worldenvironmentswithhuman-likeadaptability.
ThekeycharacteristicsofagenticAIinclude:
AUTONOMY
Thesesystemsarecapableoffunctioningindependently,makingdecisionswithoutconstanthumaninput.
CONTEXTUALAWARENESS
Theyunderstandandrespondtotheirenvironmentdynamically,takingintoaccountvariousfactorsandchanges.
GOAL-SETTING
AgenticAIcandefineandpursueobjectivesonitsown,adjustingstrategiesasnecessary.
ADAPTABILITY
Throughcontinuouslearningfromfeedbackloops,thesesystemsrefinetheirdecision-makingprocesses,improvingovertime.
EFFECTIVENESSINDYNAMICENVIRONMENTS
Duetotheiradaptivenature,agenticAIsystemsexcelin
unpredictableorrapidlychangingscenarioswheretraditionalAImightstruggle.
Aswehavediscussed,by2028,
itisprojectedthatagenticAIwill
autonomouslymanageatleast15%
ofroutineorganizationaldecisions,
markingasignificantevolutionfromitscurrentlimitedrole.Thistransformationgoesbeyondefficiencyimprovements—
itestablishesagenticAIasakey
componentofcompetitivestrategy,enablingbusinessestorespond
proactivelytomarketshifts,
optimizeresourceallocation,
andminimizerelianceonmanualdecisionmaking.
Asindustriesincreasinglyadopttheseautonomoussystems,organizationsthateffectivelyleverageagenticAIwillgainsignificantoperationalandstrategic
advantages.
8
9
2.1
Conceptualfoundations
AgenticAIisdrivenbyaunique
combinationofattributesthatsetit
apartfromstaticalgorithmicmodels,withautonomy,contextualsensitivity,andthecapacityforadaptivelearningatitscore.Thesesystemsexcelat
interpretingcomplexenvironmental
cues,processingvastdatasetsinrealtime,andrecalibratingstrategiesto
alignwithevolvingobjectives.UnlikeconventionalAI,whichoperateswithinrigid,pre-programmedparameters,
agenticAIcontinuouslyrefinesitsapproach,therebyensuringoptimaloutcomesinfluidscenarios.
AdefiningfeatureofagenticAIisitsabilitytoincorporatereinforcement
learningandself-improvingalgorithmsthatadaptdynamicallytochangesindatapatternsanduserinteractions.
Thesesystemsusedeepneuralnetworkstoestablishpredictivemodelsthatevolveovertime,enablingsuperiordecision
makingincomplex,unpredictableenvironments.
Forexample,inthefieldofautonomousrobotics,agenticAIcaninterpretsensordata,assessterrainconditions,and
modifymovementstrategiesinreal
time,enablingseamlessnavigation
andtaskexecution.Similarly,infinancialmarkets,thesesystemscananalyzea
multitudeofeconomicindicators,pasttradingpatterns,news,andgeopoliticaldevelopmentstoautonomouslyadjustinvestmentportfolios,mitigatingrisk
andmaximizingreturns.
Furthermore,theemergenceof
multi-agentsystems,wheremultiple
AIentitiescollaborateindecentralizeddecisionmaking,considerablyenhancestheefficacyofagenticAI.
Thesesystemscouldimprove
coordinationinareassuchaslogistics,cybersecurity,andemergencyresponsescenariosbyenablingAIagentsto
communicate,shareinsights,andrefineoperationalstrategiesautonomously,
minimizingtheneedforhumanintervention.
2.2
Sectoraltransformationsandstrategicimpacts
TheversatilityofagenticAIextends
acrossawiderangeofindustries,each
harnessingitscapabilitiestotackle
complexchallengesandunlockhidden
opportunities.Inhealthcare,forinstance,agenticAIpromisestorevolutionize
diagnosticaccuracyandpersonalizedmedicine.Bysynthesizingdiverse
datasets—rangingfrompatientrecordstogenomicprofiles—thesesystems
canautonomouslyproposetailored
treatmentregimens,therebyenhancingclinicaloutcomeswhilereducingthe
administrativeburdenonhealthcareprofessionals.
Infinance,theadoptionofagenticAIissettotransformriskassessment,frauddetection,andportfoliomanagement
paradigms.Throughautonomousanalysis
ofmacroeconomicindicators,market
dynamics,andtransactionpatterns,thesesystemsenablefinancialinstitutions
topreemptivelyidentifyvulnerabilitiesandoptimizeinvestmentstrategies.
Forinstance,agenticAIcandetect
anomaloustransactionpatternsindicativeoffraudulentactivityandimplement
mitigationprotocolswithminimallatency.
Areal-worldexampleofthisisPayPal'sAI-drivenfrauddetectionsystem,whichcontinuouslymonitorstransactions,
leveragingdeeplearningmodelsto
identifysuspiciousactivitiesandblockfraudulenttransactionsinrealtime5.
Similarly,JPMorganChaseemploys
agenticAItoanalyzemassivefinancial
datasets,identifyingunusualpatternsandpreventingfraudbeforeitoccurs6.
Logisticsandsupplychainoperations
aretypicalbeneficiariesofagenticAI’s
capabilities.Byintegratingpredictive
analyticswithreal-timeenvironmental
monitoring,thesesystemscanoptimizeresourceallocationandoperational
continuity.Imagineasituationwhere
anagenticAIplatformdynamically
recalibratesdeliveryschedulesin
responsetogeopoliticaldisruptions,
ensuringsustainedsupplychain
resilience.Orconsiderascenario
whereinclementweatherjeopardizesacriticalshipment.AnagenticAIsystem
canautonomouslyreroutelogistics
operations,minimizingdelaysand
ensuringcustomersatisfaction.Such
interventionsnotonlyreducecostsbutalsobolsterstakeholderconfidenceintheorganization’sadaptability.
5Tier1USPaymentprocessors
6Tier1USBank10
11
SuchapplicationsexemplifyhowagenticAIimplementsadaptabilitybydynamicallyadjustingtoreal-timeconditions,makingintelligentdecisionsbasedoncontinuouslearning,andoptimizingworkflows
withouthumanintervention.
TheseAI-drivensystemsstrengthen
operationalresiliencebyproactively
addressingdisruptions,identifying
inefficiencies,andrefiningstrategies
throughself-improvementmechanisms.Asaresult,conventionalworkflows
evolveintoresponsiveecosystemsthatcananticipatechallenges,mitigaterisks,anddrivesustainedefficiencygains
acrossvariousindustries.
12
2.3
Frompilottoscaledintegration
ThetrajectoryofagenticAIadoption
ischaracterizedbyatransitionfrom
experimentalproofsofconceptto
enterprise-widedeployments.This
evolutionreflectsincreasingconfidenceinthetechnology’sscalabilityand
reliability.However,scalingagenticAIdemandsastrategicapproach.
Enterprisesmustprioritizepilot
programstovalidatefeasibility,generateactionableinsights,andidentifythe
infrastructuralrequirementsforbroaderimplementation.ThesepilotinitiativesshouldfocusonbenchmarkingAI
performanceacrossdifferentfunctions,evaluatingthetechnology'sability
todriveefficiencies,andidentifying
integrationchallengesthatmustbe
addressedbeforefull-scaledeployment.
GAPANALYSISINAGENTICAIDEVELOPMENT
13
Asuccessfultransitionfrompilot
toscaledimplementationrequires
robustdatagovernance,AIlifecyclemanagement,andanadaptableIT
architecturecapableofsupporting
autonomousdecisionmakingatscale.
AIadoptionisoftenhinderedbyoutdatedlegacysystemsandfragmenteddata
ecosystems,forcingorganizationsto
overhaultheirinfrastructurethroughinvestmentsincloudcomputing,edgeprocessing,andresilientdatapipelines.Theseinvestmentsareessentialto
supportthecomputationaldemandsofreal-timedecisionmakingwhilemaintainingagilityandscalability.
Beyondinfrastructure,workforce
readinessisacriticalsuccessfactorinAIadoption.UpskillingemployeestoworkalongsideintelligentautomationensuresthathumanoversightremainsintegraltoAI-drivenprocesses.OrganizationsmustdevelopAIliteracyprogramstofosteraculturewhereemployeescanleverage
AI-enhancedtoolseffectivelyratherthanperceivingthemasdisruptivethreats.
Awell-trainedworkforceenhancesAI’soperationaleffectiveness,enablinga
seamlesshuman-machinecollaborationthatmaximizesproductivityand
innovation.
AGENTICAIIMPLEMENTATIONSTRATEGIES
Furthermore,integratingagenticAI
intoexistingworkflowsdemandsa
shiftinenterprisearchitecturetowardmodular,API-drivenframeworksthat
allowseamlessinteroperabilitybetweenAIagentsandtraditionalITecosystems.
Thisintegrationstrategyshould
prioritizeiterativerefinement,ensuringthatAIsystemsremainadaptableto
evolvingbusinessneedsandregulatoryrequirements.Organizationsthat
successfullyintegrateagenticAIinto
theiroperationswillbeattheforefront
ofdigitaltransformation,unlocking
unprecedentedefficiencyandcompetitiveadvantage.
14
15
2.4
Ethicalimperatives
andregulatoryconsiderations
AgenticAIpresentsadditionalethicalandregulatorychallengesthatexceedthoseassociatedwithtraditionalGenAI.UnlikeGenAI,whichfocusesoncontentcreationandaugmentation,agenticAIactively
makesautonomousdecisions,learns
fromenvironmentalfeedback,andadaptsitsstrategiesinrealtime.Thisincreasedlevelofautonomyintroducesgreater
ethicalconcerns,legalliabilities,andsecurityrisks,requiringmorestringentoversightandgovernancestructures.
Oneofthefundamentalconcernsis
autonomyindecisionmaking,whichblursthelinesofaccountability.WhenagenticAIexecutesdecisionswith
minimalhumanoversight—whetherinfinancialtransactions,healthcare
diagnostics,orautonomousvehicles—
determiningliabilityforerrorsor
biasesbecomesmorecomplex,asdoesensuringcompliancewithdataprotectionregulations.
UnlikeGenAI,whichproducesstatic
outputsbasedoninputprompts,agenticAIoperatesindynamicenvironments,
requiringorganizationstoestablishrobustgovernancemechanismstoensurethatdecisionsremainethical,explainable,
replicableandauditable.
Anotherchallengeisalgorithmicbiasandunintendedconsequences.WhileallAIsystemscaninheritbiasesfromtrainingdata,agenticAI’sabilitytoactindependentlyincreasestheriskof
compoundingerrorsandreinforcingsystemicbiasesovertime.Ifleft
unchecked,thesemodelscouldmakediscriminatoryhiringdecisions,
unfairlydenyfinancialservices,ormismanageautonomoussystems.
Tocounteractthis,organizationsmustinvestinbiasdetectionframeworks,fairnessaudits,andcontinuous
monitoringtopreventethicaldriftindecisionmaking.
Regulatorycompliancepresentsanotherlayerofcomplexity.ManyexistingAI
regulations,suchastheGDPRandCCPA,primarilyaddressdataprivacyanduserinformationorconsentbutlackexplicitprovisionsfortheaccountabilityof
agenticAIdecisionmaking.
16
Emergingregulatoryframeworks,suchastheEUAIAct,arebeginningto
addresstheseconcernsbyassessing
AIusecase.Consequently,AIagents
classifiedashigh-riskapplicationswillbesubjecttostricterrequirementsfortransparency,explainability,governancedocumentation,andhumanoversight.
FinancialinstitutionsleveragingagenticAIforriskassessmentmustalignwith
theseevolvingregulatoryexpectations,ensuringthatautonomousdecisions
adheretohuman-in-the-loopprincipleswherenecessary,managingpotentialbiasandimpactsonfundamentalrights.
Additionally,cybersecurityrisksare
amplifiedwithagenticAIduetoits
relianceoncontinuousreal-timedata
streams.UnlikeGenAImodels,which
canfunctionofflineorwithincontrolledenvironments,agenticAIsystemsrely
onreal-timedataingestion,externalAPIinteractions,anddecentralizeddecision-makingarchitectures.
EUAIACTTIMELINE7
7TheAlanTuringInstitute
ThesecomplexitiesexposeagenticAItodatapoisoning,adversarialattacks,andmalicioussystemmanipulation.
Tomitigatetheserisks,organizations
mustimplementzero-trustsecurity
architectures,encrypteddecisionlogs,
andanomalydetectionmechanismsthatprovidefail-safesagainstunauthorizedAI-drivendecisions.
AsagenticAIcontinuestoevolve,globalgovernanceframeworksmustestablishclearerguidelinestodifferentiate
betweendecisionaugmentationandfullautonomy.Regulatorybodies,industry
leaders,andAIethicsresearchersmustcollaboratetocreateaccountability
structuresthatensureresponsibleAI
deploymentwhilefosteringinnovation.Companiesthatproactivelyengage
inethicalAIinitiativesandintegrate
transparencyandoversightmechanismswillbebetterpositionedtonavigatethisevolvinglandscapewhilemaintaining
stakeholdertrustandlong-termoperationalsustainability.
17
2.5
Strategicandoperationaladvantages
Theintegrationandscalingofagentic
AIrepresentsatransformativeshiftin
howbusinessesoperate,movingbeyondsimpleautomationtocreatingsystems
capableofindependentdecisionmakingandadaptivelearning.Aswehave
discussed,akeystrategicadvantageofagenticAIisitsabilitytodrive
real-timedecisionintelligence,enablingorganizationstorespondproactively
toshiftingconditions.Thispredictivecapacityfostersgreaterbusiness
resilience,allowingorganizationstooperatewithincreasedagilityandreduceduncertainty.
Fromanoperationalstandpoint,agenticAIenablesbusinessestoredefine
workflowsandautomatecomplexprocessesthatpreviouslyrequiredsignificanthumanoversight.
Byautomatingtime-consumingand
error-pronemanualtasks,agenticAI
enableshumanteamstofocuson
high-valuestrategicinitiatives,drivinginnovationandproblemsolving.This
shiftisnotjustaboutefficiency—it
restructuresbusinessroles,encouragingorganizationstoredesignjobfunctionsaroundhuman-AIcollaborationand
GenAIcontrolratherthanmereautomation.
Oneofthemostsignificantchanges
thatagenticAIbringstobusinessesis
thetransformationoforganizational
decision-makingstructures.Traditionaldecisionmakingisoftenhierarchical
anddependentonsequentialapprovals,whichcanslowdownresponsiveness.AgenticAIdecentralizesthisprocess,
enablingfaster,data-drivendecision
makingwhileensuringconsistencyandadaptability.Thisevolutioncompels
companies,asalreadydiscussed,to
rethinkgovernanceframeworksand
developrobustoversightmechanisms
thatensureAI-drivenactionsalignwithbusinessethics,regulatoryrequirements,andcorporateobjectives.
Furthermore,agenticAIfosterscontinuouslearningand
self-improvementwithinenterprise
ecosystems.Unliketraditionalautomationtoolsthatrequireperiodicupdatesand
humanintervention,agenticAIsystemsautonomouslyrefinetheirmodelsby
processingnewinformationandadjustingtheiralgorithmsaccordingly.
Thisadaptivelearningcapability
enhanceslong-termoperational
sustainability,ensuringthatbusinesses
staycompetitiveinanenvironmentofconstanttechnologicaldisruption.
TheriseofagenticAIalsorequiresa
rethinkingofriskmanagementstrategies.Whilethesesystemsoffersignificant
advantagesinspeedandefficiency,theyalsointroducenewvulnerabilities—
rangingfromalgorithmicbiasestocybersecuritythreats.
Thiswillforceorganizationstoestablish
newAIgovernancepoliciesthatensureaccountabilityandtransparency,
preventingunintendedconsequenceswhilemaximizingthebenefitsof
autonomousdecisionmaking.
Ultimately,agenticAIdoesnotsimplyenhancebusinessoperations;ithasthepotentialtoreshapeentirei
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025湖南株洲市行政審批服務(wù)局公開招聘中級雇員2人考前自測高頻考點模擬試題有答案詳解
- 2025年金剛石膜熱沉材料項目發(fā)展計劃
- 2025南平延平塔前鎮(zhèn)衛(wèi)生院招聘醫(yī)師考前自測高頻考點模擬試題附答案詳解
- 2025杭州醫(yī)學(xué)院招聘1人模擬試卷(含答案詳解)
- 房屋租賃權(quán)轉(zhuǎn)讓合同范本8篇
- 2025內(nèi)蒙古工業(yè)大學(xué)百名博士高層次人才引進197人考前自測高頻考點模擬試題完整參考答案詳解
- 2025年騰沖市市級機關(guān)公開遴選考試真題
- 2025年海林市市級機關(guān)公開遴選考試真題
- 2025年敦煌市法院系統(tǒng)招聘真題
- 2025對外經(jīng)濟貿(mào)易大學(xué)中國語言文學(xué)學(xué)院非事業(yè)編人員招聘2人模擬試卷及答案詳解(必刷)
- 醫(yī)科大學(xué)第一附屬醫(yī)院吊塔采購項目方案投標(biāo)文件(技術(shù)方案)
- 2025年黨的理論知識考試試題以及答案
- 《中國類風(fēng)濕關(guān)節(jié)炎診療指南》(2025版)
- 《英國下午茶文化》課件
- 美業(yè)服務(wù)能力提升培訓(xùn)課件
- 石材購銷合同范本簡單
- 基孔肯雅熱科普宣傳學(xué)習(xí)課件
- 放射治療放射防護要求
- 弘揚抗洪精神抗洪救災(zāi)主題班會課件
- 【新高教版中職數(shù)學(xué)基礎(chǔ)模塊上冊PPT】2.2區(qū)間
- 高考英語復(fù)習(xí)讀后續(xù)寫練習(xí)課件(友誼篇-年少因誤解與朋友關(guān)系破裂后來重歸于好)
評論
0/150
提交評論