2025年生成式AI核心趨勢報告:即將到來的變革之年 Key GenAI trends to watch in 2025 A transformative year ahead_第1頁
2025年生成式AI核心趨勢報告:即將到來的變革之年 Key GenAI trends to watch in 2025 A transformative year ahead_第2頁
2025年生成式AI核心趨勢報告:即將到來的變革之年 Key GenAI trends to watch in 2025 A transformative year ahead_第3頁
2025年生成式AI核心趨勢報告:即將到來的變革之年 Key GenAI trends to watch in 2025 A transformative year ahead_第4頁
2025年生成式AI核心趨勢報告:即將到來的變革之年 Key GenAI trends to watch in 2025 A transformative year ahead_第5頁
已閱讀5頁,還剩109頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

InsideGenAI

n°02

KeyGenAItrendstowatchin2025

Atransformativeyearahead.

TableofContents

InsideGenAI

1Introduction3

2TheriseofAgenticAI6

2.1Conceptualfoundations9

2.2Sectoraltransformationsandstrategicimpacts10

2.3Frompilottoscaledintegration12

2.4Ethicalimperativesandregulatoryconsiderations15

2.5Strategicandoperationaladvantages17

3MultimodalAI:Thenextevolution19

3.1AdvancingthefrontiersofAIcapabilities22

3.2Transformativeimplicationsforindustryandsociety24

3.3Keychallenges27

3.4TheconvergenceofmultimodalAIandArtificialGeneralIntelligence(AGI)29

4AI-poweredcustomerexperiencerevolution31

4.1Hyper-personalizationandadaptiveintelligence33

4.2AI-drivenautomationincustomersupport34

4.3Predictiveservicemodelsandanticipatoryengagement35

4.4ThefutureoftheAI-drivencustomerexperience36

5Enhancedethicsframeworks37

6Newchapters40

6.1SustainableAI41

6.2AIandhumanaugmentation44

6.3EthicalAIandsocialimpact47

7Lookingahead:ThedawnofArtificialGeneralIntelligence(AGI)49

7.1AdvancementsinAIinfrastructureandenterpriseapplications51

7.2RegulatoryandethicalconsiderationsforAGIdevelopment52

7.3TheroadtoAGI:Atransformativeeraahead54

8Conclusion55

InsideGenAI

THEARRIVALOF2025MARKSASIGNIFICANTEVOLUTIONINTHETRAJECTORYOFGENERATIVEAI(GENAI),APARADIGM-SHIFTINGTECHNOLOGYTHATISFUNDAMENTALLYREDEFININGINDUSTRIALLANDSCAPESANDCHALLENGINGTRADITIONALOPERATIONAL

MODELS.

1Introduction

Thisanalysissummarizesthekeyinsightsfromleadingacademicresearch,industrywhitepapers,ourmarketexperience,andtheimportantmilestonesachievedbyCRIF’sGenAIFactorysinceitwasestablishedin2023.Thepaperalsohighlightsthesymbioticrelationship

betweeninnovationandstrategicforesight.

Thespeedandscaleofrecent

advancementsgobeyondincremental

innovation,heraldingatransformative

erawhereGenAIisnotmerelya

technologicalaugmentationbuta

cornerstoneofstrategicenterprise

growth.Research1revealsthatenterprisespendingonGenAIsurgedmorethan

sixfoldin2024,jumpingfrom$2.3billionto$13.8billionasbusinessesmadea

decisiveshiftfromAIexperimentationtoimplementation,consideringGenAIasanindispensabletoolofcompetitivedifferentiation.

GenAI’spotentialfordisruptionextendsacrosseveryfacetofmodernindustry,

fromacceleratinginnovationcycles

toenhancingdecision-makingprocesseswithunprecedentedprecisionand

speed.Itisnotjustarelativelynew

technologybutatransformativeforcethatenablesorganizationstoadapt,

evolve,andleadinhyper-competitivemarkets.2025marksaninflectionpoint

wherebusinessesthatintegrateGenAI

effectivelywillgainacompetitiveedge,leveragingitsabilitytoautomatedecisionmaking,enhancecustomerengagement,andoptimizeoperationalefficiency.

Organizationsthatproactivelyembed

GenAIintotheirworkflowswillunlock

newrevenuestreams,achievecost

reductions,andcultivateacompetitiveedgeinanincreasinglyAI-drivenmarket.

AsindustriescontinuetheirshiftfromAIexperimentationtofull-scaledeployment,theorganizationsthatleadinGenAI

adoptionwillbeinapositionnotonlytorespondtoemergingchallengesbuttoactivelyshapethefutureoftheir

respectivesectors.

Availabledatashowsthat,invalueterms,50.8%ofglobalVCfundingwasdeployedinAI-focusedcompanies—almost

doubletheshareinthesamequarterof20232—drivingarapidevolutionof

playersandservingasanincredible

sourceofinnovation.Thisinfluxof

fundinghasnotonlyacceleratedthepaceoftechnologicaldevelopmentbutalso

fosteredacompetitiveecosystemwhereorganizationsmustinnovatetostay

relevant.

OneofthemostsignificantdevelopmentsistheemergenceofagenticAI,a

sophisticatedclassofautonomous

systemswithdynamicdecision-makingcapabilities.Thesesystemsepitomizetheshiftfromhuman-dependentworkflowstoautonomousoperationalmodels

thatenhanceefficiencyandprecision.

ForecastsbyGartnersuggestthatby

2028,agenticAIwillautonomously

manageatleast15%ofroutine

organizationaldecisions,adramatic

increasefromitscurrentbaseline3.Thistransitionheraldsanewerainwhich

decision-makingprocessesareredefinedbyadaptiveintelligenceandcontextualresponsiveness.

12024:TheStateofGenerativeAIintheEnterprise-MenloVentures

2fDiIntelligence–Yoursourceforforeigndirectinvestmentinformation-fDiI

4

3HowIntelligentAgentsinAICanWorkAlone|Gartner

5

Equallytransformativeistheproliferationofretrieval-augmentedgeneration

(RAG)methodologies,whichcombine

thebroadgeneralizationcapabilities

oflargelanguagemodels(LLMs)with

tailored,domain-specificdatasets,

ensuringgreatercontextualaccuracyandadaptability.Thisapproachsignificantlyenhancesoperationalefficiency,

allowingAIsystemstodeliverreal-time,contextuallypreciseresponseswithouttheneedforfull-scaleretraining.

However,quicklyadoptingthese

technologiescomeswithchallenges.

TheintrinsicspeedofGenAIdevelopmentrequiresthesimultaneousevolution

ofethicalgovernanceframeworksandregulatoryoversight.Asenterprises

expandtheirAI/GenAI-driveninitiatives,theymustskillfullynavigatethecomplexinterplayofethicalconsiderations,

operationalintegrity,andregulatorycompliancetomitigatepotentialrisks.

Algorithmicbias,thepotentialformisuse,andtheimperativefortransparencyare

notjustabstractconcernsbutpressingchallengesthatdemandimmediate

andsustainedattention.Organizationsthatfailtoaddresstheseissuesrisk

underminingpublictrustandregulatorycompliance,whichcouldjeopardize

theirlong-termviability.

Thefollowingchaptersprovidea

rigorousanalysisofthekeytrendssettoshapetheGenAIlandscapein2025.

FromtheparadigmofagenticAItothe

emergingfrontierofArtificialGeneral

Intelligence(AGI),thispaperoutlinesa

comprehensiveroadmapforleveraging

thelimitlessopportunitiesandaddressingtheinherentcomplexitiesofthis

transformativeera.Bycontextualizing

theseadvancements,theanalysisaimstoprovideaholisticunderstandingoftheimplicationsandstrategicimperatives

associatedwithGenAI.

Ourjourneystartswithanin-depth

examinationofagenticAI,outliningitstransformativepotentialinreconfiguring

autonomyanddecisionmakingwithinmodern-dayenterprises.

Thiscomprehensiveoverviewlaysthegroundworkforunderstandinghow

GenAI,initsmanyforms,issetto

redefinetheboundariesofinnovationandoperationalexcellenceintheyearstocome.

InsideGenAI

2Therise

ofAgenticAI

AgenticAI4representsafundamentalshiftinartificial

intelligence,enablingsystemstonotonlyautonomouslyexecutecomplexdecisionsbutalsotodynamicallyadapttochangingenvironments.

4“Anyintelligentagentcapableofautonomouslytakingsuitableandseamlessactionbasedonsensoryinput,whetherinthephysicalworldorinavirtualormixed-realityenvironmentrepresentingthephysicalworld”-

PositionPaper:AgentAITowardsaHolisticIntelligence

7

UnliketraditionalAI,whichrelieson

predefinedinstructionsandextensive

humanintervention,agenticAI

incorporatesadvancedmachinelearningtechniques,reinforcementlearning,andreal-timedecision-makingprocessestofunctionwithahighdegreeofautonomy.

AgenticAIsystemsaredesignedto

operatewithcontextualawareness,to

setandpursueindependentgoals,and

torefinetheirdecision-makingstrategiesbasedonfeedbackloops,makingthem

particularlyeffectiveindynamicandunpredictablescenarios.

Overall,agenticAIrepresentsamoreautonomousandadaptableformofartificialintelligence,poisedtotacklecomplexandevolvingchallengeswithgreaterindependenceandefficiency.

Thisadvancementisredefiningthe

boundariesofautomationandhuman

interaction,wheremachinesnotonly

perceiveandpredicteventsbutalsoactindynamic,real-worldenvironmentswithhuman-likeadaptability.

ThekeycharacteristicsofagenticAIinclude:

AUTONOMY

Thesesystemsarecapableoffunctioningindependently,makingdecisionswithoutconstanthumaninput.

CONTEXTUALAWARENESS

Theyunderstandandrespondtotheirenvironmentdynamically,takingintoaccountvariousfactorsandchanges.

GOAL-SETTING

AgenticAIcandefineandpursueobjectivesonitsown,adjustingstrategiesasnecessary.

ADAPTABILITY

Throughcontinuouslearningfromfeedbackloops,thesesystemsrefinetheirdecision-makingprocesses,improvingovertime.

EFFECTIVENESSINDYNAMICENVIRONMENTS

Duetotheiradaptivenature,agenticAIsystemsexcelin

unpredictableorrapidlychangingscenarioswheretraditionalAImightstruggle.

Aswehavediscussed,by2028,

itisprojectedthatagenticAIwill

autonomouslymanageatleast15%

ofroutineorganizationaldecisions,

markingasignificantevolutionfromitscurrentlimitedrole.Thistransformationgoesbeyondefficiencyimprovements—

itestablishesagenticAIasakey

componentofcompetitivestrategy,enablingbusinessestorespond

proactivelytomarketshifts,

optimizeresourceallocation,

andminimizerelianceonmanualdecisionmaking.

Asindustriesincreasinglyadopttheseautonomoussystems,organizationsthateffectivelyleverageagenticAIwillgainsignificantoperationalandstrategic

advantages.

8

9

2.1

Conceptualfoundations

AgenticAIisdrivenbyaunique

combinationofattributesthatsetit

apartfromstaticalgorithmicmodels,withautonomy,contextualsensitivity,andthecapacityforadaptivelearningatitscore.Thesesystemsexcelat

interpretingcomplexenvironmental

cues,processingvastdatasetsinrealtime,andrecalibratingstrategiesto

alignwithevolvingobjectives.UnlikeconventionalAI,whichoperateswithinrigid,pre-programmedparameters,

agenticAIcontinuouslyrefinesitsapproach,therebyensuringoptimaloutcomesinfluidscenarios.

AdefiningfeatureofagenticAIisitsabilitytoincorporatereinforcement

learningandself-improvingalgorithmsthatadaptdynamicallytochangesindatapatternsanduserinteractions.

Thesesystemsusedeepneuralnetworkstoestablishpredictivemodelsthatevolveovertime,enablingsuperiordecision

makingincomplex,unpredictableenvironments.

Forexample,inthefieldofautonomousrobotics,agenticAIcaninterpretsensordata,assessterrainconditions,and

modifymovementstrategiesinreal

time,enablingseamlessnavigation

andtaskexecution.Similarly,infinancialmarkets,thesesystemscananalyzea

multitudeofeconomicindicators,pasttradingpatterns,news,andgeopoliticaldevelopmentstoautonomouslyadjustinvestmentportfolios,mitigatingrisk

andmaximizingreturns.

Furthermore,theemergenceof

multi-agentsystems,wheremultiple

AIentitiescollaborateindecentralizeddecisionmaking,considerablyenhancestheefficacyofagenticAI.

Thesesystemscouldimprove

coordinationinareassuchaslogistics,cybersecurity,andemergencyresponsescenariosbyenablingAIagentsto

communicate,shareinsights,andrefineoperationalstrategiesautonomously,

minimizingtheneedforhumanintervention.

2.2

Sectoraltransformationsandstrategicimpacts

TheversatilityofagenticAIextends

acrossawiderangeofindustries,each

harnessingitscapabilitiestotackle

complexchallengesandunlockhidden

opportunities.Inhealthcare,forinstance,agenticAIpromisestorevolutionize

diagnosticaccuracyandpersonalizedmedicine.Bysynthesizingdiverse

datasets—rangingfrompatientrecordstogenomicprofiles—thesesystems

canautonomouslyproposetailored

treatmentregimens,therebyenhancingclinicaloutcomeswhilereducingthe

administrativeburdenonhealthcareprofessionals.

Infinance,theadoptionofagenticAIissettotransformriskassessment,frauddetection,andportfoliomanagement

paradigms.Throughautonomousanalysis

ofmacroeconomicindicators,market

dynamics,andtransactionpatterns,thesesystemsenablefinancialinstitutions

topreemptivelyidentifyvulnerabilitiesandoptimizeinvestmentstrategies.

Forinstance,agenticAIcandetect

anomaloustransactionpatternsindicativeoffraudulentactivityandimplement

mitigationprotocolswithminimallatency.

Areal-worldexampleofthisisPayPal'sAI-drivenfrauddetectionsystem,whichcontinuouslymonitorstransactions,

leveragingdeeplearningmodelsto

identifysuspiciousactivitiesandblockfraudulenttransactionsinrealtime5.

Similarly,JPMorganChaseemploys

agenticAItoanalyzemassivefinancial

datasets,identifyingunusualpatternsandpreventingfraudbeforeitoccurs6.

Logisticsandsupplychainoperations

aretypicalbeneficiariesofagenticAI’s

capabilities.Byintegratingpredictive

analyticswithreal-timeenvironmental

monitoring,thesesystemscanoptimizeresourceallocationandoperational

continuity.Imagineasituationwhere

anagenticAIplatformdynamically

recalibratesdeliveryschedulesin

responsetogeopoliticaldisruptions,

ensuringsustainedsupplychain

resilience.Orconsiderascenario

whereinclementweatherjeopardizesacriticalshipment.AnagenticAIsystem

canautonomouslyreroutelogistics

operations,minimizingdelaysand

ensuringcustomersatisfaction.Such

interventionsnotonlyreducecostsbutalsobolsterstakeholderconfidenceintheorganization’sadaptability.

5Tier1USPaymentprocessors

6Tier1USBank10

11

SuchapplicationsexemplifyhowagenticAIimplementsadaptabilitybydynamicallyadjustingtoreal-timeconditions,makingintelligentdecisionsbasedoncontinuouslearning,andoptimizingworkflows

withouthumanintervention.

TheseAI-drivensystemsstrengthen

operationalresiliencebyproactively

addressingdisruptions,identifying

inefficiencies,andrefiningstrategies

throughself-improvementmechanisms.Asaresult,conventionalworkflows

evolveintoresponsiveecosystemsthatcananticipatechallenges,mitigaterisks,anddrivesustainedefficiencygains

acrossvariousindustries.

12

2.3

Frompilottoscaledintegration

ThetrajectoryofagenticAIadoption

ischaracterizedbyatransitionfrom

experimentalproofsofconceptto

enterprise-widedeployments.This

evolutionreflectsincreasingconfidenceinthetechnology’sscalabilityand

reliability.However,scalingagenticAIdemandsastrategicapproach.

Enterprisesmustprioritizepilot

programstovalidatefeasibility,generateactionableinsights,andidentifythe

infrastructuralrequirementsforbroaderimplementation.ThesepilotinitiativesshouldfocusonbenchmarkingAI

performanceacrossdifferentfunctions,evaluatingthetechnology'sability

todriveefficiencies,andidentifying

integrationchallengesthatmustbe

addressedbeforefull-scaledeployment.

GAPANALYSISINAGENTICAIDEVELOPMENT

13

Asuccessfultransitionfrompilot

toscaledimplementationrequires

robustdatagovernance,AIlifecyclemanagement,andanadaptableIT

architecturecapableofsupporting

autonomousdecisionmakingatscale.

AIadoptionisoftenhinderedbyoutdatedlegacysystemsandfragmenteddata

ecosystems,forcingorganizationsto

overhaultheirinfrastructurethroughinvestmentsincloudcomputing,edgeprocessing,andresilientdatapipelines.Theseinvestmentsareessentialto

supportthecomputationaldemandsofreal-timedecisionmakingwhilemaintainingagilityandscalability.

Beyondinfrastructure,workforce

readinessisacriticalsuccessfactorinAIadoption.UpskillingemployeestoworkalongsideintelligentautomationensuresthathumanoversightremainsintegraltoAI-drivenprocesses.OrganizationsmustdevelopAIliteracyprogramstofosteraculturewhereemployeescanleverage

AI-enhancedtoolseffectivelyratherthanperceivingthemasdisruptivethreats.

Awell-trainedworkforceenhancesAI’soperationaleffectiveness,enablinga

seamlesshuman-machinecollaborationthatmaximizesproductivityand

innovation.

AGENTICAIIMPLEMENTATIONSTRATEGIES

Furthermore,integratingagenticAI

intoexistingworkflowsdemandsa

shiftinenterprisearchitecturetowardmodular,API-drivenframeworksthat

allowseamlessinteroperabilitybetweenAIagentsandtraditionalITecosystems.

Thisintegrationstrategyshould

prioritizeiterativerefinement,ensuringthatAIsystemsremainadaptableto

evolvingbusinessneedsandregulatoryrequirements.Organizationsthat

successfullyintegrateagenticAIinto

theiroperationswillbeattheforefront

ofdigitaltransformation,unlocking

unprecedentedefficiencyandcompetitiveadvantage.

14

15

2.4

Ethicalimperatives

andregulatoryconsiderations

AgenticAIpresentsadditionalethicalandregulatorychallengesthatexceedthoseassociatedwithtraditionalGenAI.UnlikeGenAI,whichfocusesoncontentcreationandaugmentation,agenticAIactively

makesautonomousdecisions,learns

fromenvironmentalfeedback,andadaptsitsstrategiesinrealtime.Thisincreasedlevelofautonomyintroducesgreater

ethicalconcerns,legalliabilities,andsecurityrisks,requiringmorestringentoversightandgovernancestructures.

Oneofthefundamentalconcernsis

autonomyindecisionmaking,whichblursthelinesofaccountability.WhenagenticAIexecutesdecisionswith

minimalhumanoversight—whetherinfinancialtransactions,healthcare

diagnostics,orautonomousvehicles—

determiningliabilityforerrorsor

biasesbecomesmorecomplex,asdoesensuringcompliancewithdataprotectionregulations.

UnlikeGenAI,whichproducesstatic

outputsbasedoninputprompts,agenticAIoperatesindynamicenvironments,

requiringorganizationstoestablishrobustgovernancemechanismstoensurethatdecisionsremainethical,explainable,

replicableandauditable.

Anotherchallengeisalgorithmicbiasandunintendedconsequences.WhileallAIsystemscaninheritbiasesfromtrainingdata,agenticAI’sabilitytoactindependentlyincreasestheriskof

compoundingerrorsandreinforcingsystemicbiasesovertime.Ifleft

unchecked,thesemodelscouldmakediscriminatoryhiringdecisions,

unfairlydenyfinancialservices,ormismanageautonomoussystems.

Tocounteractthis,organizationsmustinvestinbiasdetectionframeworks,fairnessaudits,andcontinuous

monitoringtopreventethicaldriftindecisionmaking.

Regulatorycompliancepresentsanotherlayerofcomplexity.ManyexistingAI

regulations,suchastheGDPRandCCPA,primarilyaddressdataprivacyanduserinformationorconsentbutlackexplicitprovisionsfortheaccountabilityof

agenticAIdecisionmaking.

16

Emergingregulatoryframeworks,suchastheEUAIAct,arebeginningto

addresstheseconcernsbyassessing

AIusecase.Consequently,AIagents

classifiedashigh-riskapplicationswillbesubjecttostricterrequirementsfortransparency,explainability,governancedocumentation,andhumanoversight.

FinancialinstitutionsleveragingagenticAIforriskassessmentmustalignwith

theseevolvingregulatoryexpectations,ensuringthatautonomousdecisions

adheretohuman-in-the-loopprincipleswherenecessary,managingpotentialbiasandimpactsonfundamentalrights.

Additionally,cybersecurityrisksare

amplifiedwithagenticAIduetoits

relianceoncontinuousreal-timedata

streams.UnlikeGenAImodels,which

canfunctionofflineorwithincontrolledenvironments,agenticAIsystemsrely

onreal-timedataingestion,externalAPIinteractions,anddecentralizeddecision-makingarchitectures.

EUAIACTTIMELINE7

7TheAlanTuringInstitute

ThesecomplexitiesexposeagenticAItodatapoisoning,adversarialattacks,andmalicioussystemmanipulation.

Tomitigatetheserisks,organizations

mustimplementzero-trustsecurity

architectures,encrypteddecisionlogs,

andanomalydetectionmechanismsthatprovidefail-safesagainstunauthorizedAI-drivendecisions.

AsagenticAIcontinuestoevolve,globalgovernanceframeworksmustestablishclearerguidelinestodifferentiate

betweendecisionaugmentationandfullautonomy.Regulatorybodies,industry

leaders,andAIethicsresearchersmustcollaboratetocreateaccountability

structuresthatensureresponsibleAI

deploymentwhilefosteringinnovation.Companiesthatproactivelyengage

inethicalAIinitiativesandintegrate

transparencyandoversightmechanismswillbebetterpositionedtonavigatethisevolvinglandscapewhilemaintaining

stakeholdertrustandlong-termoperationalsustainability.

17

2.5

Strategicandoperationaladvantages

Theintegrationandscalingofagentic

AIrepresentsatransformativeshiftin

howbusinessesoperate,movingbeyondsimpleautomationtocreatingsystems

capableofindependentdecisionmakingandadaptivelearning.Aswehave

discussed,akeystrategicadvantageofagenticAIisitsabilitytodrive

real-timedecisionintelligence,enablingorganizationstorespondproactively

toshiftingconditions.Thispredictivecapacityfostersgreaterbusiness

resilience,allowingorganizationstooperatewithincreasedagilityandreduceduncertainty.

Fromanoperationalstandpoint,agenticAIenablesbusinessestoredefine

workflowsandautomatecomplexprocessesthatpreviouslyrequiredsignificanthumanoversight.

Byautomatingtime-consumingand

error-pronemanualtasks,agenticAI

enableshumanteamstofocuson

high-valuestrategicinitiatives,drivinginnovationandproblemsolving.This

shiftisnotjustaboutefficiency—it

restructuresbusinessroles,encouragingorganizationstoredesignjobfunctionsaroundhuman-AIcollaborationand

GenAIcontrolratherthanmereautomation.

Oneofthemostsignificantchanges

thatagenticAIbringstobusinessesis

thetransformationoforganizational

decision-makingstructures.Traditionaldecisionmakingisoftenhierarchical

anddependentonsequentialapprovals,whichcanslowdownresponsiveness.AgenticAIdecentralizesthisprocess,

enablingfaster,data-drivendecision

makingwhileensuringconsistencyandadaptability.Thisevolutioncompels

companies,asalreadydiscussed,to

rethinkgovernanceframeworksand

developrobustoversightmechanisms

thatensureAI-drivenactionsalignwithbusinessethics,regulatoryrequirements,andcorporateobjectives.

Furthermore,agenticAIfosterscontinuouslearningand

self-improvementwithinenterprise

ecosystems.Unliketraditionalautomationtoolsthatrequireperiodicupdatesand

humanintervention,agenticAIsystemsautonomouslyrefinetheirmodelsby

processingnewinformationandadjustingtheiralgorithmsaccordingly.

Thisadaptivelearningcapability

enhanceslong-termoperational

sustainability,ensuringthatbusinesses

staycompetitiveinanenvironmentofconstanttechnologicaldisruption.

TheriseofagenticAIalsorequiresa

rethinkingofriskmanagementstrategies.Whilethesesystemsoffersignificant

advantagesinspeedandefficiency,theyalsointroducenewvulnerabilities—

rangingfromalgorithmicbiasestocybersecuritythreats.

Thiswillforceorganizationstoestablish

newAIgovernancepoliciesthatensureaccountabilityandtransparency,

preventingunintendedconsequenceswhilemaximizingthebenefitsof

autonomousdecisionmaking.

Ultimately,agenticAIdoesnotsimplyenhancebusinessoperations;ithasthepotentialtoreshapeentirei

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論