




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2026屆怒江市重點中學九年級數(shù)學第一學期期末質量檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.在△ABC中,D是AB中點,E是AC中點,若△ADE的面積是3,則△ABC的面積是()A.3 B.6 C.9 D.122.如圖,點C、D在圓O上,AB是直徑,∠BOC=110°,AD∥OC,則∠AOD=()A.70° B.60° C.50° D.40°3.如圖,AB是⊙O的直徑,∠AOC=130°,則∠D等于()A.25° B.35° C.50° D.65°4.如圖,兩個反比例函數(shù)和在第一象限內的圖象依次是C1和C2,設點P在C1上,軸于點C,交C2于點A,軸于點D,交C2于點B,則四邊形PAOB的面積為()A.2 B.3 C.4 D.55.在反比例函數(shù)圖像的每一條曲線上,y都隨x的增大而增大,則b的取值范圍是()A.b=3 B. C. D.6.以下給出的幾何體中,主視圖是矩形,俯視圖是圓的是()A. B. C. D.7.如圖,AB是半圓O的直徑,AC為弦,OD⊥AC于D,過點O作OE∥AC交半圓O于點E,過點E作EF⊥AB于F.若AC=2,則OF的長為()A. B. C.1 D.28.如圖,在△ABC中,點D是BC的中點,點E是AC的中點,若DE=3,則AB等于()A.4 B.5 C.5.5 D.69.用16米長的鋁制材料制成一個矩形窗框,使它的面積為9平方米,若設它的一邊長為x,根據(jù)題意可列出關于x的方程為()A. B. C. D.10.下列說法正確的是()A.一顆質地硬幣已連續(xù)拋擲了5次,其中拋擲出正面的次數(shù)為1次,則第6次一定拋擲出為正面B.某種彩票中獎的概率是2%,因此買100張該種彩票一定會中獎C.天氣預報說2020年元旦節(jié)紫云下雨的概率是50%,所以紫云2020年元旦節(jié)這天將有一半時間在下雨D.某口袋中有紅球3個,每次摸出一個球是紅球的概率為100%11.若兩個相似三角形的周長之比是1:4,那么這兩個三角形的面積之比是()A.1:4 B.1:2 C.1:16 D.1:812.如圖,在Rt△ABC中,∠C=Rt∠,則cosA可表示為(
)A. B. C. D.二、填空題(每題4分,共24分)13.如圖,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,將腰CD以D為中心逆時針旋轉90°至DE,連接AE、CE,△ADE的面積為3,則BC的長為____________.14.已知二次函數(shù)y=ax2-bx+2(a≠0)圖象的頂點在第二象限,且過點(1,0),則a的取值范圍是_________;若a+b的值為非零整數(shù),則b的值為_________.15.在中,,,,圓在內自由移動.若的半徑為1,則圓心在內所能到達的區(qū)域的面積為______.16.如圖,已知矩形ABCD的兩條邊AB=1,AD=,以B為旋轉中心,將對角線BD順時針旋轉60°得到線段BE,再以C為圓心將線段CD順時針旋轉90°得到線段CF,連接EF,則圖中陰影部分面積為_____.17.廊橋是我國古老的文化遺產(chǎn)如圖,是某座拋物線型的廊橋示意圖,已知拋物線的函數(shù)表達式為,為保護廊橋的安全,在該拋物線上距水面AB高為8米的點E,F(xiàn)處要安裝兩盞警示燈,則這兩盞燈的水平距離EF是______米精確到1米18.已知點E是線段AB的黃金分割點,且,若AB=2則BE=__________.三、解答題(共78分)19.(8分)如圖,在平行四邊形中,點在邊上,,連接交于點,則的面積與的面積之比為多少?20.(8分)拋物線L:y=﹣x2+bx+c經(jīng)過點A(0,1),與它的對稱軸直線x=1交于點B(1)直接寫出拋物線L的解析式;(2)如圖1,過定點的直線y=kx﹣k+4(k<0)與拋物線L交于點M、N,若△BMN的面積等于1,求k的值;(3)如圖2,將拋物線L向上平移m(m>0)個單位長度得到拋物線L1,拋物線L1與y軸交于點C,過點C作y軸的垂線交拋物線L1于另一點D、F為拋物線L1的對稱軸與x軸的交點,P為線段OC上一點.若△PCD與△POF相似,并且符合條件的點P恰有2個,求m的值及相應點P的坐標.21.(8分)某汽車零部件生產(chǎn)企業(yè)的利潤逐年提高,據(jù)統(tǒng)計,2015年利潤為2億元,2017年利潤為2.88億元,求該企業(yè)從2015年到2017年利潤的年平均增長率.22.(10分)如圖,在平面直角坐標系中,反比例函數(shù)的圖象過等邊三角形的頂點,,點在反比例函數(shù)圖象上,連接.(1)求反比例函數(shù)的表達式;(2)若四邊形的面積是,求點的坐標.23.(10分)如圖,在中,點是弧的中點,于,于,求證:.24.(10分)如圖,在平面直角坐標系中,拋物線與軸交于點,點的坐標分別是,與軸交于點.點在第一、二象限的拋物線上,過點作軸的平行線分別交軸和直線于點、.設點的橫坐標為,線段的長度為.⑴求這條拋物線對應的函數(shù)表達式;⑵當點在第一象限的拋物線上時,求與之間的函數(shù)關系式;⑶在⑵的條件下,當時,求的值.25.(12分)某班級組織了“我和我的祖國”演講比賽,甲、乙兩隊各有10人參加本次比賽,成績如下(10分制)甲10879810109109乙789710109101010(1)甲隊成績的眾數(shù)是分,乙隊成績的中位數(shù)是分.(2)計算乙隊成績的平均數(shù)和方差.(3)已知甲隊成績的方差是1分2,則成績較為整齊的是隊.26.請認真閱讀下面的數(shù)學小探究,完成所提出的問題(1)探究1,如圖①,在等腰直角三角形ABC中,∠ACB=90°,BC=3,將邊AB繞點B順時針旋轉90°得到線段BD,連接CD,過點D作BC邊上的高DE,則DE與BC的數(shù)量關系是.△BCD的面積為.(2)探究2,如圖②,在一般的Rt△ABC中,∠ACB=90°,BC=,將邊AB繞點B順時針旋轉90°得到線段BD,連接CD,請用含的式子表示△BCD的面積,并說明理由.
參考答案一、選擇題(每題4分,共48分)1、D【分析】根據(jù)相似三角形的性質與判定即可求出答案.【詳解】解:∵D是AB中點,E是AC中點,∴DE是△ABC的中位線,∴DE=BC,DE∥BC,∴△ADE∽△ABC,∴,∴S△ABC=4S△ADE=12,故選:D.本題考查了相似三角形的面積問題,掌握相似三角形的性質與判定是解題的關鍵.2、D【分析】根據(jù)平角的定義求得∠AOC的度數(shù),再根據(jù)平行線的性質及三角形內角和定理即可求得∠AOD的度數(shù).【詳解】∵∠BOC=110°,∠BOC+∠AOC=180°∴∠AOC=70°∵AD∥OC,OD=OA∴∠D=∠A=70°∴∠AOD=180°?2∠A=40°故選:D.此題考查圓內角度求解,解題的關鍵是熟知圓的基本性質、平行線性質及三角形內角和定理的運用.3、A【解析】試題分析:∵AB是⊙O的直徑,∴∠BOC=180°-∠AOC=180°-130°=50°,∴∠D=∠BOC=×50°=25°.故選A.考點:圓周角定理4、B【解析】試題分析:∵PC⊥x軸,PD⊥y軸,∴S矩形PCOD=4,S△AOC=S△BOD=×1=,∴四邊形PAOB的面積=S矩形PCOD-S△AOC-S△BOD=4--=1.故選B.考點:反比例函數(shù)系數(shù)k的幾何意義.5、C【分析】由反比例函數(shù)的圖象的每一條曲線上,y都隨x的增大而增大,可得3-b<0,進而求出答案,作出選擇.【詳解】解:∵反比例函數(shù)的圖象的每一條曲線上,y都隨x的增大而增大,∴3-b<0,∴b>3,故選C.考查反比例函數(shù)的性質和一元一次不等式的解法,掌握反比例函數(shù)的性質是解決問題的關鍵.6、D【分析】根據(jù)幾何體的正面看得到的圖形,可得答案.【詳解】A、主視圖是圓,俯視圖是圓,故A不符合題意;B、主視圖是矩形,俯視圖是矩形,故B不符合題意;C、主視圖是三角形,俯視圖是圓,故C不符合題意;D、主視圖是個矩形,俯視圖是圓,故D符合題意;故選D.本題考查了簡單幾何體的三視圖,熟記簡單幾何的三視圖是解題關鍵.7、C【詳解】解:∵OD⊥AC,∴AD=AC=1,∵OE∥AC,∴∠DAO=∠FOE,∵OD⊥AC,EF⊥AB,∴∠ADO=∠EFO=90°,在△ADO和△OFE,∵∠DAO=∠FOE,∠ADO=∠EFO,AO=OE,∴△ADO≌△OFE,∴OF=AD=1,故選C.本題考查1.全等三角形的判定與性質;2.垂徑定理,掌握相關性質定理正確推理論證是解題關鍵.8、D【分析】由兩個中點連線得到DE是中位線,根據(jù)DE的長度即可得到AB的長度.【詳解】∵點D是BC的中點,點E是AC的中點,∴DE是△ABC的中位線,∴AB=2DE=6,故選:D.此題考查三角形的中位線定理,三角形兩邊中點的連線是三角形的中位線,平行于三角形的第三邊,且等于第三邊的一半.9、B【分析】一邊長為x米,則另外一邊長為:8-x,根據(jù)它的面積為9平方米,即可列出方程式.【詳解】一邊長為x米,則另外一邊長為:8-x,
由題意得:x(8-x)=9,
故選:B.此題考查由實際問題抽相出一元二次方程,解題的關鍵讀懂題意列出方程式.10、D【分析】概率是反映事件發(fā)生機會的大小的概念,只是表示發(fā)生的機會的大小,機會大也不一定發(fā)生.【詳解】解:A、一顆質地硬幣已連續(xù)拋擲了5次,其中拋擲出正面的次數(shù)為1次,則第6次一定拋擲出為正面,是隨機事件,錯誤;
B、某種彩票中獎的概率是2%,因此買100張該種彩票不一定會中獎,錯誤;
C、下雨的概率是50%,是說明天下雨的可能性是50%,而不是明天將有一半時間在下雨,錯誤;
D、正確.
故選:D.正確理解概率的含義是解決本題的關鍵.注意隨機事件的條件不同,發(fā)生的可能性也不等.11、C【分析】根據(jù)相似三角形的面積的比等于相似比的平方可得答案.【詳解】解:∵相似三角形的周長之比是1:4,∴對應邊之比為1:4,∴這兩個三角形的面積之比是:1:16,故選C.此題主要考查了相似三角形的性質,關鍵是掌握相似三角形的周長的比等于相似比;相似三角形的面積的比等于相似比的平方.12、C【解析】解:cosA=,故選C.二、填空題(每題4分,共24分)13、1【分析】過D點作DF⊥BC,垂足為F,過E點作EG⊥AD,交AD的延長線與G點,由旋轉的性質可知△CDF≌△EDG,從而有CF=EG,由△ADE的面積可求EG,得出CF的長,由矩形的性質得BF=AD,根據(jù)BC=BF+CF求解.【詳解】解:過D點作DF⊥BC,垂足為F,過E點作EG⊥AD,交AD的延長線與G點,由旋轉的性質可知CD=ED,∵∠EDG+∠CDG=∠CDG+∠FDC=90°,∴∠EDG=∠FDC,又∠DFC=∠G=90°,∴△CDF≌△EDG,∴CF=EG,∵S△ADE=AD×EG=3,AD=2,∴EG=3,則CF=EG=3,依題意得四邊形ABFD為矩形,∴BF=AD=2,∴BC=BF+CF=2+3=1.故答案為1.14、【分析】根據(jù)題意可得a<0,再由可以得到b>0,把(1,0)函數(shù)得a?b+2=0,導出b和a的關系,從而解出a的范圍,再根據(jù)a+b的值為非零整數(shù)的限制條件,從而得到a,b的值.【詳解】依題意知a<0,,a?b+2=0,故b>0,且b=a+2,a=b?2,a+b=a+a+2=2a+2,∴a+2>0,∴?2<a<0,∴?2<2a+2<2,∵a+b的值為非零實數(shù),∴a+b的值為?1,1,∴2a+2=?1或2a+2=1,或,∵b=a+2,或15、24【分析】根據(jù)題意做圖,圓心在內所能到達的區(qū)域為△EFG,先求出AB的長,延長BE交AC于H點,作HM⊥AB于M,根據(jù)圓的性質可知BH平分∠ABC,故CH=HM,設CH=x=HM,根據(jù)Rt△AMH中利用勾股定理求出x的值,作EK⊥BC于K點,利用△BEK∽△BHC,求出BK的長,即可求出EF的長,再根據(jù)△EFG∽△BCA求出FG,即可求出△EFG的面積.【詳解】如圖,由題意點O所能到達的區(qū)域是△EFG,連接BE,延長BE交AC于H點,作HM⊥AB于M,EK⊥BC于K,作FJ⊥BC于J.∵,,,∴AB=根據(jù)圓的性質可知BH平分∠ABC∴故CH=HM,設CH=x=HM,則AH=12-x,BM=BC=9,∴AM=15-9=6在Rt△AMH中,AH2=HM2+AM2即AH2=HM2+AM2(12-x)2=x2+62解得x=4.5∵EK∥AC,∴△BEK∽△BHC,∴,即∴BK=2,∴EF=KJ=BC-BK-JC=9-2-1=6,∵EG∥AB,EF∥AC,F(xiàn)G∥BC,∴∠EGF=∠ABC,∠FEG=∠CAB,∴△EFG∽△ACB,故,即解得FG=8∴圓心在內所能到達的區(qū)域的面積為FG×EF=×8×6=24,故答案為24.此題主要考查相似三角形的判定與性質綜合,解題的關鍵是熟知勾股定理、相似三角形的判定與性質.16、【分析】矩形ABCD的兩條邊AB=1,AD=,得到∠DBC=30°,由旋轉的性質得到BD=BE,∠BDE=60°,求得∠CBE=∠DBC=30°,連接CE,根據(jù)全等三角形的性質得到∠BCE=∠BCD=90°,推出D,C,E三點共線,得到CE=CD=1,根據(jù)三角形和扇形的面積公式即可得到結論.【詳解】∵矩形ABCD的兩條邊AB=1,AD=,∴,∴∠DBC=30°,∵將對角線BD順時針旋轉60°得到線段BE,∴BD=BE,∠BDE=60°,∴∠CBE=∠DBC=30°,連接CE,∴△DBC≌△EBC(SAS),∴∠BCE=∠BCD=90°,∴D,C,E三點共線,∴CE=CD=1,∴圖中陰影部分面積=S△BEF+S△BCD+S扇形DCF﹣S扇形DBE=+﹣=,故答案為:.本題考查了旋轉的性質,解直角三角形,矩形的性質,扇形的面積計算等知識點,能求出各個部分的面積是解此題的關鍵.17、【解析】由于兩盞E、F距離水面都是8m,因而兩盞景觀燈之間的水平距離就是直線y=8與拋物線兩交點的橫坐標差的絕對值.故有,即,,.所以兩盞警示燈之間的水平距離為:18、【分析】把一條線段分成兩部分,使其中較長的線段為全線段與較短線段的比例中項,這樣的線段分割叫做黃金分割,他們的比值叫做黃金比;【詳解】解:∵點E是線段AB的黃金分割點,且BE>AE,∴BE=AB,而AB=2,∴BE=;故答案為:;本題主要考查了黃金分割,掌握黃金分割是解題的關鍵.三、解答題(共78分)19、S△DFE:S△BFA=9:1【解析】先證明△DFE∽△BFA,再求出DE:AB的值,根據(jù)兩個相似三角形面積之比等于相似比的平方求解即可.【詳解】解:∵四邊形ABCD為平行四邊形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:1.本題考查了相似三角形的性質以及判定,掌握相似三角形的判定以及兩個相似三角形面積之比等于相似比的平方是解題的關鍵.20、(1)y=﹣x2+2x+1;(2)-3;(3)當m=2﹣1時,點P的坐標為(0,)和(0,);當m=2時,點P的坐標為(0,1)和(0,2).【解析】(1)根據(jù)對稱軸為直線x=1且拋物線過點A(0,1)利用待定系數(shù)法進行求解可即得;(2)根據(jù)直線y=kx﹣k+4=k(x﹣1)+4知直線所過定點G坐標為(1,4),從而得出BG=2,由S△BMN=S△BNG﹣S△BMG=BG?xN﹣BG?xM=1得出xN﹣xM=1,聯(lián)立直線和拋物線解析式求得x=,根據(jù)xN﹣xM=1列出關于k的方程,解之可得;(3)設拋物線L1的解析式為y=﹣x2+2x+1+m,知C(0,1+m)、D(2,1+m)、F(1,0),再設P(0,t),分△PCD∽△POF和△PCD∽△POF兩種情況,由對應邊成比例得出關于t與m的方程,利用符合條件的點P恰有2個,結合方程的解的情況求解可得.【詳解】(1)由題意知,解得:,∴拋物線L的解析式為y=﹣x2+2x+1;(2)如圖1,設M點的橫坐標為xM,N點的橫坐標為xN,∵y=kx﹣k+4=k(x﹣1)+4,∴當x=1時,y=4,即該直線所過定點G坐標為(1,4),∵y=﹣x2+2x+1=﹣(x﹣1)2+2,∴點B(1,2),則BG=2,∵S△BMN=1,即S△BNG﹣S△BMG=BG?(xN﹣1)-BG?(xM-1)=1,∴xN﹣xM=1,由得:x2+(k﹣2)x﹣k+3=0,解得:x==,則xN=、xM=,由xN﹣xM=1得=1,∴k=±3,∵k<0,∴k=﹣3;(3)如圖2,設拋物線L1的解析式為y=﹣x2+2x+1+m,∴C(0,1+m)、D(2,1+m)、F(1,0),設P(0,t),(a)當△PCD∽△FOP時,,∴,∴t2﹣(1+m)t+2=0①;(b)當△PCD∽△POF時,,∴,∴t=(m+1)②;(Ⅰ)當方程①有兩個相等實數(shù)根時,△=(1+m)2﹣8=0,解得:m=2﹣1(負值舍去),此時方程①有兩個相等實數(shù)根t1=t2=,方程②有一個實數(shù)根t=,∴m=2﹣1,此時點P的坐標為(0,)和(0,);(Ⅱ)當方程①有兩個不相等的實數(shù)根時,把②代入①,得:(m+1)2﹣(m+1)+2=0,解得:m=2(負值舍去),此時,方程①有兩個不相等的實數(shù)根t1=1、t2=2,方程②有一個實數(shù)根t=1,∴m=2,此時點P的坐標為(0,1)和(0,2);綜上,當m=2﹣1時,點P的坐標為(0,)和(0,);當m=2時,點P的坐標為(0,1)和(0,2).本題主要考查二次函數(shù)的應用,涉及到待定系數(shù)法求函數(shù)解析式、割補法求三角形的面積、相似三角形的判定與性質等,(2)小題中根據(jù)三角形BMN的面積求得點N與點M的橫坐標之差是解題的關鍵;(3)小題中運用分類討論思想進行求解是關鍵.21、該企業(yè)從2015年到2017年利潤的年平均增長率為20%【解析】設該企業(yè)從2015年到2017年利潤的年平均增長率為x,根據(jù)該企業(yè)2015年及2017年的年利潤,即可得出關于x的一元二次方程,解之取其正值即可得出結論.【詳解】設該企業(yè)從2015年到2017年利潤的年平均增長率為x,根據(jù)題意得:2(1+x)2=2.88,解得:x1=0.2=20%,x2=-2.2(舍去).答:該企業(yè)從2015年到2017年利潤的年平均增長率為20%.本題考查了一元二次方程的應用,根據(jù)題意找準等量關系,正確列出一元二次方程是解題的關鍵.22、(1)(2)【解析】(1)先求出B的坐標,根據(jù)系數(shù)k的幾何意義即可求得k=,從而求得反比例函數(shù)的表達式;(2)根據(jù)題意可,求出,再設,求出t,即可解答【詳解】(1),反比例函數(shù)的表達式為(2)設此題考查了反比例函數(shù)解析式,不規(guī)則圖形面積.,解題關鍵在于求出B的坐標23、證明見解析.【分析】連接,根據(jù)在同圓中,等弧所對的圓心角相等即可證出,然后根據(jù)角平分線的性質即可證出結論.【詳解】證明:連接,∵點是弧的中點,∴,∴OC平分∠AOB∵,,∴此題考查的是圓的基本性質和角平分線的性質,掌握在同圓中,等弧所對的圓心角相等和角平分線的性質是解決此題的關鍵.24、(1);(2)當時,,當時,;(3)或.【分析】(1)由題意直接根據(jù)待定系數(shù)法,進行分析計算即可得出函數(shù)解析式;(2)根據(jù)自變量與函數(shù)值的對應關系,可得C點坐標,根據(jù)待定系數(shù)法,可得BC的解析式,根據(jù)E點的縱坐標,可得E點的橫坐標,根據(jù)兩點間的距離,可得答案;(3)由題意根據(jù)PE與DE的關系,可得關于m的方程,根據(jù)解方程根據(jù)解方程,即可得出答案.【詳解】解:(1)由題意得,解得∴這條拋物線對應的函數(shù)表達式是.(2)當時,.∴點的坐標是.設直線的函數(shù)關系式為.由題意得解得∴直線的函數(shù)關系式為.∵PD∥x軸,∴.∴.當
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 裝載機司機崗位標準化技術規(guī)程
- 油品儲運調合工崗位安全技術規(guī)程
- 硬質合金成型工工作質量達標率考核試卷及答案
- 血液制品工合規(guī)化技術規(guī)程
- 2025年南平邵武市立醫(yī)院護理崗位招聘模擬試卷參考答案詳解
- 2025廣東廣州市增城區(qū)教育局招聘廣州增城外國語實驗中學教師10人(編制)模擬試卷及完整答案詳解一套
- 2025內蒙古大唐錫林浩特電廠招聘消防車駕駛員1人考前自測高頻考點模擬試題及答案詳解(歷年真題)
- 2025湖南永州市寧遠縣人民醫(yī)院公開招聘備案制專業(yè)技術人員50人考前自測高頻考點模擬試題及答案詳解(新)
- 2025德州齊河縣事業(yè)單位“人才回引計劃”考前自測高頻考點模擬試題有答案詳解
- 2025江蘇鎮(zhèn)江市衛(wèi)生健康委員會所屬鎮(zhèn)江市第一人民醫(yī)院招聘50人考前自測高頻考點模擬試題及一套完整答案詳解
- 《數(shù)據(jù)庫系統(tǒng)概論》全套課件(南京農業(yè)大學)
- 大型展會突發(fā)事件應急預案
- 廣東省茂名市2023-2024學年高一上學期數(shù)學期中試卷(含答案)
- 《建筑工程設計文件編制深度規(guī)定》(2022年版)
- 山西建投集團考試真題
- JT-T-325-2018營運客運類型劃分及等級評定
- JT-T-844-2012港口設施保安設備設施配置及技術要求
- 湘教版版八年級上冊地理知識點復習總結
- 2069-3-3101-002WKB產(chǎn)品判定準則-外發(fā)
- (正式版)JBT 14587-2024 膠體鉛酸蓄電池 技術規(guī)范
- 美國發(fā)布2024版《關鍵和新興技術清單》(英)
評論
0/150
提交評論